首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary This study was conducted to evaluate the usefulness of three commonly used methods of biological monitoring for worker exposed to methyl ethyl ketone (MEK) under field conditions using blood, breath and urine. Environmental MEK exposures were measured by personal sampling with carbon-felt dosimeters. The correlation coefficient (r) between the time-weighted average (TWA) MEK concentration in air and the MEK concentration in blood collected at the end of the work shift was 0.85. The correlation coefficient between the TWA MEK level in air and the concentration exhaled in the breath of workers at the end of the work shift was 0.71. The end-of-shift urinary MEK excretion correlated best with the environmental concentration (r = 0.89). Correlations became lower after urine samples had been corrected for urinary creatinine (r = 0.83) or specific gravity (r = 0.73). After 8 h exposure to 200 ppm MEK, the corresponding end-of-shift urinary excretion was 5.11ol/l or 4.11 mg/g creatinine. This value is higher than that previously found in some studies, the difference probably being due to the physical acitivites of the present workers and their extensive skin contact with the solvent. The kinetics of inhaled MEK was also studied in eight subjects. Breath and urine samples were collected during the 8-h work shift on 2 consecutive Mondays. The results showed that urinary MEK excretion rose steadily until the end of exposure, whereas the MEK concentration in exhaled air varied markedly throughout the day. These findings suggest that the determination of MEK levels in end-of-shift urine samples appears to be the most reliable biological indicator of occupational exposure.  相似文献   

2.
This study evaluates the suitability of using urinary excretion of o-cresol (o-CR) as a biological marker of occupational exposure to various concentrations of toluene (TOL). Thirty-eight individuals from three plants involved in the manufacture of paints or inks agreed to participate in the environmental and biological monitoring evaluations, which lasted one to two days. In all, 62 measurements of environmental TOL and urinary o-CR and hippuric acid (HA) levels were made. The eight-hour TOL exposure (time-weighted average [TWA]) ranged from 0 to 111 ppm, depending on plant and job title. TOL exposure was well correlated to post-shift urinary o-CR (r = 0.89) and HA (r = 0.67) levels. At low exposure levels (below 50 ppm), however, o-CR shows a stronger correlation (r = 0.71) than HA (r = 0.24). Based on our results, occupational exposure to 50 ppm of TOL would result in end-of-shift urinary o-CR concentration of 0.72 mumol/mmol creatinine (0.69 mg/L, assuming a urinary creatinine concentration of 1 g/L). This value is of the same order of magnitude as the level proposed by the American Conference of Governmental Industrial Hygienists (ACGIH) in 1998 for exposure to 50 ppm of TOL, namely 0.5 mg/L. Our results suggest that the level of urinary o-CR is a more sensitive index of exposure to low concentrations of TOL than is the urinary concentration of HA.  相似文献   

3.
OBJECTIVES: To examine the correlation between airborne 2-methoxy ethanol (ME) exposures and the urinary 2-methoxy acetic acid (MAA) and to recommend a biological exposure index (BEI) for ME. METHODS: 8 Hour time weighted average (TWA) personal breathing zone samples and urine samples before and after the shift were collected from Monday to Saturday for 27 workers exposed to ME and on Friday for 30 control workers. RESULTS: No correlation was found between airborne exposure to ME and urinary MAA for nine special operation workers due to the use of personal protective equipment. For 18 regular operation workers, a significant correlation (r = 0.702, p = 0.001) was found between urinary MAA (mg/g creatinine) on Friday at the end of the shift and the weekly mean exposures of ME in a 5 day working week. The proposed BEI, which corresponds to exposure for 5 days and 8 hours a day to 5 ppm, extrapolated from the regression equation is 40 mg MAA/g creatinine. A significant correlation was also found between the weekly increase of urinary MAA (Friday after the shift minus Monday before the shift) and the weekly mean exposures of ME (r = 0.741). The recommended value of the weekly increase of urinary MAA for 5 days repeated exposures of 5 ppm ME is 20 mg/g creatinine. No urinary MAA was detected in workers in the non-exposed control group. CONCLUSIONS: The Friday urinary MAA after the shift or the weekly increase of urinary MAA is a specific and a good biomarker of weekly exposure to ME.  相似文献   

