首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of 5-HT(1B) and 5-HT(1D) receptors in the human post mortem brain was examined using whole hemisphere autoradiography and the radioligand [(3)H]GR 125743. [(3)H]GR 125743 binding was highest in the substantia nigra and the globus pallidus. Lower levels were detected in the striatum, with the highest densities in the ventromedial parts. In the amygdala, the hippocampus, the septal region and the hypothalamus, lower [(3)H]GR 125743 binding was observed, reflecting low densities of 5-HT(1B/1D) receptors. In the cerebral cortex, binding was similar in most regions, although restricted parts of the medial occipital cortex were markedly more densely labeled. Binding densities were very low in the cerebellar cortex and in the thalamus. Two methods were used to distinguish between the two receptor subtypes, the first using ketanserin to block 5-HT(1D) receptors and the second using SB 224289 to inhibit 5-HT(1B) receptor binding. The autoradiograms indicated that in the human brain, the 5-HT(1B) receptor is much more abundant than the 5-HT(1D) receptor, which seemed to occur only in low amounts mainly in the ventral pallidum. Although [(3)H]GR 125743 is a suitable radioligand to examine the distribution of 5-HT(1B) receptors in the human brain in vitro, the selectivities of ketanserin and SB 224289 are not sufficiently high to give definite evidence for the occurrence of the 5-HT(1D) receptor in the human brain.  相似文献   

2.
The regional distribution of [3H]idazoxan and [3H]rauwolscine was studied autoradiographically in human brain. [3H]Idazoxan binds with high affinity to alpha 2 adrenoceptors as well as to non-adrenergic sites (NAIBS). [3H]Rauwolscine, besides binding to alpha 2 adrenoceptors, also binds to 5-HT1A receptors. Both radioligands labelled the same population of alpha 2 adrenoceptors, defined as the epinephrine-displaceable binding component. The highest densities of alpha 2 adrenoceptors occur in the leptomeninges, cerebral cortex and claustrum; lower densities were visualised in the basal ganglia, thalamus, pons, substantia nigra, cerebellum and medulla oblongata; no alpha 2 adrenoceptors were detected in amygdala and nucleus ruber. NAIBS were present in all the examined brain areas, with the highest densities found in the basal ganglia and substantia nigra. The finding that certain brain regions, such as the amygdala, contained NAIBS but no detectable alpha 2 adrenoceptors, suggests that the binding sites are independent from each other. The regional distribution of 5-HT1A receptors labelled by [3H]rauwolscine is in agreement with previous studies using [3H]8-OH-DPAT.  相似文献   

3.
Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [3H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.  相似文献   

4.
The positron emission tomography (PET) ligand [(11)C]MDL 100,907 has previously been introduced to image the serotonin 2A (5-HT(2A)) receptor in human brain. The aim of this work was to contribute to the verification of the tracer kinetic modelling in human studies. Five healthy volunteers were scanned twice after intravenous bolus injection of approximately 370 MBq [(11)C]MDL 100,907 using dynamic PET. One scan was performed under baseline condition, the other scan commenced 90 mins after a single oral dose of 30 mg of the antidepressant mirtazapine, which binds to the 5-HT(2A) receptor. There did not appear to be radiolabelled metabolites of [(11)C]MDL 100,907 in human plasma, which are likely to cross the blood-brain barrier. Total volumes of distribution VD in 11 different brain regions were estimated using a reversible, two tissue, four rate constants compartment model with a variable fractional blood volume term and the metabolite-corrected plasma input function. There were no significant changes of the VD in the cerebellum between the baseline and the blocked scans confirming the cerebellum as a region devoid of displaceable binding. Regional estimates of binding potential were then obtained indirectly using the cerebellar VD and occupancies calculated. The mean occupancy with this clinically effective dose of mirtazapine was 60% without significant regional differences. This study confirmed the use of an arterial input kinetic model for the quantification of 5-HT(2A) receptor binding with [(11)C]MDL 100,907 and the use of the cerebellum as a reference region for the free and nonspecific binding.  相似文献   

