首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza virus vaccines are unique among currently licensed viral vaccines. The vaccines designed to protect against seasonal influenza illness must be updated periodically in an effort to match the vaccine strain with currently circulating viruses, and the vaccine manufacturing timeline includes multiple, overlapping processes with a very limited amount of flexibility. In the United States (U.S.), over 150 million doses of seasonal trivalent and quadrivalent vaccine are produced annually, a mammoth effort, particularly in the context of a vaccine with components that usually change on a yearly basis. In addition, emergence of an influenza virus containing an HA subtype that has not recently circulated in humans is an ever present possibility. Recently, pandemic influenza vaccines have been licensed, and the pathways for licensure of pandemic vaccines and subsequent strain updating have been defined. Thus, there are formidable challenges for the regulation of currently licensed influenza vaccines, as well as for the regulation of influenza vaccines under development. This review describes the process of licensing influenza vaccines in the U.S., the process and steps involved in the annual updating of seasonal influenza vaccines, and some recent experiences and regulatory challenges faced in development and evaluation of novel influenza vaccines.  相似文献   

2.
Influenza is an important cause of morbidity and mortality in the elderly. Influenza vaccine has been shown to successfully reduce influenza- and pneumonia-associated hospitalizations and deaths, but the antibody induction by influenza vaccines is not always optimal in the elderly. The lower serological efficacy of influenza vaccines that is often observed in the elderly may be due to a multitude of factors. Here we will discuss some of these factors. These include health status and previous exposures to influenza viruses. In addition, we will discuss possibilities to improve antibody responses to influenza vaccination.  相似文献   

3.
? For almost 60 years, the WHO Global Influenza Surveillance and Response System (GISRS) has been the key player in monitoring the evolution and spread of influenza viruses and recommending the strains to be used in human influenza vaccines. The GISRS has also worked to continually monitor and assess the risk posed by potential pandemic viruses and to guide appropriate public health responses. ? The expanded and enhanced role of the GISRS following the adoption of the International Health Regulations (2005), recognition of the continuing threat posed by avian H5N1 and the aftermath of the 2009 H1N1 pandemic provide an opportune time to critically review the process by which influenza vaccine viruses are selected. In addition to identifying potential areas for improvement, such a review will also help to promote greater appreciation by the wider influenza and policy-making community of the complexity of influenza vaccine virus selection. ? The selection process is highly coordinated and involves continual year-round integration of virological data and epidemiological information by National Influenza Centres (NICs), thorough antigenic and genetic characterization of viruses by WHO Collaborating Centres (WHOCCs) as part of selecting suitable candidate vaccine viruses, and the preparation of suitable reassortants and corresponding reagents for vaccine standardization by WHO Essential Regulatory Laboratories (ERLs). ? Ensuring the optimal effectiveness of vaccines has been assisted in recent years by advances in molecular diagnosis and the availability of more extensive genetic sequence data. However, there remain a number of challenging constraints including variations in the assays used, the possibility of complications resulting from non-antigenic changes, the limited availability of suitable vaccine viruses and the requirement for recommendations to be made up to a year in advance of the peak of influenza season because of production constraints. ? Effective collaboration and coordination between human and animal influenza networks is increasingly recognized as an essential requirement for the improved integration of data on animal and human viruses, the identification of unusual influenza A viruses infecting human, the evaluation of pandemic risk and the selection of candidate viruses for pandemic vaccines. ? Training workshops, assessments and donations have led to significant increases in trained laboratory personnel and equipment with resulting expansion in both geographical surveillance coverage and in the capacities of NICs and other laboratories. This has resulted in a significant increase in the volume of information reported to WHO on the spread, intensity and impact of influenza. In addition, initiatives such as the WHO Shipment Fund Project have facilitated the timely sharing of clinical specimens and virus isolates and contributed to a more comprehensive understanding of the global distribution and temporal circulation of different viruses. It will be important to sustain and build upon the gains made in these and other areas. ? Although the haemagglutination inhibition (HAI) assay is likely to remain the assay of choice for the antigenic characterization of viruses in the foreseeable future, alternative assays - for example based upon advanced recombinant DNA and protein technologies - may be more adaptable to automation. Other technologies such as microtitre neuraminidase inhibition assays may also have significant implications for both vaccine virus selection and vaccine development. ? Microneutralization assays provide an important adjunct to the HAI assay in virus antigenic characterization. Improvements in the use and potential automation of such assays should facilitate large-scale serological studies, while other advanced techniques such as epitope mapping should allow for a more accurate assessment of the quality of a protective immune response and aid the development of additional criteria for measuring immunity. ? Standardized seroepidemiological surveys to assess the impact of influenza in a population could help to establish well-characterized banks of age-stratified representative sera as a national, regional and global resource, while providing direct evidence of the specific benefits of vaccination. ? Advances in high-throughput genetic sequencing coupled with advanced bioinformatics tools, together with more X-ray crystallographic data, should accelerate understanding of the genetic and phenotypic changes that underlie virus evolution and more specifically help to predict the influence of amino acid changes on virus antigenicity. ? Complex mathematical modelling techniques are increasingly being used to gain insights into the evolution and epidemiology of influenza viruses. However, their value in predicting the timing and nature of future antigenic and genetic changes is likely to be limited at present. The application of simpler non-mechanistic statistical algorithms, such as those already used as the basis of antigenic cartography, and phylogenetic modelling are more likely to be useful in facilitating vaccine virus selection and in aiding assessment of the pandemic potential of avian and other animal influenza viruses. ? The adoption of alternative vaccine technologies - such as live-attenuated, quadrivalent or non-HA-based vaccines - has significant implications for vaccine virus selection, as well as for vaccine regulatory and manufacturing processes. Recent collaboration between the GISRS and vaccine manufacturers has resulted in the increased availability of egg isolates and high-growth reassortants for vaccine production, the development of qualified cell cultures and the investigation of alternative methods of vaccine potency testing. WHO will continue to support these and other efforts to increase the reliability and timeliness of the global influenza vaccine supply. ? The WHO GISRS and its partners are continually working to identify improvements, harness new technologies and strengthen and sustain collaboration. WHO will continue in its central role of coordinating worldwide expertise to meet the increasing public health need for influenza vaccines and will support efforts to improve the vaccine virus selection process, including through the convening of periodic international consultations.  相似文献   

