首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The anthracycline analog idarubicin (ID) is useful in the treatment of leukemias, and is of further interest because of the unique activity of its major circulating metabolite idarubicinol (IDOL). In vitro studies have shown that ID retains activity against tumor cells made resistant by prolonged exposure to substrates of the p-glycoprotein energy-dependent efflux pump. To selectively investigate multidrug resistance to ID in tumor cells, ID, IDOL, doxorubicin (DX) and doxorubicinol (DXOL) were evaluated for growth inhibitory activity when incubated with NIH-MDR1-G185 (MDR) cells or with the parent NIH-3T3 (3T3) cells. The MDR cells are transfected with the human multidrug genemdr 1, and express a functional p-glycoprotein. ID growth inhibitory activity was much less affected by p-glycoprotein-mediated efflux than was DX. ID IC50 values were only 1.8-fold greater in the MDR cell line than in the parental 3T3 cell line, while the IC50 value for DX was 12.3-fold greater in the transfected cell line. Verapamil (VRP) fully restored drug sensitivity of the MDR cell line to ID and DX. In studies with the alcohol metabolites, IDOL and DXOL IC50 values were 7.8- and 18.9-fold greater, respectively, for the MDR cell line than for the parental cell line. Intracellular concentrations of DX and DXOL, but not ID and IDOL, were substantially increased in the MDR cells when VRP was present in the incubation mixtures. ID and IDOL retain substantial growth inhibitory activity inmdr 1-transfected cells, and ID may be of value in clinical settings where multidrug resistance mediated by p-glycoprotein is a potential limitation of therapy.Work partially supported by funds from Pharmacia Int. and by Mayo Comprehensive Cancer Center Grant CA 15083.  相似文献   

2.
Procarbazine, a chemotherapeutic hydrazine, is thought to be metabolized to an alkylating species similar to methyl carbonium ion by multistep reactions involving cytochrome P-450, monoamine oxidase, and cytosolic enzymes. The DNA-damaging and cytotoxic potential of procarbazine and its metabolites in murine L1210 leukemia tumor cells in vitro was determined using alkaline elution techniques and extrapolation of growth curves. Neither procarbazine nor any of the chemical degradation products (except for the aldehyde derivative at high concentrations) caused significant amounts of DNA strand breakage. The primary enzymatic oxidation product, azo-procarbazine, did not produce strand breakage. However, exposure of the cells to either of the two isomers of azoxy-procarbazine led to significant DNA damage and cytotoxicity. DNA damage included both single-strand breaks and alkali-labile sites. At equimolar concentrations, the azoxy 2 isomer of procarbazine caused 14 to 20 times more DNA damage than did the azoxy 1 metabolite. When cell growth is expressed as percentage survival of L1210 cells, the azoxy 2 isomer was approximately 7-fold more toxic than the azoxy 1 metabolite. The other metabolites tested showed little or no cytotoxicity. L1210 cells were shown to contain little or no cytochrome P-450 or monoamine oxidase activity, which may account for the lack of toxicity of the parent drug or the primary oxidative metabolite, azo-PCZ, to these cells. The conversion of procarbazine to the azoxy-procarbazine isomers in vivo must occur in cells which contain these enzymes, such as liver. However, the azoxy isomers of procarbazine were metabolized in L1210 cells, presumably leading to the DNA or cytotoxic damage observed.  相似文献   

3.
4.
Two kinds of growth-inhibitory substances were found in culture of a Rous sarcoma virus-transformed rat liver cell line, RSV-BRL. The two substances were purified from the serum-free culture medium and identified as transforming growth factor beta 1 and Mycoplasma-derived arginine deiminase (EC 3.5.3.6), respectively. The arginine deiminase was an acid-labile but dithiothreitol-resistant protein with a molecular weight of 45,000 and pI 4.7. Its Km value for L-arginine was 0.3 mM, which is about 30 times lower than that of bovine liver arginase. It was stable and active under culture conditions. When added into cultures, the arginine deiminase inhibited the growth of various human cancer cell lines at a dose of 5 ng/ml or higher by depleting L-arginine in the culture media. This effective dose was about 1000 times lower than that of bovine liver arginase. These results suggested the possibility of chemotherapeutic use of arginine deiminase for human cancers.  相似文献   

5.
Using a high-resolution chromosome banding technique, which provided more elongated and distinctly banded chromosomes, some new evidence was obtained for localization of break points in Burkitt lymphoma marker chromosomes. As a result, the characteristic translocation between chromosomes 8 and 14 was designated as t(8;14) (q24.1;q32.5) and the deletion of chromosome 15 was designated as del(15) (q13q15).  相似文献   