5.
A novel antimuscarinic agent, pirenzepine, has been proposed to distinguish at least two subtypes of muscarinic receptor. M1 receptors have been designated as those displaying a high affinity for pirenzepine. Both functional and binding studies have revealed a prevalence of M1 receptors in sympathetic ganglia while autonomic effector tissues have only low densities of M1 receptors. In the present study, in vitro autoradiographic procedures have been used to localize specifically high affinity binding sites for pirenzepine (M1 receptors) in sections of guinea-pig ileum, rat superior cervical ganglion and rat submaxillary gland. The overall localization of muscarinic receptors was also studied using the non-selective antagonist, [3H]N-methylscopolamine. The highest densities of M1 receptors were found in superior cervical ganglion, sympathetic nerve bundles, myenteric ganglia and mucous secreting cells of the submaxillary gland, while lower densities were found in smooth muscle and serous secreting cells of the submaxillary gland. No area found to possess muscarinic receptors was devoid of M1 receptors.  相似文献   

6.
The main objective of this study was to determine the sensitivity of [11C]CUMI‐101 to citalopram challenge aiming at increasing extracellular 5‐HT. CUMI‐101 has agonistic properties in human embryonic kidney 293 cells transfected with human recombinant 5‐HT1A receptors (Hendry et al. [2011] Nucl Med Biol 38:273–277; Kumar et al. [2006] J Med Chem 49:125–134) and has previously been demonstrated to be sensitive to bolus citalopram in monkeys (Milak et al. [2011] J Cereb Blood Flow Metab 31:243–249). We studied six healthy individuals. Two PET‐scans were performed on the same day in each individual before and after constant infusion of citalopram (0.15 mg/kg). The imaging data were analyzed using two tissue compartment kinetic modeling with metabolite corrected arterial input and Simplified Reference Tissue Modeling using cerebellum as a reference region. There was no significant difference in regional distribution volume or non‐displaceable binding potential values before and after citalopram infusion. The mean receptor occupancy was 0.03 (range ?0.14 to 0.17). Our data imply that [11C]CUMI‐101 binding is not sensitive to citalopram infusion in humans. Synapse, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The precise distribution of dopamine receptors has been studied autoradiographically in the normal human brain using [3H]N-n-propylnorapomorphine ([3H]NPA) as a ligand. Preliminary experiments aimed at optimizing the binding assay conditions revealed that preincubation washing of caudate nucleus sections was a prerequisite to obtain a good ratio of specific to non-specific binding. The binding of [3H]NPA to caudate-putamen sections was saturable, stereospecific, reversible, of high affinity (Kd = 0.27-0.35 nM) and occurred at a single population of sites. Competition experiments with various drugs indicated that in the caudate-putamen the specific [3H]NPA binding sites possess the pharmacological features of the dopamine D2 receptor. The highest levels of [3H]NPA binding sites were found in the caudate nucleus, putamen, globus pallidus and nucleus accumbens. There were also intermediate to low concentrations of the 3H-ligand in the hippocampus, the insular and cingular cortices and in the occipito-temporal gyrus, while almost undetectable levels of binding were found in the anterior frontal cortex. Thorough examination of the subregional distribution of [3H]NPA binding sites in the caudate-putamen-pallidum complex revealed heterogeneous patterns of radioactivity. In these brain regions, the distribution of autoradiographic grains was punctate and islands of high and low densities were observed. Moreover, in the caudate nucleus, there was a subtle high lateral to low medial gradient in the topography of the [3H]NPA binding sites and a more pronounced gradient along the rostrocaudal axis; the highest levels of binding being located at the midbody of the nucleus. No gradients of [3H]NPA binding were observed in the putamen. The present data indicate that [3H]NPA is a suitable ligand for accurate autoradiographic labeling of dopamine D2 receptors in human postmortem brain tissue and that dopamine receptors are heterogeneously distributed and topographically organized in patches and gradients in the basal ganglia regions.  相似文献   