4.
Next generation influenza vaccines that target conserved epitopes are becoming a clinical reality but still have challenges to overcome. Universal next generation vaccines are considered a vital tool to combat future pandemic viruses and have the potential to vastly improve long-term protection against seasonal influenza viruses. Key vaccine strategies include HA-stem and T cell activating vaccines; however, they could have unintended effects for virus adaptation as they recognise the virus after cell entry and do not directly block infection. This may lead to immune pressure on residual viruses. The potential for immune escape is already evident, for both the HA stem and T cell epitopes, and mosaic approaches for pre-emptive immune priming may be needed to circumvent key variants. Live attenuated influenza vaccines have not been immunogenic enough to boost T cells in adults with established prior immunity. Therefore, viral vectors or peptide approaches are key to harnessing T cell responses. A plethora of viral vector vaccines and routes of administration may be needed for next generation vaccine strategies that require repeated long-term administration to overcome vector immunity and increase our arsenal against diverse influenza viruses.  相似文献   

5.
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.  相似文献   

6.
Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.  相似文献   

7.
The emergence of a novel swine-origin pandemic influenza virus in 2009, together with the continuing circulation of highly pathogenic avian H5N1 viruses and the urgent global need to produce effective vaccines against such public health threats, has prompted a renewed interest in improving our understanding of the immune correlates of protection against influenza. As new influenza vaccine technologies, including non-HA based approaches and novel production platforms are developed and undergo clinical evaluation, it has become clear that existing immune correlates such as serum hemagglutination-inhibition antibodies may be unsuitable to estimate vaccine immunogenicity and protective efficacy of such vaccines. This International Society for Influenza and other Respiratory Virus Diseases (ISIRV) sponsored international meeting held in Miami, Florida USA on March 1-3, 2010, brought together scientists from industry, academia, and government agencies that develop and evaluate seasonal and pandemic influenza vaccines and scientists from regulatory authorities that approve them, to identify approaches to develop expanded immune correlates of protection to aid in vaccine licensure.  相似文献   