6.
Cyclin-dependent kinases (Cdk) promote cell proliferation, are often deregulated in human cancers, and are targets of ongoing cancer chemotherapy trials. We show here that Cdk activity is also required in human cells to maintain function of the Chk1 pathway, a key component of the response to DNA damage or stalled replication. Chk1 expression was markedly reduced in primary fibroblasts and U2OS osteogenic sarcoma cells by treatment with small molecule Cdk inhibitors or induction of a dominant-negative mutant of Cdk2. The findings of decreased Chk1 activity and accumulation of Cdc25A, a protein targeted for degradation by Chk1, confirmed that Chk1 function was impaired. Furthermore, Cdk inhibition triggered a DNA damage response, characterized by the accumulation of activated forms of ATM and Chk2 as well as nuclear foci containing phosphorylated substrates of ATM/ATR, including histone H2AX (gammaH2AX). Time course experiments showed that the bulk of ATM activation followed Chk1 down-regulation. Chk1 RNA interference combined with partial inhibition of DNA replication was sufficient to evoke the DNA damage response. Conversely, ectopic expression of Chk1 blunted induction of gammaH2AX foci by Cdk inhibitors, indicating that Chk1 down-regulation was necessary to elicit the full phenotype. Finally, both Cdk and Chk1 inhibitors enhanced the cytotoxity of etoposide, a DNA-damaging agent. These results define a pathway through which Cdk inhibition can mediate DNA damage and potentially enhance the efficacy of extant cancer chemotherapies.  相似文献   

7.
BACKGROUND: Growth factors can enhance the malignant potential of tumor cells. To examine the relationship between growth factors and tumor progression, we previously established a weakly malignant cell line, ER-1. We found that a 24-hour exposure of ER-1 cells to epidermal growth factor (EGF) induced malignant properties (tumor progression) that were reversible but that, after a 1-month exposure, these changes were irreversible. In this study, we investigated the irreversible changes induced in ER-1 cells by a 1-month exposure to EGF and the possible involvement of oxidative stress. METHODS: ER-1 cells were treated with EGF (100 ng/mL) for 1 month in the presence or absence of an antioxidant, N-acetylcysteine or selenium, and compared with untreated control ER-1 cells. We assessed tumor progression by measuring intracellular peroxide levels, 8-hydroxydeoxyguanosine (a marker for oxidative DNA damage) levels, in vitro invasiveness, and in vivo tumorigenicity and metastatic ability. All statistical tests are two-sided. RESULTS: After ER-1 cells were treated for 1 month with EGF, levels of intracellular peroxide and 8-hydroxyguanosine in the DNA of treated cells were higher than those in the DNA of control cells, and treated ER-1 cells were more tumorigenic and metastatic in vivo and more invasive in vitro than untreated control cells (all P<.001). Levels of 8-hydroxyguanosine in DNA increased as the length of the EGF treatment increased (P<.001). However, when N-acetylcysteine or selenium was added with EGF for 1 month, levels of intracellular peroxide and 8-hydroxyguanosine in DNA were comparable to those in control cells (r =.795). Both tumorigenicity (P =.008) and metastatic ability (P<.001) decreased after addition of N-acetylcysteine or selenium. CONCLUSION: The irreversible changes caused by continuous EGF stimulation of ER-1 cells result from increased oxidative damage in the DNA, which generates tumor cells with more malignant characteristics.  相似文献   

8.
Tin MM  Cho CH  Chan K  James AE  Ko JK 《Carcinogenesis》2007,28(6):1347-1355
Astragalus memebranaceus is used as immunomodulating agent in treating immunodeficiency diseases and to alleviate the adverse effects of chemotherapeutic drugs. In recent years, it has been proposed that Astragalus may possess anti-tumorigenic potential in certain cancer cell types. In this study, the anti-carcinogenic effects of Astragalus saponin extract were investigated in HT-29 human colon cancer cells and tumor xenograft. Our findings have shown that Astragalus saponins (AST) inhibit cell proliferation through accumulation in S phase and G2/M arrest, with concomitant suppression of p21 expression and inhibition of cyclin-dependent kinase activity. Besides, AST promotes apoptosis in HT-29 cells through caspase 3 activation and poly(ADP-ribose) polymerase cleavage, which is indicated by DNA fragmentation and nuclear chromatin condensation. Nevertheless, we also demonstrate the anti-tumorigenic effects of AST in vivo, of which the reduction of tumor volume as well as pro-apoptotic and anti-proliferative effects in HT-29 nude mice xenograft are comparable with that produced by the conventional chemotherapeutic drug 5-fluorouracil (5-FU). In addition, the side effects (body weight drop and mortality) associated with the drug combo 5-FU and oxaliplatin are not induced by AST. These results indicate that AST could be an effective chemotherapeutic agent in colon cancer treatment, which might also be used as an adjuvant in combination with other orthodox chemotherapeutic drugs to reduce the side effects of the latter compounds.  相似文献   