4.
Biological monitoring of occupational exposure to tetrahydrofuran   总被引:1,自引:0,他引:1  
Occupational exposure to tetrahydrofuran (THF) was studied by analysis of environmental air, blood, alveolar air, and urine from 58 workers in a video tape manufacturing plant. Head space gas chromatography (GC) with an FID detector was used for determination of THF concentration in alveolar air, urine, and blood. Environmental exposure to THF was measured by personal sampling with a carbon felt passive dosimeter. When the end of shift urinary THF concentrations were compared with environmental time weighted average (TWA) values, urinary THF concentration corrected for specific gravity correlated well with THF concentration in air (r = 0.88), and uncorrected urinary THF concentration gave a similar result (r = 0.86). Correction for creatinine in urine weakened the correlation (r = 0.56). For exposure at the TWA concentration of 200 ppm the extrapolated concentration of THF was 33 mumol/l in blood and 111.9 mumol/l (61 mumol/g creatinine) or 109 mumol/l at a specific gravity of 1.018 in urine. The correlation between exposure to THF and its concentration in exhaled breath and blood was low (r = 0.61 and 0.68 respectively). Laboratory methodological considerations together with the good correlation between urinary THF concentration and the environmental concentration suggest that THF concentration in urine is a useful biological indicator of occupational exposure to THF.  相似文献   

5.
Occupational exposure to tetrahydrofuran (THF) was studied by analysis of environmental air, blood, alveolar air, and urine from 58 workers in a video tape manufacturing plant. Head space gas chromatography (GC) with an FID detector was used for determination of THF concentration in alveolar air, urine, and blood. Environmental exposure to THF was measured by personal sampling with a carbon felt passive dosimeter. When the end of shift urinary THF concentrations were compared with environmental time weighted average (TWA) values, urinary THF concentration corrected for specific gravity correlated well with THF concentration in air (r = 0.88), and uncorrected urinary THF concentration gave a similar result (r = 0.86). Correction for creatinine in urine weakened the correlation (r = 0.56). For exposure at the TWA concentration of 200 ppm the extrapolated concentration of THF was 33 mumol/l in blood and 111.9 mumol/l (61 mumol/g creatinine) or 109 mumol/l at a specific gravity of 1.018 in urine. The correlation between exposure to THF and its concentration in exhaled breath and blood was low (r = 0.61 and 0.68 respectively). Laboratory methodological considerations together with the good correlation between urinary THF concentration and the environmental concentration suggest that THF concentration in urine is a useful biological indicator of occupational exposure to THF.  相似文献   

6.
OBJECTIVES--To clarify the relation between the genetic polymorphism of ALDH2 (low Km aldehyde dehydrogenase) and toluene metabolism. METHODS--The study subjects were 253 toluene workers (192 men and 61 women with an age range of 18-66). The genotypes of ALDH2 were classified by artificial restriction fragment length polymorphism into the homozygous genotype of normal ALDH2 (NN), the homozygous genotype of an inactive ALDH2 (DD), and the heterozygous genotype of normal and inactive ALDH2 (ND). The concentrations of hippuric acid (HA), the main metabolite of toluene, was determined in urine specimens of 253 toluene workers. The HA measurements in previous occupational health examinations were also referenced. The HA concentrations corrected for creatinine (HA/C) were compared with the biological exposure index (BEI) for toluene, which is 2.5 g/g creatinine. To estimate the toluene exposures, urinary o-cresol concentrations were also determined and compared with another BEI for toluene--that is, 1.0 mg urinary o-cresol/g creatinine. RESULTS--Incidence of each genotype in the toluene workers was almost the same as that in non-exposed controls who lived in the same area as the toluene workers. The incidence of each of the three genotypes also did not differ by smoking habit. Mean urinary HA concentrations were not significantly different in the groups with the different genotypes of ALDH2. The HA concentrations of > 70% of the 890 total samples were < 1.0 g/l. The number of urine samples > 3.0 g/l was 28 (5.4%) in the NN group and 19 (6.4%) in the ND group. No urine samples in the DD group were > 3.0 g/l HA. The distribution of urinary HA in the DD group was significantly different from those in both the NN and ND groups (P < 0.05). Seven (4.9%) of the 136 total specimens in the NN group and four (4.7%) of the 82 total specimens in the ND group exceeded the BEI. There were, however, no urine specimens that exceeded the BEI in the DD group. The maximum HA concentration after correction for creatinine in the DD group was 1.86 g/g creatinine. The percentages of urine specimens in which o-cresol concentrations exceeded this BEI were 14.3% in the NN group, 9.1% in the ND group, and 15.4% in the DD group. Therefore, the exposure rate for all three genotypic groups of workers was almost the same. CONCLUSIONS--The HA concentrations of toluene workers with ALDH2 DD genotype were lower than those of the NN and ND genotypes when they were exposed to relatively high concentrations of toluene. The exposures of the DD group were suspected to be underestimates because they were based on the BEI for the NN genotype.  相似文献   