8.
Background Influenza A(H1N1)pdm09 virus has been circulating in human population for three epidemic seasons. During this time, monovalent pandemic and trivalent seasonal influenza vaccination against this virus have been offered to Finnish healthcare professionals. It is, however, unclear how well vaccine‐induced antibodies recognize different strains of influenza A(H1N1)pdm09 circulating in the population and whether the booster vaccination with seasonal influenza vaccine would broaden the antibody cross‐reactivity. Objectives Influenza vaccine‐induced humoral immunity against several isolates of influenza A(H1N1)pdm09 virus was analyzed in healthcare professionals. Age‐dependent responses were also analyzed. Methods Influenza viruses were selected to represent viruses that circulated in Finland during two consecutive influenza epidemic seasons 2009–2010 and 2010–2011. Serum samples from vaccinated volunteers, age 20–64 years, were collected before and after vaccination with AS03‐adjuvanted pandemic and non‐adjuvanted trivalent seasonal influenza vaccine that was given 1 year later. Results Single dose of pandemic vaccine induced a good albeit variable antibody response. On day 21 after vaccination, depending on the virus strain, 14–75% of vaccinated had reached antibody titers (≥1:40) considered seroprotective. The booster vaccination 1 year later with a seasonal vaccine elevated the seroprotection rate to 57–98%. After primary immunization, younger individuals (20–48 years) had significantly higher antibody titers against all tested viruses than older persons (49–64 years) but this difference disappeared after the seasonal booster vaccination. Conclusions Even a few amino acid changes in influenza A HA may compromise the vaccine‐induced antibody recognition. Older adults (49 years and older) may benefit more from repeated influenza vaccinations.  相似文献   

9.
Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross‐reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13–23. Background Alternative influenza vaccines and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross‐reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were immunised by particle‐mediated epidermal delivery (gene gun) with DNA vaccines based on the haemagglutinin (HA) and neuraminidase (NA) and/or the matrix (M) and nucleoprotein genes of the 1918 H1N1 Spanish influenza pandemic virus or the 1968 H3N2 Hong Kong influenza pandemic virus. The animals were challenged with contemporary H1N1 or H3N2 viruses. Results We demonstrated that DNA vaccines encoding proteins of the original 1918 H1N1 pandemic virus induced protective cross‐reactive immune responses in ferrets against infection with a 1947 H1N1 virus and a recent 1999 H1N1 virus. Similarly, a DNA vaccine, based on the HA and NA of the 1968 H3N2 pandemic virus, induced cross‐reactive immune responses against a recent 2005 H3N2 virus challenge. Conclusions DNA vaccines based on pandemic or recent seasonal influenza genes induced cross‐reactive immunity against contemporary virus challenge as good as or superior to contemporary conventional trivalent protein vaccines. This suggests a unique ability of influenza DNA to induce cross‐protective immunity against both contemporary and long‐time drifted viruses.  相似文献   

10.
Respiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice. Moreover, especially for influenza there is great need for the development of a universal vaccine that induces broad protective immunity against influenza viruses of various subtypes. Modified Vaccinia Virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform. MVA can encode one or more foreign antigens and thus functions as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant capacities and induces humoral and cellular immune responses. However, there are some practical and regulatory issues that need to be addressed in order to develop MVA-based vaccines on short notice at the verge of a pandemic. In this review, we discuss promising novel influenza virus vaccine targets and the use of MVA for vaccine development against various respiratory viruses.  相似文献   

11.
Viral respiratory infections continue to cause significant morbidity and mortality in infants and young children as well as in at-risk adults and the elderly. Although many viral pathogens are capable of causing acute respiratory disease, vaccine development has to focus on a limited number of pathogens (i.e., agents that commonly cause serious lower respiratory disease). Inactivated and, more recently, live attenuated influenza virus vaccines are the mainstay of interpandemic influenza prevention, but vaccines are not available yet for other important viruses such as respiratory syncytial virus, metapneumovirus, the parainfluenza viruses, and avian influenza viruses with pandemic potential. Reverse genetics systems that allow rational vaccine development are now widely used, and considerable progress has been made in preclinical and clinical development of novel respiratory virus vaccines.  相似文献   