9.
Even though a well-known human carcinogen the underlying mechanisms of arsenic carcinogenicity are still not fully understood. For arsenite, proposed mechanisms are the interference with DNA repair processes and an increase in reactive oxygen species. Even less is known about the genotoxic potentials of its methylated metabolites monomethylarsonous [MMA(III)] and dimethylarsinous [DMA(III)] acid, monomethylarsonic [MMA(V)] and dimethylarsinic [DMA(V)] acid. Within the present study we compared the induction of oxidative DNA damage by arsenite and its methylated metabolites in cultured human cells and in isolated PM2 DNA, by frequencies of DNA strand breaks and of lesions recognized by the bacterial formamidopyrimidine-DNA glycosylase (Fpg). Only DMA(III) (> or =10 micro M) generated DNA strand breaks in isolated PM2 DNA. In HeLa S3 cells, short-term incubations (0.5-3 h) with doses as low as 10 nM arsenite induced high frequencies of Fpg-sensitive sites, whereas the induction of oxidative DNA damage after 18 h incubation was rather low. With respect to the methylated metabolites, both trivalent and pentavalent metabolites showed a pronounced induction of Fpg-sensitive sites in the nanomolar or micromolar concentration range, respectively, which was present after both short-term and long-term incubations. Furthermore MMA(III) and DMA(V) generated DNA strand breaks in a concentration-dependent manner. Taken together our results show that very low physiologically relevant doses of arsenite and the methylated metabolites induce high levels of oxidative DNA damage in cultured human cells. Thus, biomethylation of inorganic arsenic may be involved in inorganic arsenic-induced genotoxicity/carcinogenicity.  相似文献   

10.
In thymidylate synthase-deficient (TS-) colon carcinoma cells, thymineless death is mediated via Fas/Fas ligand (FasL) interactions after thymidine deprivation and inhibited by the Fas-inhibitory monoclonal antibody NOK-1. The objective of the study was to elucidate whether other modes of DNA damage induced by doxorubicin, topotecan, and etoposide (VP-16) could elicit a similar cytotoxic response in TS- cells by signaling via the Fas death receptor. After a 72-h drug exposure, a loss in clonogenic survival that was not prevented by NOK-1 was induced by each agent in the absence of acute apoptosis, yielding IC50 values of 5 (doxorubicin), 10 (topotecan), and 150 nM (VP-16). Furthermore, TS- cell clones selected for resistance to Fas-mediated apoptosis (CH-11) were cross-resistant to the induction of thymineless death after thymidine deprivation but were not cross-resistant to doxorubicin, topotecan, or VP-16. A close correlation was found between acute induction of apoptosis (24 h) and up-regulated expression of FasL at high concentrations of each of the three agents (0.3-3 microM doxorubicin, 0.3-3 microM topotecan, and 10-90 microM VP-16), which was caspase dependent but Fas independent. At all drug concentrations, cell cycle distribution analyses demonstrated marked accumulation of cells in the G2-M phase. At nanomolar drug concentrations, prolonged arrest of TS- cells in G2-M phase resulted in the up-regulation of FasL expression and the delayed appearance of apoptotic cells (6 days), which could also be inhibited by the general caspase inhibitor Z-VAD-FMK, but not by NOK-1 or Fas-Fc. In clonogenic assays, Z-VAD-FMK did not rescue cells treated with VP-16 in contrast to treatment with CH-11 or thymineless stress, suggesting an irreversible commitment to cell death in G2-M phase. Expression of FasL at all drug concentrations appeared to be unrelated to the mechanism of drug-induced apoptosis. This was in contrast to the Fas-dependent regulation of thymineless death, which could be inhibited by blocking Fas/FasL interactions.  相似文献   

11.
The induction and repair of alkali labile lesions and single strand breaks in DNA of CHO cells following HpD photoradiation or X-irradiation has been examined. For treatments producing equal survival levels, the amount of DNA damage was less for HpD-photoradiated cells compared to X-irradiated cells. Both the time scale and the magnitude of repair of the DNA damage were the same for the 2 modalities, with the majority of repair occurring during the first 15 min of incubation and repair being essentially complete by 30 min.  相似文献   

