首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Barbiturates enhance [gamma]-aminobutyric acid type A (GABAA) receptor function and also inhibit the [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive to pentobarbital inhibition, GluR2 null mutant mice provide a novel tool to investigate the importance of AMPA receptor inhibition to the anesthetic effects of barbiturates.

Methods: GluR2 null allele (-/-), heterozygous (+/-), and wild-type (+/+) mice were injected with pentobarbital (30 and 35 mg/kg intraperitoneally). Sensitivity to anesthetics was assessed by measuring the latency to loss of righting reflex, sleep time, and the loss of corneal, pineal, and toe-pinch withdrawal reflexes. In addition, patch-clamp recordings of acutely dissociated CA1 hippocampal pyramidal neurons from (-/-) and (+/+) mice were undertaken to investigate the effects of barbiturates on kainate-activated AMPA receptors and GABA-activated GABAA receptors.

Results: Behavioral tests indicate that sensitivity to pentobarbital was increased in (-/-) mice. In contrast, AMPA receptors from (-/-) neurons were less sensitive to inhibition by pentobarbital (concentrations that produced 50% of the maximal inhibition [IC50], 301 vs. 51 [mu]M), thiopental (IC50, 153 vs. 34 [mu]M), and phenobarbital (IC50, 930 vs. 205 [mu]M) compared with wild-type controls, respectively. In addition, the potency of kainate was greater in (-/-) neurons, whereas no differences were observed for the potentiation of GABAA receptors by pentobarbital.  相似文献   


2.
BACKGROUND: The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor mediates fast excitatory neurotransmission in the central nervous system. Many general anesthetics inhibit AMPA receptors in vitro; however, it is not certain if this inhibition contributes to the behavioral properties of these drugs. AMPA receptors lacking the GluR2 subunit are resistant to blockade by barbiturates in vitro. Paradoxically, GluR2 null mutant (-/-) mice are more sensitive to barbiturate-induced loss of the righting reflex (LORR) compared with wild-type (+/+) littermates. To determine if interactions between anesthetics and AMPA receptors account for the increased sensitivity of (-/-) mice, the effects of volatile anesthetics that do not directly inhibit AMPA receptors were examined. METHODS: Isoflurane, halothane, desflurane, or sevoflurane were administered to (-/-) and (+/+) littermate controls. Anesthetic requirements for LORR, movement to tail clamp (minimum alveolar concentration [MAC]), and hind-paw withdrawal latency (HPWL) were determined. Electrophysiologic methods examined the inhibition of AMPA receptors by isoflurane and halothane. RESULTS: Anesthetic requirements for LORR and HPWL were decreased, whereas MAC values were unchanged in (-/-) mice. Isoflurane and halothane caused minimal inhibition of AMPA receptors at clinically relevant concentrations. CONCLUSIONS: Direct blockade of AMPA receptors did not account for the increased sensitivity to volatile anesthetics in GluR2 null mutant mice for HPWL or LORR. Thus, the deficiency of GluR2-containing AMPA receptors increases the sensitivity of neuronal circuitry mediating these end points, but not MAC. GluR2-containing receptors do not contribute appreciably to MAC in this mouse model. These results illustrate the difficulties in attributing behavioral responses to drug-receptor interactions in genetically engineered animals.  相似文献   

3.
Background: The [alpha]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor mediates fast excitatory neurotransmission in the central nervous system. Many general anesthetics inhibit AMPA receptors in vitro; however, it is not certain if this inhibition contributes to the behavioral properties of these drugs. AMPA receptors lacking the GluR2 subunit are resistant to blockade by barbiturates in vitro. Paradoxically, GluR2 null mutant (-/-) mice are more sensitive to barbiturate-induced loss of the righting reflex (LORR) compared with wild-type (+/+) littermates. To determine if interactions between anesthetics and AMPA receptors account for the increased sensitivity of (-/-) mice, the effects of volatile anesthetics that do not directly inhibit AMPA receptors were examined.

Methods: Isoflurane, halothane, desflurane, or sevoflurane were administered to (-/-) and (+/+) littermate controls. Anesthetic requirements for LORR, movement to tail clamp (minimum alveolar concentration [MAC]), and hind-paw withdrawal latency (HPWL) were determined. Electrophysiologic methods examined the inhibition of AMPA receptors by isoflurane and halothane.