8.
A novel antimuscarinic agent, pirenzepine, has been proposed to distinguish at least two subtypes of muscarinic receptor. M1 receptors have been designated as those displaying a high affinity for pirenzepine. Both functional and binding studies have revealed a prevalence of M1 receptors in sympathetic ganglia while autonomic effector tissues have only low densities of M1 receptors. In the present study, in vitro autoradiographic procedures have been used to localize specifically high affinity binding sites for pirenzepine (M1 receptors) in sections of guinea-pig ileum, rat superior cervical ganglion and rat submaxillary gland. The overall localization of muscarinic receptors was also studied using the non-selective antagonist, [3H]N-methylscopolamine. The highest densities of M1 receptors were found in superior cervical ganglion, sympathetic nerve bundles, myenteric ganglia and mucous secreting cells of the submaxillary gland, while lower densities were found in smooth muscle and serous secreting cells of the submaxillary gland. No area found to possess muscarinic receptors was devoid of M1 receptors.  相似文献   

9.
The distribution of 5-HT1A receptors was examined in the post-mortem human brain using whole hemisphere autoradiography and the selective 5-HT1A receptor antagonist [3H]WAY-100635 ([O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride). The autoradiograms showed very dense binding to hippocampus, raphe nuclei and neocortex. The labeling in neocortex was slightly lower than in the hippocampus and was mainly at superficial layers, although a faintly labeled band could be seen in deeper neocortical layers. Other regions, such as the amygdala, septum and claustrum, showed low densities of [3H]WAY-100635 binding, reflecting low densities of 5-HT1A receptors. The labeling was very low in basal ganglia, such as nucleus caudatus and putamen, in cerebellum or in structures of the brain stem except in the raphe nuclei. The labeling of human 5-HT1A receptors with [3H]WAY-100635 was antagonized by the addition of the 5-HT1A receptor ligands, 5-HT, buspirone, pindolol or 8-OH-DPAT (10 μM), leaving a very low background of non-specific binding. Saturation analysis of semiquantitative data from several human regions indicated that [3H]WAY-100635 has a Kd of approximately 2.5 nM. The selective labeling of 5-HT1A receptors with [3H]WAY-100635 clearly show that this compound is useful for further studies of the human 5-HT1A receptor subtype in vitro. [11C]WAY-100635 is used for the characterization of 5-HT1A receptors with positron emission tomography (PET). WAY-100635 was also radiolabeled with the short-lived positron-emitting radionuclide carbon-11 (t1/2=20 min) and used for in vitro autoradiography on human whole hemisphere cryosections. [11C]WAY-100635 gave images qualitatively similar to those of [3H]WAY-100635, although with a lower resolution. Thus, the hippocampal formation was densely labeled, with lower density in the neocortex. Buspirone, pindolol or 8-OH-DPAT (10 μM), blocked all binding of [11C]WAY-100635. The in vitro autoradiography of the distribution of 5-HT1A receptors obtained with radiolabeled WAY-100635 provide detailed qualitative and quantitative information on the distribution of 5-HT1A-receptors in the human brain. Moreover, the studies give reference information for the interpretation of previous initial results at much lower resolution in humans with PET and [11C]WAY-100635. These data provide a strong basis for expecting [11C]WAY-100635 to behave as a highly selective radioligand in vivo.  相似文献   

10.
By using a combination of positron emission tomography (PET) and postmortem tissue dissection, the effect of increased endogenous serotonin on specific binding of [(11)C]WAY 100635 to the 5-HT(1A) receptor was investigated in rat brain in vivo. The binding studies were complemented by in vivo microdialysis to monitor 5-HT levels in similarly treated isoflurane-anaesthetised rats, with the dialysis probe locations corresponding to two of the tissues sampled for specific binding of the radioligand. Fenfluramine treatment (10 mg/kg i.p.) resulted in a approximately 5-fold increase in extracellular 5-HT in medial prefrontal cortex and a approximately 15-fold increase in lateral hippocampus, maximal at approximately 40 min after injection. PET scan duration was either 60 or 90 min, beginning 30 min after fenfluramine injection. The specific binding of [(11)C]WAY 100635 was reduced by 10-20% in hippocampus, which showed highest binding in control animals. Specific binding, however, was unaffected in both prefrontal cortex and midbrain raphe, each additional high binding regions. The minimal effects are consistent with a low baseline occupancy of the 5-HT(1A) receptor by 5-HT in vivo, so that only a large change in endogenous agonist concentration will affect radioligand binding. This implies that utilisation of [(11)C]WAY 100635 in human PET to quantify 5-HT(1A) receptor expression can be extended to pathology where synaptic 5-HT levels are altered as a consequence of the disease state.  相似文献   