7.
In male subjects not occupationally exposed to benzene, the concentration of muconic acid (MA) in urine is usually below 0.5 mg/g creatinine. At ambient levels of benzene exposure (below 0.01 ppm), the mean MA level was greater in 21 smokers than in 14 nonsmokers. In 38 male subjects employed in garages and coke ovens, a statistically significant correlation was found between the airborne concentration of benzene measured with passive monitors and MA in postshift urine. The mean postshift MA concentrations corresponding to a benzene 8-hour time-weighted average exposure (TWA) of 0.5 and 1 ppm were 0.8 and 1.4 mg/g creatinine, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

8.
OBJECTIVES--Comparison of the suitability of two minor urinary metabolites of benzene, trans,trans-muconic acid (tt-MA) and S-phenylmercapturic acid (S-PMA), as biomarkers for low levels of benzene exposure. METHODS--The sensitivity of analytical methods of measuring tt-MA and S-PMA were improved and applied to 434 urine samples collected from 188 workers in 12 studies in different petrochemical industries and from 52 control workers with no occupational exposure to benzene. In nine studies airborne benzene concentrations were assessed by personal air monitoring. RESULTS--Strong correlations were found between tt-MA and S-PMA concentrations in samples from the end of the shift and between either of these variables and airborne benzene concentrations. It was calculated that exposure to 1 ppm (8 hour time weighted average (TWA)) benzene leads to an average concentration of 1.7 mg tt-MA and 47 micrograms S-PMA/g creatinine in samples from the end of the shift. It was estimated that, on average, 3.9% (range 1.9%-7.3%) of an inhaled dose of benzene was excreted as tt-MA with an apparent elimination half life of 5.0 (SD 2.3) hours and 0.11% (range 0.05%-0.26%) as S-PMA with a half life of 9.1 (SD 3.7) hours. The mean urinary S-PMA in 14 moderate smokers and 38 non-smokers was 3.61 and 1.99 micrograms/g creatinine, respectively and the mean urinary tt-MA was 0.058 and 0.037 mg/g creatinine, respectively. S-PMA proved to be more specific and more sensitive (P = 0.030, Fisher's exact test) than tt-MA. S-PMA, but not tt-MA, was always detectable in the urine of smokers who were not occupationally exposed. S-PMA was also detectable in 20 of the 38 non-smokers from the control group whereas tt-MA was detectable in only nine of these samples. The inferior specificity of tt-MA is due to relatively high background values (up to 0.71 mg/g creatinine in this study) that may be found in non-occupationally exposed people. CONCLUSIONS--Although both tt-MA and S-PMA are sensitive biomarkers, only S-PMA allows reliable determination of benzene exposures down to 0.3 ppm (8 h TWA) due to its superior specificity. Because it has a longer elimination half life S-PMA is also a more reliable biomarker than tt-MA for benzene exposures during 12 hour shifts. For biological monitoring of exposure to benzene concentrations higher than 1 ppm (8 h TWA) tt-MA is also suitable and may even be preferred due to its greater ease of measurement.  相似文献   