Results: Anesthetic requirements for LORR and HPWL were decreased, whereas MAC values were unchanged in (-/-) mice. Isoflurane and halothane caused minimal inhibition of AMPA receptors at clinically relevant concentrations.  相似文献   


4.
BACKGROUND: Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system. Although barbiturates have been shown to suppress the AMPA receptor-mediated responses, it is unclear whether this effect contributes to the anesthetic action of barbiturates. The authors compared the effects of depressant [R(-)] and convulsant [S(+)] stereoisomers of 1-methyl-5-phenyl-5-propyl barbituric acid (MPPB) on the AMPA and gamma-aminobutyric acid type A (GABA(A)) receptor-mediated currents to determine if the inhibitory effects on AMPA receptors correlate to the in vivo effects of the isomers. METHOD: The authors measured whole-cell currents in the rat cultured cortical neuron at holding potential of -60 mV. Kainate 500 microM was applied as the agonist for AMPA receptors. Thiopental (3-300 microM), R(-)-MPPB or S(+)-MPPB (100-1,000 microM) was coapplied with kainate under the condition in which the GABA(A) receptor-mediated current was blocked. Effects of MPPB isomers on the current elicited by GABA 1 microM were studied in the separate experiments. RESULTS: Thiopental inhibited the kainate-induced current reversibly and in a dose-dependent manner, with a concentration for 50% inhibition of 49.3 microM. Both R(-)-MPPB and S(+)-MPPB inhibited the kainate-induced current with a little stereoselectivity. R(-)-MPPB was slightly but significantly more potent than S(+)-MPPB. In contrast, R(-)-MPPB enhanced but S(+)-MPPB reduced the GABA-induced current. CONCLUSIONS: Both convulsant and depressant stereoisomers of the barbiturate inhibited the AMPA receptor-mediated current despite of their opposite effects on the central nervous system in vivo. Although thiopental exhibited a considerable inhibition of AMPA receptors, the results suggest that the inhibition of AMPA receptors contributes little to the hypnotic action of the barbiturates.  相似文献   

5.
Yuan CS  Mehendale S  Xiao Y  Aung HH  Xie JT  Ang-Lee MK 《Anesthesia and analgesia》2004,98(2):353-8, table of contents
Valerian is a medicinal herb that produces anxiolytic and sedative effects. It was suggested that valerian acts via gamma-aminobutyric acid (GABA)ergic mechanisms. Previous studies showed binding of valerian extract to GABA receptors, but the functional effect of the binding has not been demonstrated. In this study we evaluated the GABAergic effect of valerian extract and one of its major constituents, valerenic acid, on brainstem neuronal activity in an in vitro neonatal rat brainstem preparation. We first observed that muscimol, a GABA(A) receptor agonist, decreased the firing rate in most brainstem neurons in a concentration-related fashion; 30 micro M produced a 38.9% +/- 3.0% (mean +/- SE) inhibition compared with control values (P < 0.01; 50% inhibitory concentration [IC(50)], 2.0 +/- 0.1 microM). This effect was antagonized by bicuculline (10 microM), a GABA(A) antagonist. Then we showed that valerian extract 3 mg/mL induced a 29.6% +/- 5.1% inhibition with an IC(50) of 240 +/- 18.7 microg/mL, whereas 100 microM valerenic acid induced a 22.2% +/- 3.4% inhibition with an IC(50) of 23 +/- 2.6 microM (both P < 0.01). Bicuculline antagonized the inhibitory effects of both the valerian extract and valerenic acid. In addition, pretreatment with valerian extract or valerenic acid decreased the brainstem inhibitory effects produced by muscimol (both P < 0.05), suggesting that these compounds play an important role in the regulation of GABAergic activity. Data from this study suggest that the pharmacological effects of valerian extract and valerenic acid are mediated through modulation of GABA(A) receptor function. Thus, valerian may potentiate the sedative effects of anesthetics and other medications that act on GABA receptors, and presurgical valerian use may cause a valerian-anesthetic interaction. IMPLICATIONS: Valerian is an herb used in treating anxiety and insomnia. We observed that the valerian effects are mediated through brain gamma-aminobutyric acid (GABA) receptors in a rat brainstem preparation. Thus, valerian may potentiate the effects of anesthetics that act on GABA receptors, and presurgical valerian use may cause a valerian-anesthetic interaction.  相似文献   