11.
Localization of 5-HT3 receptors in the rat brain using [3H]LY278584   总被引:1,自引:0,他引:1  
5-HT3 receptors have been localized in the rat brain using the selective antagonist ligand [3H]LY278584. The binding of this ligand to slide mounted tissue sections was characterized by a Kd value of 1.5 nM and a Bmax value of 110 fmol/mg tissue dry weight. The specific binding was displaced by 5-HT or a number of 5-HT3 antagonist compounds. High densities of 5-HT3 receptors were detected in the nucleus of the solitary tract, dorsal motor nucleus of the vagus and area postrema. Moderate levels of binding were found in the glomerular layer of the olfactory bulb, substantia gelatinosa of the trigeminal nucleus and spinal cord and various nuclei of the amygdala. Low levels of binding were found in the superficial laminae of the cerebral cortex and relatively evenly distributed in the hippocampus. These results indicate that [3H]LY278584 is a useful ligand to study 5-HT3 receptors by quantitative autoradiography.  相似文献   

12.
Epidepride is a benzamide with high affinity for central D2- and D3-dopamine receptors. The anatomical distribution of [125I]epidepride binding was examined by autoradiography, using postmortem human whole-hemisphere cryosections. The density of [125I]epidepride binding sites was high in caudate nucleus and putamen. [125I]epidepride also labeled receptors in extrastriatal region such as in the pallidum, some thalamic nuclei, the neocortex, and the substantia nigra. The neocortical binding was heterogeneously distributed. In most cortical regions, binding sites were located in superficial layers (I-II). However, in basal levels of the occipital cortex, [125I]epidepride binding was located in a deeper layer, probably corresponding to layer V. Competition studies indicated that most of the [125I]epidepride binding represented predominantly D2-dopamine receptors, in striatal as well as in extrastriatal regions. The presence of extrastriatal D2-dopamine receptor populations is of particular interest for research on schizophrenia and antipsychotic drug action. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Autoradiographic analysis of 5-HT2 receptors in the human brain, using [3H]ketanserin as a ligand, reveals region-specific changes in receptor labeling as a function of age. In the prefrontal cortex and hippocampal dentate gyrus of 12 normal subjects, label density decreases sharply with age over the 2nd and 3rd decades, reaches a minimum around age 50 and then starts to increase again in the 6th and 7th decades. Other brain regions studied, including frontoparietal and temporal cortex, basal ganglia and thalamus, did not show significant changes with age. Saturation binding experiments on prefrontal cortical samples from 23 normal subjects reveal that the decrease in label density is due to changes in receptor density (Bmax) with no apparent change in affinity (Kd). Sex, presence of alcohol and postmortem delay had no effect on ketanserin binding.  相似文献   

14.
The presence, pharmacological properties and anatomical distribution of serotonin-1C and serotonin-2 receptor subtypes were studied in the human brain by both radioligand binding and autoradiographic procedures. Frontal cortex, hippocampus and choroid plexus from human brains obtained at autopsy without history of neurological diseases were used in this study. [3H]5-HT and [3H]mesulergine were used to label 5-HT1C recognition sites while [3H]ketanserin was used to label 5-HT2 receptors. The pharmacological profile of 5-HT1C sites which are very concentrated in the choroid plexus, was extremely similar to that of pig and rat 5-HT1C sites. These receptors were also detected in the hippocampus and the cortex from human brain. The general distribution of 5-HT1C sites in human and rat brain was similar although slight differences were observed. Human 5-HT2 receptors were concentrated in cortical areas but also found in the hippocampus. The pharmacological profile of these receptors was extremely similar in human and pig brain tissue, but differed in certain respects to that found in rat brain 5-HT2 receptors. The anatomical distribution of 5-HT2 receptors is similar in human and rat brain with some differences at the microscopic level. The importance of species differences in the development of 5-HT2 compounds is discussed.  相似文献   