9.
Object Ambient air and biological monitoring of an occupational toluene exposure was carried out on a group of 33 workers. Method The biological monitoring of the workers was based on determination of the concentration of toluene in blood and on quantification of the urinary metabolites o-cresol and hippuric acid. All blood and urine samples were collected post-shift. Results The average toluene concentration in the workplace air was 65?ppm, ranging from 13 to 151?ppm. An average concentration of toluene in blood of 911?μg/l was found, corresponding to an average urinary concentration of 2.9?mg/l (2.3?mg/g creatinine) o-cresol and 2.4?g/l (1.9?g/g creatinine) hippuric acid. Both urinary metabolites can be correlated with the concentration of toluene in ambient air and blood, respectively. Conclusions The results of our study indicate that the determination of the urinary o-cresol excretion represents a diagnostically specific and sensitive parameter for the estimation of an individual toluene uptake. In contrast, monitoring of the concentration of hippuric acid in urine cannot be recommended for assessment of individual exposure. To set up a biological tolerance value (BAT) for o-cresol, a urinary concentration of 3?mg/l o-cresol should be in accordance with the current MAK value of 50?ppm toluene.  相似文献   

10.
In order to understand the health effects of tetrachloroethylene (TCE) on dry cleaning workers, we surveyed personal exposure to TCE and TCE levels in man. Personal TCE exposure levels ranged from 0.6 to 100.8 ppm (time weighted average, TWA) and in winter the values were 1.1-11 times higher than that in summer. TCE levels in expired air ranged from 0.3 to 87 ppm, in blood from 0.01 to 0.73 micrograms/g, and total trichlorinated compounds (TTC) levels in urine ranged from 0.06 to 1.92 mg/dl. Correlation was highly significant between TCE concentration in blood and TTC concentration in urine (r = 0.927, p less than 0.01), and between concentration of personal exposure to TCE and TTC concentration in urine (r = 0.815, p less than 0.01). Following a three day holiday (non-exposure duration, 90 hr) TCE level in blood decreased from 0.05 to 0.006 micrograms/g, in expired air from 1.0 to 0.3 ppm and in TTC level in urine from 0.24 to 0.08 mg/dl respectively.  相似文献   

11.
N,N-dimethylformamide (DMF) is a solvent that is widely used in industry. The major occupational sources of exposure results from production of synthetic leather. The main metabolite formed in both man and animals is N-hydroxymethyl-N-methylformamide. Demethylation leads to N-methylformamide (NMF) and formamide and also to a small extent to hydroxy-methylformamide. All the metabolites are excreted in urine, as are very small amounts of the unchanged substance. N-acetyl-S-(N-methyl-carbamoyl)-cysteine can be determined in urine as a further metabolite. We conducted this biomonitoring study with the aim of evaluating the correlation between the excretion of N-methylformamide (mainly from N-hydroxymethylformamide) and levels of exposure to N,N-dimethylformamide among occupationally exposed people. The mean time-weighted average (TWA) exposure was about half (13.5 mg/m3) of the current threshold limit value, the range of the values varying from 0.4 to 75.2 mg/m3. A linear equation existed between urinary NMF concentration and DMF concentration in the environment. The findings show that the urinary NMF concentration can be used as an appropriate biological exposure index. The authors suggest for occupationally exposed subjects, a urinary NMF concentration corresponding to the time-weighted average of the threshold limit value of 39.9 mg/l (37.2 mg/g creatinine) and a 95% lower confidence limit (biological threshold) of 23.4 mg/l (22.2 mg/g creatinine).  相似文献   

12.
The follow-up of environmental carbon disulfide (CS2) exposure and urinary excretion of 2-thiothiazolidine-4-carboxylic acid (TTCA) among 20 operatives over a 4-day working week in two viscose producing factories confirmed earlier observations that TTCA is a sensitive and reliable indicator of exposure to CS2. Exposure to as low as 0.5-1.0 ppm (1.6-3.2 mg/m3) of CS2 (8-hour time-weighted average [TWA]) was associated with detectable amounts of TTCA in end-of-shift urine. Moreover, the excretion of TTCA, relative to estimated CS2 uptake, appeared surprisingly constant in the studied work force. Approximately 3% (range 2-6.5%) of absorbed CS2 was detected in urine as TTCA. The proportional TTCA excretion did not show dose dependency in the estimated CS2 dose range which varied by about 20-fold. TTCA elimination exhibited both a fast (T 1/2 6 hour) and a slow (T 1/2 68 hour) phase. The slow elimination is compatible with a high lipid solubility and reversible protein binding of CS2. Consequently, urinary excretion of TTCA, relative to CS2 exposure, increased by about a third during the workweek. Urinary TTCA concentration of 4.5 mmol/mol creatinine in a postshift sample corresponded to a TWA exposure to 10 ppm CS2 towards the end of the working week.  相似文献   