6.
The neuroprotective potency of anesthetics such as propofol compared to mild hypothermia remains undefined. Therefore, we determined whether propofol at two clinically relevant concentrations is as effective as mild hypothermia in preventing delayed neuron death in hippocampal slice cultures (HSC). Survival of neurons was assessed 2 and 3 days after 1 h oxygen and glucose deprivation (OGD) either at 37 degrees C (with or without 10 or 100 microM propofol) or at an average temperature of 35 degrees C during OGD (mild hypothermia). Cell death in CA1, CA3, and dentate neurons in each slice was measured with propidium iodide fluorescence. Mild hypothermia eliminated death in CA1, CA3, and dentate neurons but propofol protected dentate neurons only at a concentration of 10 microM; the more ischemia vulnerable CA1 and CA3 neurons were not protected by either 10 microM or 100 microM propofol. In slice cultures, the toxicity of 100 muM N-methyl-D-aspartate (NMDA), 500 microM glutamate, and 20 microM alpha-amino-5-methyl-4-isoxazole propionic acid (AMPA) was not reduced by 100 microM propofol. Because propofol neuroprotection may involve gamma-aminobutyric acid (GABA)-mediated indirect inhibition of glutamate receptors (GluRs), the effects of propofol on GluR activity (calcium influx induced by GluR agonists) were studied in CA1 neurons in HSC, in isolated CA1 neurons, and in cortical brain slices. Propofol (100 and 200 microM, approximate burst suppression concentrations) decreased glutamate-mediated [Ca2+]i increases (Delta[Ca2+]i) responses by 25%-35% in isolated CA1 neurons and reduced glutamate and NMDA Delta[Ca2+]i in acute and cultured hippocampal slices by 35%-50%. In both CA1 neurons and cortical slices, blocking GABAA receptors with picrotoxin reduced the inhibition of GluRs substantially. We conclude that mild hypothermia, but not propofol, protects CA1 and CA3 neurons in hippocampal slice cultures subjected to oxygen and glucose deprivation. Propofol was not neuroprotective at concentrations that reduce glutamate and NMDA receptor responses in cortical and hippocampal neurons.  相似文献   

7.
Friederich P  Urban BW 《Anesthesiology》1999,91(6):1853-1860
BACKGROUND: Neuronal voltage-dependent potassium (K) currents are crucial for various cellular functions, such as the integration of temporal information in the central nervous system. Data for the effects of intravenous anesthetics on human neuronal K currents are limited. It was the authors' aim to evaluate the concentration-related effects of three opioids (fentanyl, alfentanil, sufentanil) and seven nonopioids (thiopental, pentobarbital, methohexital, propofol, ketamine, midazolam, droperidol) used in clinical anesthesia on neuronal voltage-dependent K currents of human origin. METHOD: K currents were measured in SH-SY5Y cells using the whole cell patch-clamp technique. Currents were elicited by step depolarization from a holding potential of -80 to -50 mV through +90 mV, and their steady state amplitudes were determined. RESULTS: All drugs inhibited the K currents in a concentration-dependent and reversible manner. Because time dependence of inhibition differed among the drugs, effects were measured after 54-64 ms of the test pulse. The IC50 values (concentration of half-maximal inhibition) for current suppression ranged from 7 microM for sufentanil to 2 mM for pentobarbital. Suppression of the K currents by the opioids occurred at 10-fold lower IC50 values (concentration of half-maximal inhibition) than that by the barbiturates. As estimated from the concentration-response curves, K-current suppression at clinical concentrations would be less than 0.1% for the opioids and approximately 3% for the other drugs. CONCLUSIONS: Effects of intravenous anesthetics on voltage-dependent K currents occur at clinical concentrations. The IC50 values for current inhibition of the nonopioid anesthetics correlated with these concentrations (r = 0.95). The results suggest that anesthetic drug action on voltage-dependent K currents may contribute to clinical effects or side effects of intravenous anesthetics.  相似文献   