12.
The thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid (CB3717) inhibits the growth of human lung carcinoma A549 cells. The cytotoxicity of CB3717 is potentiated by the nucleoside transport inhibitor dipyridamole (DP), which not only inhibits the uptake and therefore salvage of thymidine but also inhibits the efflux of deoxyuridine, thereby enhancing the intracellular accumulation of deoxyuridine nucleotides. Measurement of intracellular deoxyuridine triphosphate (dUTP) pools, by sensitive radioimmunoassay, demonstrated a large increase in response to CB3717, in a dose- and time-related manner, and this accumulation was enhanced by coincubation with DP. In untreated cells and those treated with DP alone, dUTP was close to or below the limit of detection of the assay. In cells treated for 24 h with 3 microM CB3717 (concentration producing 50% growth inhibition) the intracellular dUTP was 46.1 +/- 9.6 (SEM) pmol/10(6) cells and after 24 h exposure to 30 microM CB3717, 337.5 +/- 37.9 pmol dUTP/10(6) cells was detected. There was significant enhancement by DP of the accumulation of dUTP in cells treated with CB3717; coincubation of cells with 1 microM DP + 3 microM CB3717 for 24 h resulted in intracellular dUTP levels of 174.7 +/- 57.7 pmol/10(6) cells. Accumulation of DNA strand breaks, measured by alkaline elution, also increased in response to CB3717 concentration and exposure period. Newly synthesized (nascent) DNA was more sensitive to damage by CB3717 than was mature DNA. As with the accumulation of dUTP, coincubation with DP also enhanced the accumulation of strand breaks, whereas DP alone had little or no effect on DNA fragmentation. When data for cells treated with CB3717 alone and CB3717 in combination with DP were combined, there was a significant correlation of intracellular dUTP levels with the level of DNA strand breaks. This strongly suggests that growth inhibition following thymidylate synthase inhibition is mediated through an increase in intracellular dUTP, leading to uracil misincorporation into DNA, its subsequent excision, and resultant strand breakage.  相似文献   

13.
Purpose: We have reported previously that the expression of E. coli dUTPase (dutE) can protect HT29 cells from 5-fluorodeoxyuridine (FdUrd)-induced DNA fragmentation and cytotoxicity. In the study reported here, we further characterized the ability of dutE expression in one HT29 clone, dutE7, to alter the effects of treatment with FdUrd and other thymidylate synthase (TS) inhibitors. In addition, we developed two HuTu80 dutE-expressing clones using a pLNCX-dutE retroviral construct and tested their sensitivity to FdUrd-induced DNA fragmentation and cytotoxicity. Methods: Both a dutE retroviral expression system and a dutE antibody were developed to facilitate the generation and screening of dutE-expressing clones. HT29 and HuTu80 clones expressing dutE were tested for drug-induced DNA damage with either alkaline elution or pulsed field gel electrophoresis and drug-induced loss of clonogenicity. Results: Following a 24-h treatment with 100 μM CB3717 or 500 nM methotrexate (MTX), dutE7 cells were significantly less sensitive to drug-induced loss of clonogenicity than con3 cells. DutE7 cells were also resistant to CB3717-induced DNA fragmentation at 24 h. However, following a 48-h treatment with CB3717 or MTX there was no difference in survival between con3 and dutE7 cells, even though DNA damage was still greatly attenuated in the dutE7 cell line. In addition, expression of dutE in two HuTu80 clones, 80  C and 80  K, did not protect these cells from FdUrd-induced DNA damage or cytotoxicity. Conclusions: We conclude that the role of uracil misincorporation and subsequent DNA damage in cytotoxicity induced by TS inhibitors, in HT29 cells, is time dependent, and that cytotoxicity caused by long-term exposure to these drugs is largely independent of resultant DNA damage, in this cell line. The inability of dutE to protect HuTu80 cells from FdUrd further suggests that the significance of uracil misincorporation resulting from TS inhibition varies among cell lines. Received: 19 August / Accepted: 16 December 1997  相似文献   