13.
The exposure and metabolism of dimethylethylamine (DMEA) was studied in 12 mould core makers in four different foundries using the Ashland cold box technique. The mean time weighted average (TWA) full work shift DMEA exposure concentration was 3.7 mg/m3. Inhaled DMEA was excreted into urine as the original amine and as its metabolite dimethylethylamine-N-oxide (DMEAO). This metabolite made up a median of 87 (range 18-93) % of the sum of DMEA and DMEAO concentrations excreted into the urine. Occupational exposure did not significantly increase the urinary excretion of dimethylamine or methylethylamine. The data indicate half lives after the end of exposure for DMEA in urine of 1.5 hours and DMEAO of three hours. The postshift summed concentration of DMEA and DMEAO in plasma and urine is a good indicator of the TWA concentration in air during the workday, and might thus be used for biological monitoring. An air concentration of 10 mg/m3 corresponds to a urinary excretion of the summed amount of DMEA and DMEAO of 135 mmol/mol creatinine.  相似文献   

14.
The exposure and metabolism of dimethylethylamine (DMEA) was studied in 12 mould core makers in four different foundries using the Ashland cold box technique. The mean time weighted average (TWA) full work shift DMEA exposure concentration was 3.7 mg/m3. Inhaled DMEA was excreted into urine as the original amine and as its metabolite dimethylethylamine-N-oxide (DMEAO). This metabolite made up a median of 87 (range 18-93) % of the sum of DMEA and DMEAO concentrations excreted into the urine. Occupational exposure did not significantly increase the urinary excretion of dimethylamine or methylethylamine. The data indicate half lives after the end of exposure for DMEA in urine of 1.5 hours and DMEAO of three hours. The postshift summed concentration of DMEA and DMEAO in plasma and urine is a good indicator of the TWA concentration in air during the workday, and might thus be used for biological monitoring. An air concentration of 10 mg/m3 corresponds to a urinary excretion of the summed amount of DMEA and DMEAO of 135 mmol/mol creatinine.  相似文献   

15.
The purpose of this study was to investigate whether the metabolic suppression of hippuric acid (HA) occurs in field workers coexposed to toluene, xylene and ethyl benzene. Eleven male spray painters were recruited into this study and monitored for 2 weeks using a repeated-measures study design. The sampling was conducted for 3 consecutive working days each week. Toluene, ethyl benzene, and xylene in the air were collected using 3M 3500 organic vapor monitors. Urine samples were collected before and after work shift, and urinary HA, methyl hippuric acid, mandelic acid, and phenylgloxylic acid concentrations were determined. In the first week, toluene concentrations were 2.66 ± 0.95 (mean ± SE) ppm, whereas ethyl benzene and xylene concentrations were 27.84 ± 3.61 and 72.63 ± 13.37 ppm, respectively, for all subjects. Pre–work shift HA concentrations were 230.23 ± 37.31 mg/g creatinine, whereas pre–work shift HA concentrations were 137.81 ± 14.15 mg/g creatinine. Mean urinary HA concentration was significantly greater in the pre–work shift samples than in the pre–work shift samples (p = 0.043). In the second week, toluene concentrations were much lower (0.28 ppm), whereas ethyl benzene and xylene were 47.12 ± 8.98 and 23.88 ± 4.09 ppm, respectively, for all subjects. Pre–work shift HA concentrations were 351.98 ± 116.23 mg/g creatinine, whereas pre–work shift HA concentrations were 951.82 ± 116.23 mg/g creatinine. Mean urinary HA concentration was significantly greater in the pre–work shift samples than in the pre–work shift samples (p <0.01); a significant correlation (r = 0.565; p = 0.002) was found between pre–work shift urinary HA levels and ethyl benzene exposure. This study showed that urinary HA peak was delayed to next morning for workers coexposed to toluene, ethyl benzene, and xylene; xylene and ethyl benzene probably played competitive inhibitors for metabolism of toluene. The study also presumed that urinary HA became the major metabolite of ethyl benzene at the end of work shift, when the exposure concentrations of ethyl benzene were 2.0 times those of xylene.  相似文献   