8.
BACKGROUND: There is substantial and growing literature on the actions of general anesthetics on a variety of neurotransmitter-gated ion channels, with the greatest attention being focused on inhibitory gamma-amino butyric acid type A receptors. In contrast, glutamate receptors, the most important class of fast excitatory neurotransmitter-gated receptor channels, have received much less attention, and their role in the production of the anesthetic state remains controversial. METHODS: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors formed from a variety of different subunits were expressed in Xenopus oocytes and HEK-293 cells, and their sensitivities to the inhalational general anesthetics xenon, isoflurane, and halothane were determined using two-electrode voltage clamp and patch clamp techniques. The effects of desensitization on anesthetic sensitivity were investigated using cyclothiazide and site-directed mutagenesis. An ultrarapid application system was also used to mimic rapid high-concentration glutamate release at synapses. RESULTS: The authors show that xenon can potently inhibit AMPA receptors when assayed using bath application of kainate. However, when the natural neurotransmitter l-glutamate is used under conditions in which the receptor desensitization is blocked and the peak of the glutamate-activated response can be accurately measured, the pattern of inhibition changes markedly. When desensitization is abolished by a single-point mutation (L497Y in GluR1 and the equivalent mutation L505Y in GluR4), the xenon inhibition is eliminated. When AMPA receptors are activated by glutamate using an ultrarapid application system that mimics synaptic conditions, sensitivity to xenon, halothane, and isoflurane is negligible. CONCLUSIONS: AMPA receptors, when assayed in heterologous expression systems, showed a sensitivity to inhalational anesthetics that was minimal when glutamate was applied rapidly at high concentrations. Because these are the conditions that are most relevant to synaptic transmission, the authors conclude that AMPA receptors are unlikely to play a major role in the production of the anesthetic state by inhalational agents.  相似文献   

9.
BACKGROUND: Barbiturates have been shown to be neuroprotective in several animal models, but the underlying mechanisms are unknown. In this study, the authors investigated the effect of barbiturates on free radical scavenging and attempted to correlate this with their neuroprotective effects in a model of hypoxic cell death in human NT2-N neurons. METHODS: Hydroxyl radicals were generated by ascorbic acid and iron and were measured by conversion of salicylate to 2,3-dihydroxybenzoic acid. The effect of barbiturates on lipid peroxidation measured as malondialdehyde and 4-hydroxynon-2-enal was also investigated. Hypoxia studies were then performed on human NT2-N neurons. The cells were exposed to 10 h of hypoxia or combined oxygen and glucose deprivation for 3 or 5 h in the presence of thiopental (50-600 microM), methohexital (50-400 microM), phenobarbital (10-400 microM), or pentobarbital (10-400 microM), and cell death was evaluated after 24 h by lactate dehydrogenase release. RESULTS: Pentobarbital, phenobarbital, methohexital, and thiopental dose-dependently inhibited formation of 2,3-dihydroxybenzoic acid and iron-stimulated lipid peroxidation. There were significant but moderate differences in antioxidant action between the barbiturates. While phenobarbital (10-400 microM) and pentobarbital (10-50 microM) increased lactate dehydrogenase release after combined oxygen and glucose deprivation, thiopental and methohexital protected the neurons at all tested concentrations. At a higher concentration (400 microM), pentobarbital also significantly protected the neurons. At both 50 and 400 microM, thiopental and methohexital protected the NT2-N neurons significantly better than phenobarbital and pentobarbital. CONCLUSIONS: Barbiturates differ markedly in their neuroprotective effects against combined oxygen and glucose deprivation in human NT2-N neurons. The variation in neuroprotective effects could only partly be explained by differences in antioxidant action.  相似文献   

10.
Little is known about the mechanism of action of anesthetics at the biochemical level. The present work, however, gives evidence that barbiturates inhibit inositol phospholipid hydrolysis in both intact and permeabilized rat basophilic leukemia (RBL-2H3) cells by an effect on GTP-binding proteins (G-proteins). Inhibition of hydrolysis was observed when intact cells were stimulated with antigen (DNP24 BSA) or with oligomers of IgE. The inhibition was dependent on the concentration and type of barbiturate used with an order of inhibitory action of secobarbital less than S(-) pentobarbital less than pentobarbital less than R(+) pentobarbital less than phenobarbital. The relatively inactive analogue, (1'RS, 3'SR) 3-hydroxypentobarbital caused little (less than 30% at 1 mM) or no inhibition (at 0.1-0.5 mM). In permeabilized cells, the hydrolysis induced by DNP24 BSA and the nonhydrolyzable analogue of GTP, GTP gamma S (2-100 microM), was also inhibited by pentobarbital. The inhibition of hydrolysis was decreased as pH increased, and was no longer apparent at pH 7.8, a possible indication that the inhibitory effect was due to the unionized form of the drug. In permeabilized cells, the inhibition by pentobarbital occurred in the presence or absence of Ca2+ and was uncompetitive in nature (Km = 7.1 microM for GTP in controls vs. 1.6 microM in the presence of 0.5 mM pentobarbital). Taken together, the data suggest that barbiturates alter the activity of G-proteins independently of Ca2+, and the inhibition may depend on both the hydrophobic properties and the stereospecific and structural features of the molecule.  相似文献   