12.
Barik S 《Viruses》2010,2(7):1448-1457
Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.  相似文献   

13.
Influenza is a major respiratory pathogen, which exerts a huge human and economic toll on society. Influenza is a vaccine preventable disease, however, the vaccine strains must be annually updated due to the continuous antigenic changes in the virus. Inactivated influenza vaccines have been used for over 50 years and have an excellent safety record. Annual vaccination is therefore recommended for all individuals with serious medical conditions, like COPD, and protects the vaccinee against influenza illness and also against hospitalization and death. In COPD patients, influenza infection can lead to exacerbations resulting in reduced quality of life, hospitalization and death in the most severe cases. Although there is only limited literature on the use of influenza vaccination solely in COPD patients, there is clearly enough evidence to recommend annual vaccination in this group. This review will focus on influenza virus and prophylaxis with inactivated influenza vaccines in COPD patients and other “at risk” groups to reduce morbidity, save lives, and reduce health care costs.  相似文献   

14.
Exacerbations of chronic bronchitis may be caused by a variety of bacterial and viral agents. There is ample documentation of a role for Hemophilus influenza, Streptococcus pneumonia, Mycoplasma pneumoniae, influenza A and B viruses, and several other respiratory viruses in causing these exacerbations. Because of the lack of frequency of exacerbations (once every 20 to 78 weeks) and the wide range of pathogens, trials of prophylaxis with antibiotics have been difficult to conduct. Controlled trials conducted since the 1950s have shown mixed results, some demonstrating a reduction in the number of exacerbations and others failing to show efficacy. Of the antibiotics used, tetracycline seemed the most effective. Both the pneumococcal polysaccharide and killed influenza virus vaccines have been suggested for patients with chronic bronchitis. The antiviral drug amantadine has been recommended when vaccine cannot be used. This reviewer concludes that prophylactic antibiotics should be used in selected patients with one or more exacerbations yearly using a drug such as tetracycline. A one-time dose of pneumococcal vaccine and the annual use of killed influenza vaccine are also reasonable. During an influenza A epidemic, amantadine should be considered for unvaccinated patients. Future studies should study intermittent v chronic prophylaxis with cheap but appropriate antibiotics (chosen for their microbial spectrum), and should test newer antiviral vaccines and antiviral drugs as they become available.  相似文献   

15.
The current pandemic has brought a renewed appreciation for the critical importance of vaccines for the promotion of both individual and public health. Influenza vaccines have been our primary tool for infection control to prevent seasonal epidemics and pandemics such as the 2009 H1N1 influenza A virus pandemic. Certain high-risk populations, including the elderly, people with obesity, and individuals with comorbidities such as type 2 diabetes mellitus, are more susceptible to increased disease severity and decreased vaccine efficacy. High-risk populations have unique microenvironments and immune responses that contribute to increased vulnerability for influenza infections. This review focuses on these differences as we investigate the variations in immune responses to influenza vaccination. In order to develop better influenza vaccines, it is critical to understand how to improve responses in our ever-growing high-risk populations.  相似文献   

16.
Please cite this paper as: Ducatez et al. (2012) Long‐term vaccine‐induced heterologous protection against H5N1 influenza viruses in the ferret model. Influenza and Other Respiratory Viruses 7(4), 506–512. Background Highly pathogenic H5N1 influenza viruses reemerged in humans in 2003 and have caused fatal human infections in Asia and Africa as well as ongoing outbreaks in poultry. These viruses have evolved substantially and are now so antigenically varied that a single vaccine antigen may not protect against all circulating strains. Nevertheless, studies have shown that substantial cross‐reactivity can be achieved with H5N1 vaccines. These studies have not, however, addressed the issue of duration of such cross‐reactive protection. Objectives To directly address this using the ferret model, we used two recommended World Health Organization H5N1 vaccine seed strains – A/Vietnam/1203/04 (clade 1) and A/duck/Hunan/795/02 (clade 2.1) – seven single, double, or triple mutant viruses based on A/Vietnam/1203/04, and the ancestral viruses A and D, selected from sequences at nodes of the hemagglutinin and neuraminidase gene phylogenies to represent antigenically diverse progeny H5N1 subclades as vaccine antigens. Results All inactivated whole‐virus vaccines provided full protection against morbidity and mortality in ferrets challenged with the highly pathogenic H5N1 strain A/Vietnam/1203/04 5 months and 1 year after immunization. Conclusion If an H5N1 pandemic was to arise, and with the hypothesis that one can extrapolate the results from three doses of a whole‐virion vaccine in ferrets to the available split vaccines for use in humans, the population could be efficiently immunized with currently available H5N1 vaccines, while the homologous vaccine is under production.  相似文献   