16.
Summary The urinary excretion of hippuric acid (HA) and ortho-cresol (O-cr) in man was measured in two studies of 7-h exposure to toluene in a climate chamber, either constant concentration of 100 ppm or varying concentrations containing peaks of 300 ppm but with a time-weighted average of 100 ppm. In Study A, four males were exposed to clean air and to constant and varying concentrations of toluene in combination with rest and with 100 W exercise in 140 min. Exercise increased end exposure excretion rate of HA and O-cr by 47 and 114%, respectively. After exposure, all excess HA was excreted within 4 h, while O-cr was eliminated with a half life of about 3 h. Alveolar air concentration of toluene varied between 21 and 31 ppm during constant exposure and between 13 and 57 ppm during varying exposure, but no difference in mean alveolar toluene concentration or in metabolite excretion was seen between the exposure schedules. In Study B, 32 males and 39 females aged between 31 and 50 years were exposed once to either clean air, constant or varying concentrations of toluene. Background excretion rate of HA was 0.97 ± 0.75 mg/min (1.25 ± 1.05 g/g creatinine) and rose to 3.74 ± 1.40 mg/min (3.90 ± 1.85 g/g cr) during the last 3 h of exposure to 100 ppm toluene. The corresponding figures for O-cr were 0.05 ± 0.05 g/min (0.08 ± 0.14 mg/g cr), and 2.04 ± 0.84 g/min (2.05 ± 1.18 mg/g cr). The individual creatinine excretion rate was considerably influenced by sex, body weight and smoking habits, thus influencing the metabolite concentration standardised in relation to creatinine. It is concluded that both metabolites are estimates of toluene exposure. O-cr is more specific than HA, but the individual variation in excretion of both metabolites is large, and when implementing either of them as biological exposure indices, the influence of sex, body size, age as well as consumption of tobacco and alcohol has to be considered.  相似文献   

17.
Summary A new method for the direct determination of hippuric acid (HA) and o-, m- and p-methylhippuric acids (MHAs) in the urine, metabolites of toluene and o-, m- and p-xylenes by high performance liquid chromatography (HPLC) is described. A stainless-steel column packed with silica gel having dinitrophenyl residue and a mixed solution of methanol/water/acetic acid (80/20/0.2) containing tetra-n-butylammonium bromide (0.2% w/v) as mobile phase was used. Concentrations of HA and MHAs were estimated from their peak height at a wave length of 225 nm. Urine can be analyzed directly without solvent extraction or pretreatment to obtain complete separation of HA and o-, m- and p-MHAs. Urine samples from male workers exposed to toluene or xylenes were analyzed for HA or MHAs. The urinary levels of HA and MHAs increased by exposure to toluene and xylenes in proportion to the environmental concentrations of the solvents, although there is a considerable variation in metabolite concentrations. The slope of regression line between toluene and HA and that between m-xylene and m-MHA were similar. The urinary concentrations of HA and MHAs corresponding to 100 ppm (TLV) of toluene was 2.35 g/g creatinine and that of m-MHA corresponding to 100 ppm (TLV) of m-xylene was 2.05 g/g creatinine. The warning levels of the urinary metabolite concentrations of a group of workers and that of an individual worker corresponding to TLV of organic solvent concentration is discussed.  相似文献   