11.
Neuronal nicotinic acetylcholine receptors (neuronal nAchRs) are sensitive to many anesthetics, including barbiturates, which suggests that these receptors are potential sites for anesthetic action. Subtle changes in molecular structures of the anesthetic barbiturates can produce compounds with potent convulsant activity. Whereas R(-) isomer of 1-methyl-5-phenyl-5-propyl barbituric acid (MPPB) exerts anesthetic action, S(+)MPPB exhibits pure excitatory effects, including convulsion. 5-(2-cyclohexilidene-ethyl)-5-ethyl barbituric acid is another example of a convulsant barbiturate. We compared the effects of depressant and convulsant barbiturates on the neuronal nAchR-mediated current to determine whether inhibition of neuronal nAchRs contributes to the anesthetic action of barbiturates. Whole cell nicotine-induced currents were recorded in PC12 derived from rat pheochromocytoma, using the conventional whole cell patch clamp technique in the presence and absence of barbiturates. Both depressant and convulsant barbiturates inhibited the nicotine-induced inward current reversibly and in a dose-dependent manner when co-applied with nicotine. All barbiturates accelerated the current decay. There was no significant difference between the concentrations for 50% inhibition for MPPB isomers. There was no correlation between inhibition of ganglionic nAchRs and anesthetic effects of the barbiturates. These results strongly oppose the idea that inhibition of neuronal nAchRs contributes to the anesthetic action of barbiturates. IMPLICATIONS: We found that both convulsant and depressant barbiturates inhibit the current mediated through ganglionic nicotinic acetylcholine receptors in PC12 cells. This finding suggests that the inhibition of neuronal nicotinic acetylcholine receptors does not contribute to the anesthetic action of barbiturates.  相似文献   

12.
It is unclear whether general anesthetics induce enhancement of neural inhibition and/or attenuation of neural excitation. We studied the effects of pentobarbital (5 x 10(-4) mol/L), propofol (5 x 10(-4) mol/L), ketamine (10(-3) mol/L), halothane (1.5 vol%), and isoflurane (2.0 vol%) on both excitatory and inhibitory synaptic transmission in rat hippocampal slices. Excitatory or inhibitory synaptic pathways were isolated using pharmacological antagonists. Extracellular microelectrodes were used to record electrically evoked CA1 neural population spikes (PSs). In the presence of the gamma-aminobutyric acid type A (GABA(A)) receptor antagonist (bicuculline), the inhibitory actions of pentobarbital and propofol were completely antagonized, whereas those of ketamine, halothane, and isoflurane were only partially blocked. To induce the N-methyl-D-aspartate (NMDA) receptor-mediated PS (NMDA PS), the non-NMDA and GABA(A) receptors were blocked in the absence of Mg2+. Ketamine, halothane, and isoflurane decreased the NMDA PS, and pentobarbital and propofol had no effect on the NMDA PS. The non-NMDA receptor-mediated PS (non-NMDA PS) was examined using the antagonists for the NMDA and GABA(A) receptors. Volatile, but not i.v., anesthetics reduced the non-NMDA PS. These findings indicate that pentobarbital and propofol produce inhibitory actions due to enhancement in the GABA(A) receptor; that ketamine reduces NMDA receptor-mediated responses and enhances GABA(A) receptor-mediated responses; and that halothane and isoflurane modulate GABA(A), NMDA, and non-NMDA receptor-mediated synaptic transmission. IMPLICATIONS: Volatile anesthetics modulate both excitatory and inhibitory synaptic transmission of in vitro rat hippocampal pathways, whereas i.v. anesthetics produce more specific actions on inhibitory synaptic events. These results provide further support the idea that general anesthetics produce drug-specific and distinctive effects on different pathways in the central nervous system.  相似文献   