17.
IntroductionInfluenza is an important cause of morbimortality worldwide. Although people at the extremes of age have a greater risk of complications, influenza has been more frequently investigated in the elderly than in children, and inpatients than outpatients. Yearly vaccination with trivalent or quadrivalent vaccines is the main strategy to control influenza.ObjectivesDetermine the clinical and molecular characteristics of influenza A and B infections in children and adolescents with influenza-like illness (ILI).MethodsA cohort of outpatient children and adolescents with ILI was followed for 20 months. Influenza was diagnosed with commercial multiplex PCR platforms.Results179 patients had 277 episodes of ILI, being 79 episodes of influenza A and 20 episodes of influenza B. Influenza A and B cases were mild and had similar presentation. Phylogenetic tree of influenza B viruses showed that 91.6% belonged to the B/Yamagata lineage, which is not included in trivalent vaccines.ConclusionsInfluenza A and B are often detected in children and adolescents with ILI episodes, with similar and mild presentation in outpatients. The mismatch between the circulating influenza viruses and the trivalent vaccine offered in Brazil may have contributed to the high frequency of influenza A and B in this population.  相似文献   

18.
Sporadic human infection with avian influenza viruses has raised concern that reassortment between human and avian subtypes could generate viruses of pandemic potential. Vaccination is the principal means to combat the impact of influenza. During an influenza pandemic the immune status of the population would differ from that which exists during interpandemic periods. An emerging pandemic virus will create a surge in worldwide vaccine demand and new approaches in immunisation strategies may be needed to ensure optimum protection of unprimed individuals when vaccine antigen may be limited. The manufacture of vaccines from pathogenic avian influenza viruses by traditional methods is not feasible for safety reasons as well as technical issues. Strategies adopted to overcome these issues include the use of reverse genetic systems to generate reassortant strains, the use of baculovirus-expressed haemagglutinin or related non-pathogenic avian influenza strains, and the use of adjuvants to enhance immunogenicity. In clinical trials, conventional surface-antigen influenza virus vaccines produced from avian viruses have proved poorly immunogenic in immunologically naive populations. Adjuvanted or whole-virus preparations may improve immunogenicity and allow sparing of antigen.  相似文献   

19.
PURPOSE OF REVIEW: Recently, several previously unrecognized respiratory viral pathogens have been identified and several influenza A virus subtypes, previously known to infect poultry and wild birds, were transmitted to humans. Here we review the recent literature on these respiratory viruses. RECENT FINDINGS: Human metapneumovirus has now been detected worldwide, causing severe respiratory tract illnesses primarily in very young, elderly and immunocompromised individuals. Animal models and reverse genetic techniques were designed for human metapneumovirus, and the first vaccine candidates have been developed. Considerable genetic and antigenic diversity was observed for human metapneumovirus, but the implication of this diversity for vaccine development and virus epidemiology requires further study. Two previously unrecognized human coronaviruses were discovered in 2004 in The Netherlands and Hong Kong. Their clinical impact and epidemiology are largely unknown and warrant further investigation. Several influenza A virus subtypes were transmitted from birds to humans, and these viruses continue to constitute a pandemic threat. The clinical symptoms associated with these zoonotic transmissions range from mild respiratory illnesses and conjunctivitis to pneumonia and acute respiratory distress syndrome, sometimes resulting in death. More basic research into virus ecology and evolution and development of effective vaccines and antiviral strategies are required to limit the impact of influenza A virus zoonoses and the threat of an influenza pandemic. SUMMARY: Previously unknown and emerging respiratory viruses are an important threat to human health. Development of virus diagnostic tests, antiviral strategies, and vaccines for each of these pathogens is crucial to limit their impact.  相似文献   

20.
Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号