15.
The effects of dopamine (DA) on the function of human 5-HT1A receptors expressed in Xenopus oocytes and CHO-K1 cells were investigated. In addition, the effect of DA on the activation of three different types of human 5-HT receptors (5-HT1A, 5-HT2C, and 5-HT3) were studied comparatively in Xenopus oocyte expression system. Application of 5-HT or DA in oocytes coexpressing 5-HT1A receptors and G-protein-activated inwardly rectifying potassium channels (GIRK1) induced inward currents with respective EC50 values of 4.2 nM and 11.2 microM. Maximal responses induced by DA were 85 +/- 4% of maximal 5-HT currents and DA responses were blocked by the specific 5-HT1A antagonist, WAY-100635 (50 nM). In CHO-K1 cells expressing 5-HT1A receptors, 5-HT and DA inhibited the specific binding of selective antagonist [3H]-8-OH-DPAT with IC50 values of 10.2 nM and 1.4 microM, and both 5-HT and DA inhibited the forskolin-induced accumulation of cAMP. In oocytes expressing 5-HT2C receptors, 5-HT and DA induced inward currents with respective EC50 values of 6.2 nM and 67.7 microM. Magnitudes of maximal DA induced currents were 42 +/- 3% of maximal 5-HT responses and blocked by the 5-HT2 antagonist, piperazine (1 microM). In oocytes expressing 5-HT3 receptors, 5-HT and DA induced fast inward currents with respective EC50 values of 2.1 microM and 266.3 microM. Maximal DA induced currents were 37 +/- 3% of maximal 5-HT responses and blocked the specific 5-HT3 antagonist LY-278584 (0.1 microM). Comparison of the potencies and efficacies of 5-HT and DA indicated that the relative potency of DA increased in the order of 5-HT3 > 5-HT1A > 5-HT2C, and relative efficacy increased in the order of 5-HT1A > 5-HT2C > 5-HT3. These results suggest that although DA activates different subtypes of human 5-HT receptors directly, the potency and efficacy of the binding site varies significantly among different receptors.  相似文献   

16.
N1-([11C]-Methyl)-2-Br-LSD ([11C]-MBL) has been developed as a positron emission tomography (PET) imaging agent for serotonin 5-HT2 receptors. In vitro receptor binding assays with nonradioactive MBL show high-affinity binding to serotonin 5-HT2 receptors (Ki = 0.5 nM), a secondary interaction of 8-fold lower affinity with dopamine D2 receptors, and low-affinity interactions with alpha 1-adrenergic as well as serotonin 5-HT1 receptors. Intravenous injection of [11C]-MBL in a baboon led to selective labeling of cortical regions that was markedly blocked by prior administration of ketanserin, a selective 5-HT2 receptor antagonist. Clinical trials with [11C]-MBL have been conducted in seven normal human volunteers, and the regional distribution of radioactivity in the brain was distinctly serotonergic. Labeling was highest in frontal, temporal, and parietal cortex with lower levels observed in caudate and putamen. The tracer rapidly washed from the cerebellum and the low levels of activity in this brain region were used to define nonspecific binding. The maximum specificity was reached between 30 and 60 minutes postinjection when frontal cortex to cerebellum ratios ranged from 1.7 for a 52-year-old male to 2.7 for a 30-year-old male. In agreement with previous studies, a trend towards lower ratios (lower serotonin 5-HT2 receptor levels) was observed in older volunteers. These studies indicate that [11C]-MBL is a selective radioligand that can be used to monitor serotonin 5-HT2 receptor densities in vivo in most regions of the human brain.  相似文献   