13.
To test the possibility that mice selectively bred for resistance (HI mice) and susceptibility (LO mice) to nitrous oxide anesthesia have general differences in central nervous system sensitivity to other depressants, we examined the effects of four barbiturates in these two lines of mice. LO mice given intraperitoneal injections of barbital (275 mg/kg), hexobarbital (120 mg/kg), pentobarbital (65 mg/kg), or secobarbital (50 mg/kg) had significantly (16-46%) longer sleep times than HI mice. Concentrations of barbiturates were significantly (12-73%) greater in the serum and 3-55% greater in the brain on awakening in HI mice than in LO mice. The largest separations in potency between the HI and LO lines occurred with pentobarbital and hexobarbital and the smallest separations with barbital and secobarbital. We concluded that HI and LO mice do have a general resistance and susceptibility to barbiturates, but that the magnitude of the difference in central nervous system sensitivity between the two lines varies among barbiturates.  相似文献   

14.
Neuronal nicotinic acetylcholine receptors (nAchRs) are widely expressed in the central and autonomic nervous systems and have subunit compositions with biophysical and pharmacological properties distinct from those of the receptors at the neuromuscular junction. They are thought to modulate synaptic transmission in the central nervous system (CNS) mainly by regulating the release of neurotransmitters. Although roles of neuronal nAchRs in the CNS are poorly understood, these receptors are involved in cognitive performance, nociception and psychoneurological disorders such as Alzheimer's and Parkinson disease. It is known that both central and peripheral neuronal nAchRs are sensitive to various types of anesthetics. Among those, barbiturates, ketamine, volatile and gaseous anesthetics depress neuronal nAchRs at or below clinical concentrations. Inhibition of neuronal nAchRs by barbiturates is unlikely to contribute to the anesthetic action of barbiturates, since this effect does not correlate with the anesthetic potencies of barbiturate stereoisomers. Relevance of inhibition of these receptors is controversial for anesthetic effects of other anesthetics, because conflicting results have been obtained from comparison of this effect with anesthetic actions of stereoisomers or structurally related compounds. However, it is possible that inhibition of central nAchRs contributes to secondary effects attributed to anesthesia such as impairment in memory and cognitive performance.  相似文献   

15.
B Antkowiak 《Anesthesiology》1999,91(2):500-511
BACKGROUND: In cultured slice preparations of rat neocortical tissue, clinically relevant concentrations of volatile anesthetics mainly decreased action potential firing of neurons by enhancing gamma-aminobutyric acid (GABA(A)) receptor-mediated synaptic inhibition. The author's aim was to determine if other anesthetic agents are similarly effective in this model system and act via the same molecular mechanism. METHODS: The actions of various general anesthetics on the firing patterns of neocortical neurons were investigated by extracellular single-unit recordings. RESULTS: Pentobarbital, propofol, ketamine, and ethanol inhibited spontaneous action potential firing in a concentration-dependent manner. The estimated median effective concentration (EC50) values were close to or below the EC50 values for general anesthesia. Bath application of the GABA(A) antagonist bicuculline (100 microM) decreased the effectiveness of propofol, ethanol, halothane, isoflurane, enflurane, and diazepam by more than 90%, indicating that these agents acted predominantly via the GABA(A) receptor. The depressant effects of pentobarbital and ketamine were not significantly reduced by bicuculline treatment. Drugs acting mainly via the GABA(A) receptor altered the firing patterns of neocortical cells in different manners. Diazepam reduced the discharge rates by decreasing the number of action potentials per burst, leaving the burst rate unaffected. In contrast, muscimol, GABA, propofol, and volatile anesthetics decreased the burst rate. CONCLUSIONS: Although several anesthetic agents acted nearly exclusively via the GABA(A) receptor, they changed the discharge patterns of cortical neurons in different ways. This finding is explained by GABA-mimetic or benzodiazepine-like molecular interactions.  相似文献   