18.
Recently, the determination of S-phenylmercapturic acid (S-PMA) in urine has been proposed as a suitable biomarker for the monitoring of low level exposures to benzene. In the study reported here, the test has been validated in 12 separate studies in chemical manufacturing plants, oil refineries, and natural gas production plants. Parameters studied were the urinary excretion characteristics of S-PMA, the specificity and the sensitivity of the assay, and the relations between exposures to airborne benzene and urinary S-PMA concentrations and between urinary phenol and S-PMA concentrations. The range of exposures to benzene was highest in workers in chemical manufacturing plants and in workers cleaning tanks or installations containing benzene as a component of natural gas condensate. Urinary S-PMA concentrations were measured up to 543 micrograms/g creatinine. Workers' exposures to benzene were lowest in oil refineries and S-PMA concentrations were comparable with those in smoking or nonsmoking control persons (most below the detection limit of 1 to 5 micrograms/g creatinine). In most workers S-PMA was excreted in a single phase and the highest S-PMA concentrations were at the end of an eight hour shift. The average half life of elimination was 9.0 (SD 4.5) hours (31 workers). Tentatively, in five workers a second phase of elimination was found with an average half life of 45 (SD 4) hours. A strong correlation was found between eight hour exposure to airborne benzene of 1 mg/m3 (0.3 ppm) and higher and urinary S-PMA concentrations in end of shift samples. It was calculated that an eight hour benzene exposure of 3.25 mg/m3 (1 ppm) corresponds to an average S-PMA concentration of 46 micrograms/g creatinine (95% confidence interval 41-50 micrograms/g creatinine). A strong correlation was also found between urinary phenol and S-PMA concentrations. At a urinary phenol concentration of 50 mg/g creatinine, corresponding to an eight hour benzene exposure of 32.5 mg/m3 (10 ppm), the average urinary S-PMA concentration was 383 micrograms/g creatinine. In conclusion, with the current sensitivity of the test, eight hour time weighted average benzene exposures of 1 mg/m3 (0.3 ppm) and higher can be measured.  相似文献   

19.
Occupational exposure to cyclohexanone was studied for 59 workers through the analysis of environmental air, alveolar air, and urinary cyclohexanol. Environmental cyclohexanone exposure was measured by personal sampling with a carbon-felt passive dosimeter. Cyclohexanone in alveolar air and cyclohexanol in urine were determined with gas chromatography with a flame ionization detector. The end-of-shift urinary cyclohexanol levels correlated well with the time-weighted average environmental cyclohexanone values (r = 0.66). Urinary cyclohexanol corrected for creatinine correlated best with cyclohexanone in air (r = 0.77); when corrected for specific gravity, it gave a similar correlation coefficient (r = 0.73). When the time-weighted average of the exposure was 25 ppm, the corresponding calculated concentration for urinary cyclohexanol was 54.5 mg/1, 23.3 mg/g of creatinine, or 43.5 mg/l at a specific gravity of 1.018. The relationship between cyclohexanone exposure and its concentration in exhaled breath was found to be poorer than that for cyclohexanone exposure and the urinary metabolite (r = 0.51).  相似文献   

20.
The objectives of this study was to establish the kinetics of urinary 2-thiothiazolidine-4-carboxylic acid (U-TTCA) for workers exposed to carbon disulphide (CS2) and to investigate the effects of volume and creatinine adjustment methods for urine measurement. Ten workers in the spinning department of a rayon factory were individually monitored for airborne CS2 concentrations, with consecutive urine samples collected for 24-38 hours after termination of exposure. The U-TTCA, urine volume and creatinine level were measured for each sample. First-order and biphasic kinetics were determined using the curve-fit method, for the measurement series. For the first-order kinetics linearity fit, statistically significant correlation coefficients of 0.74-0.98 and 0.86-0.99 were derived for the volume- and creatinine-adjusted methods, respectively. For the biphasic kinetics approach, the overall correlation coefficients were 0.544-0.999 and 0.171-0.999 for the first and second phases of the creatinine-adjusted method, respectively. A post-shift U-TTCA of 3.0 mg/g Cr. equivalent, 40% below the current BEI setting at nearly PEL exposed level, was found. In conclusion, first-order kinetic response was confirmed for U-ITCA. Both volume- and creatinine-based urine adjustment are satisfactory for TTCA assessment as a biomarker of individual CS2 exposure although the correlation for creatinine-based measurement was modestly superior to the volume-based analogue. Based on the results of this study,we recommend a re-evaluation of the current biological exposure index of 5 mg/g creatinine at a CS2 exposure level of 10 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号