17.
Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.  相似文献   

18.
The adenosine uptake site has been localized in rat brain by an in vitro light microscopic autoradiographic method, using [3H]nitrobenzylthioinosine ( [3H]NBI) as the probe. The binding characteristics of [3H]NBI on slide-mounted sections are comparable to those seen in studies performed on brain homogenates. A very high density of uptake sites occurs in the nucleus tractus solitarius, in the superficial layer of the superior colliculus, in several thalamic nuclei, and also in geniculate body nuclei. A high density of sites are also observed in the nucleus accumbens, the caudate putamen, the dorsal tegmentum area, the substantia nigra, and the central gray. The localization of the adenosine uptake site in brain may provide information on the functional activity of the site and suggests the involvement of the adenosine system in the central regulation of cardiovascular function.  相似文献   

19.
The regional distribution of D1 dopamine (DA) receptors in the rat brain has been studied by quantitative autoradiography using the specific D1 antagonist [3H]SCH 23390 as a ligand. The binding of [3H]SCH 23390 to striatal sections was saturable, stereospecific, reversible and of high affinity (Kd = 2.05 nM); it occurred at a single population of sites and possessed the pharmacological features of the D1 DA receptor. The highest densities of [3H]SCH 23390 binding sites were found in the caudate-putamen, olfactory tubercle, nucleus accumbens and substantia nigra (especially in the pars compacta). High densities were also observed in the nucleus interstitialis striae terminalis, the anterior olfactory nucleus, the entopeduncular nucleus, the subthalamic nucleus, the claustrum and the amygdalohippocampal area. An intermediate labelling was found in the anteromedial and suprarhinal DA terminal fields of the cerebral cortex, the basolateral, medial and lateral amygdaloid nuclei, the endopiriform nucleus, the primary olfactory cortex, the globus pallidus, the superior colliculus (especially the superficial layer), the nucleus amygdaloideus corticalis and the dorsal hippocampus (molecular layer of the CA1 and dentate gyrus). In the anteromedial and suprarhinal cortices, [3H]SCH 23390 binding was more concentrated in layers V and VI. Moderate levels of [3H]SCH 23390 were found in the thalamus, hypothalamus, the habenula, the ventral tegmental area, the posterior cingulate and entorhinal cortices, the supragenual dopamine terminal system and the cerebellum (molecular layer). This regional distribution of [3H]SCH 23390 closely correlated (except for the cerebellum) with the reported distribution of dopaminergic terminals. The topographical distribution of [3H]SCH 23390 has also been studied in detail in striatal subregions. The density of D1 receptors was much greater in the ventrolateral sector and medial margin of the striatum than in the ventromedial and dorsolateral sectors. A rostrocaudal decrease in the densities of D1 sites was also found along the rostrocaudal axis of the caudate-putamen. These lateral to medial and anteroposterior gradients overlapped with the density of the dopaminergic afferents.  相似文献   

20.
A novel radioligand for positron emission tomography (PET) imaging of serotonin 5-HT1B receptors, [11C]AZ10419369, has been recently described. In this study, the potential for quantitative analysis of [11C]AZ10419369 binding to central 5-HT1B receptors was evaluated in human subjects. PET measurements were performed after injection of [11C]AZ10419369 in 10 subjects. Data were analyzed with kinetic modeling and linear graphical analysis using the arterial plasma as input function, and with reference tissue models using cerebellar cortex as the reference region. Binding of [11C]AZ10419369 was highest in pallidum, ventral striatum, and occipital cortex and lowest in cerebellum. The percentage of unchanged radioligand in plasma was 97% to 99%, indicating that no significant amounts of radioactive metabolites were formed during the time of analysis. Time–activity curves of [11C]AZ10419369 could be described with both one-tissue compartment (1-TC) and two-tissue compartment (2-TC) models in the majority of subjects. The 2-TC model failed to deliver reasonable estimates of the kinetic parameters. However, stable estimates of binding potential (BPND) were obtained by constraining K1/k2 to the distribution volume obtained with the 1-TC model in the cerebellar cortex. BPND values estimated with reference tissue models were correlated with the corresponding values obtained with kinetic modeling. The findings support the use of reference tissue models in applied clinical studies with [11C]AZ10419369.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号