16.
Spontaneous correlated activity regulates the precision of developing neural circuits. A synchronized elevation of intracellular calcium ion concentration, [Ca(2+)](i), occurred in 5-50 adjacent neurons--known as a "neuronal domain"--in developing neocortex. This coordinated response of neuronal cells is mediated by the diffusion of inositol trisphosphate (IP(3)) via gap-junction channels. In this study, we utilized the N-methyl-D-aspartate (NMDA)-type glutamate receptor epsilon 2 (GluR epsilon 2/NR2B)(-/-) mouse, which does not possess any functional NMDA receptors in the developing neocortex, and showed that NMDA receptors are essential for the generation of "neuronal domains". First, the frequency of spontaneously occurring neuronal domains in brain slices from GluR epsilon 2(-/-) mice was significantly reduced compared to that seen in brain slices from wild-type mice. Secondly, IP(3) injection into a single neuron in a cortical slice from a GluR epsilon 2(-/-) brain resulted in very few neuronal domains being observed, but an injection similarly made into a neuron in a wild-type slice promptly resulted in neuronal domains. Even in the GluR epsilon 2(-/-) brain, the elevation of intracellular [Ca2+](i) was observed frequently in single neurons and microinjection of IP(3) produced an elevation of [Ca2+](i) in the injected cells. These results suggest that the diffusion of IP(3) into the surrounding neurons via gap junctions is almost completely absent in the GluR epsilon 2(-/-) brain. Our results may reflect the critical role of NMDA receptors in the formation of cortical circuitry, probably via the regulation of gap-junction channels between immature cortical neurons.  相似文献   

17.
Okamoto T  Minami K  Uezono Y  Ogata J  Shiraishi M  Shigematsu A  Ueta Y 《Anesthesia and analgesia》2003,97(1):104-10, table of contents
Substance P receptors (SPR) modulate nociceptive transmission within the spinal cord. The effects of IV anesthetics on SPR are not clear. In this study, we investigated the effects of IV anesthetics on SPR expressed in Xenopus oocytes. We examined the effects of ketamine, pentobarbital, propofol, and tramadol on SP-induced Ca(2+)-activated Cl(-) currents mediated by SPR expressed in Xenopus oocytes using a whole-cell voltage clamp. Ketamine and pentobarbital inhibited the SPR-induced currents at pharmacologically relevant concentrations, but propofol and tramadol had little effect on the currents. We also studied the effects of ketamine and pentobarbital on [(3)H]-SP to SPR. Ketamine and pentobarbital inhibited the specific binding of [(3)H]-SP to SPR expressed in Xenopus oocytes. Scatchard analysis of [(3)H]-SP binding revealed that ketamine and pentobarbital decreased the apparent dissociation constant for binding and maximal binding, indicating noncompetitive inhibition. The protein kinase C (PKC) inhibitor bisindolylmaleimide I did not abolish the inhibitory effects of ketamine and pentobarbital on SP-induced Ca(2+)-activated Cl(-) currents. The results suggest that ketamine and pentobarbital inhibit SPR function. The mechanism of their inhibition on SPR function could not be through activation of the PKC pathway and may be due to noncompetitive displacing the SP binding. IMPLICATIONS: We investigated the effects of IV anesthetics on substance P receptors (SPR) expressed in Xenopus oocytes. Ketamine and pentobarbital inhibit SPR function via noncompetitive displacing SP binding. The findings imply that the inhibition of SPR function by these compounds may play a role in the analgesic effects of these IV anesthetics.  相似文献   

18.
Background: The activity of the plasma membrane Calcium2+ - transporting adenosine triphosphatase (PMCA) is inhibited by volatile anesthetics at clinical concentrations. The goal of the current study was to determine whether the inhibition is selective as compared to other adenosine triphosphatases (ATPases) and another group of general anesthetics, barbiturates. In addition, the authors determined whether the response to anesthetics of the enzymes in neuronal membranes is similar to that in erythrocyte membranes.

Methods: The effects of halothane, isoflurane, and sodium pentobarbital on four different ATPase activities were studied at 37 degrees C in two distinct plasma membrane preparations, human red blood cells and synaptosomal membranes from rat cerebellum.

Results: Inhibition patterns of the PMCA by halothane and isoflurane at anesthetic concentrations were very similar in red blood cells and synaptosomal membranes. The half-maximal inhibition (I50) occurred at 0.25-0.30 mM halothane and 0.30-0.32 mM isoflurane. The PMCA in both membranes was significantly more sensitive to the inhibitory action of volatile anesthetics (I50 = 0.75-1.15 minimum alveolar concentration) than were other ATPases, such as the Sodium sup +, Potassium sup + -ATPase (I50 [nearly equal] 3 minimum alveolar concentration) or Magnesium sup 2+ -ATPase (I50 greater or equal to 5 minimum alveolar concentration). In contrast, sodium pentobarbital inhibited the PMCA in both membranes only at [nearly equal] 100-200-fold above its anesthetic concentrations. The other ATPases were inhibited at similar pentobarbital concentrations (I50 = 11-22 mM).  相似文献   


19.
Liao M  Sonner JM  Jurd R  Rudolph U  Borghese CM  Harris RA  Laster MJ  Eger EI 《Anesthesia and analgesia》2005,101(2):412-8, table of contents
Mice bearing an N265M point mutation in the gamma-aminobutyric acid (GABA)(A) receptor beta3 subunit resist various anesthetic effects of propofol and etomidate. They also require a 16% larger concentration of enflurane and a 21% larger concentration of halothane to abolish the withdrawal reflex than do wild-type mice. Using a Pavlovian test, we measured whether this mutation increased the concentration of isoflurane required to impair learning and memory relative to wild-type mice. We found that the concentration was not significantly increased. We also measured MAC (the minimum alveolar concentration required to eliminate movement in response to noxious stimulation in 50% of subjects). Isoflurane MAC for mutant mice (1.93% +/- 0.0.03%; mean +/- se; n = 14) was 17.0% larger than MAC for wild-type mice (1.65 +/- 0.04; n = 14; P < 0.001). Similarly, the cyclopropane MAC for mutant mice (27.6% +/- 0.55%; n = 16) was 13.6% larger than MAC for wild-type mice (24.3 +/- 0.46; n = 8; P < 0.01). The increase in MAC for cyclopropane was unexpected, because published reports find only minimal actions at alpha1beta2gamma2 GABA(A) receptors whereas isoflurane provides a large enhancement. Consistent with previous work on alpha1beta2gamma2 GABA(A) receptors, we found in Xenopus oocytes that 5 MAC cyclopropane enhanced the effect of GABA on alpha1beta2gamma2 GABA(A) receptors by only 76%, and by a nearly identical enhancement in alpha1beta3gamma2, and alpha6beta3gamma2 receptors. In contrast, a much smaller concentration of isoflurane (1 MAC) produced a 160% to 310% enhancement in these receptors. If, relative to isoflurane, cyclopropane minimally increases GABA-induced chloride currents at any GABA(A) receptor subtype, the present data for MAC are consistent with the notion that GABA(A) receptors do not mediate the immobility produced by inhaled anesthetics. IMPLICATIONS: The results of the present study indicate that beta3-containing gamma-aminobutyric acidA receptors do not mediate the amnesia produced by isoflurane and do not mediate, or only partially mediate, the immobility produced by inhaled anesthetics.  相似文献   

20.
BACKGROUND: Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central and autonomic nervous systems. The authors have previously shown that depressant and convulsant barbiturates both inhibit the ganglion-type nAchRs in PC12 cells. However, the central and gangliontype receptors have different subunit composition and pharmacologic properties. In this study, the authors investigated the effects of thiopental, depressant [R(-)] and convulsant [S(+)] stereoisomers of 1-methyl-5 phenyl-5-propyl barbituric acid (MPPB) on neuronal nAChRs in the rat central nervous system to explore significance of these effects in barbiturate anesthesia. METHODS: Whole-cell currents were measured in acutely dissociated rat medial habenula (MHb) neurons by applying 10 or 100 microM nicotine in the absence or presence of thiopental 3-100 microM. Effects of R(-)- and S(+)-MPPB on the nicotine-induced current were also studied. RESULTS: Thiopental suppressed the nicotine-elicited inward current and accelerated the current decay dose-dependently at the clinical relevant concentrations. R(-)- and S(+)-MPPB both inhibited the nicotine-induced current dose-dependently without augmenting the current decay. There was no significant difference in the magnitudes of inhibition by R(-)- and S(+)-MPPB. CONCLUSIONS: Although thiopental suppressed the current mediated through native nAchRs in rat MHb neurons at the clinically relevant concentrations, the depressant and convulsant stereoisomers of MPPB both inhibited the current in the same extent. These findings are consistent with the results previously obtained in the ganglion-type receptors of PC12 cells and suggest that inhibition of nAChRs in MHb neurons is not directly relevant to the hypnotic or anticonvulsive actions of barbiturates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号