14.
A comparison of the intracellular DNA strand scission activities of the antitumor drug bleomycin, three of its metal complexes, demethyl bleomycin A2, and iron-containing, redox-inactivated bleomycin in Ehrlich ascites tumor cells was performed by means of the alkaline elution technique. This comparison was aided by use of CoCl2 to eliminate or minimize post-cell lysis strand scission by bleomycin in aliquots of treated cultures. No strand scission resulted from treatment of cells with the cobalt complex. The levels of intracellular DNA degradation by copper bleomycin and iron bleomycin were equivalent to those produced by metal-free bleomycin. The findings are correlated with previous measurements of growth inhibition by these three bleomycins as well as by cobalt bleomycin and related to the concentrations of radiolabeled bleomycin bound to DNA after treatment of cells with each form of drug. In comparison, both demethyl bleomycin A2 and iron-containing, redox-inactivated bleomycin showed marked, concentration-dependent reductions in random DNA strand scission, as compared with unmodified bleomycin or iron bleomycin prepared from Fe(III) and bleomycin. However, the fraction of DNA from cells treated with these two bleomycins, which eluted through filters prior to alkaline denaturation, was equivalent to that for unmodified bleomycin and Fe(III)bleomycin. The generation of this class of damaged DNA correlates more closely with concentration-dependent growth inhibition by each of the six forms of bleomycin than the degree of random strand scission.  相似文献   

15.
Insulin-like Growth Factor (IGF)-II is frequently overexpressed in experimental and human hepatocellular carcinomas (HCCs) and has been correlated with increased tumor growth. We have analyzed, whether IGF-II affects chemotherapy response and apoptosis in human liver tumor cells. Three liver tumor cell lines highly expressed IGF-II and supported their growth in an autocrine manner by secreting excessive amounts of IGF-II. Neutralization of IGF-II significantly increased response to the chemotherapeutic agents cisplatin and etoposide especially at lower, cytostatic doses. While blocking of IGF-II did not increase spontaneous cell death in exponentially growing cultures, increased cell death was found under conditions of confluent growth and chemotherapy. Thus in HCC cells, IGF-II is a relevant protumorigenic growth factor that significantly reduces susceptibility to apoptosis and chemotherapeutic treatment. Therefore interference with IGF-II activity may improve response of HCCs to otherwise inefficient chemotherapeutic agents.  相似文献   

16.
K Sidik  M J Smerdon 《Cancer research》1990,50(5):1613-1619
We have examined bleomycin-induced DNA damage and repair in confluent human fibroblasts that were reversibly permeabilized to small molecules (e.g., deoxynucleotide triphosphates and trypan blue) by a short exposure to 80 micrograms/ml lysophosphatidylcholine. We found that this treatment dramatically increases the dose effectiveness of bleomycin in inducing DNA strand breaks and DNA repair synthesis in these cells. For example, when intact cells (not treated with lysophosphatidylcholine) were incubated with 100 micrograms/ml bleomycin, only about 5% of the cell population was observed to have undergone measurable DNA repair synthesis (by autoradiography). On the other hand, when these cells were reversibly permeabilized with lysophosphatidylcholine before treatment, we observed significant repair synthesis in greater than 80% of the cells using a bleomycin dose of only 5 micrograms/ml. Furthermore, sufficient levels of single- and double-strand breaks were introduced into nucleosome linker DNA of permeabilized cells to yield a nucleosomal repeat pattern in alkaline and neutral agarose gels. However, no change in the amount of DNA less than 23 kilobases was observed on these gels when intact cells were incubated with bleomycin.  相似文献   

17.
18.
This report documents that the pancreatic adenocarcinoma cell line, HPAF, contains oncogene activity detected by transformation of NIH 3T3 cells through transfection with HPAF DNA. The HPAF transfected NIH 3T3 cells do not contain oncogenes homologous with c-H-ras, c-K-ras, c-N-ras, v-fms, c-myb, c-sis, v-fgr, c-mos, c-myc, c-fos, v-fes, v-src, v-erb A, v-erb B, c-N-myc, v-raf, or v-abl, other than the endogenous mouse genes. The transfectants do express proteins detected by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis which were not found in nontransfected NIH 3T3 cells. Monoclonal antibodies raised against the transfectants recognize proteins not found in untransfected NIH 3T3 cells that are antigenically identical to proteins found in the HPAF cells. These antigens are also detected on six other human pancreatic adenocarcinoma cell lines but show a much more restricted distribution on lymphoblastoid, melanoma, prostatic carcinoma, and normal skin fibroblast cell lines.  相似文献   

19.
Fecapentaenes are mutagens found in human feces and may playa role in the pathogenesis of colon carcinoma. However, thegenotoxk effects of fecapentaenes have not been previously studiedin mammalian cells. We now report that fecapenta-ene-12 (fec-12),a prototype for these compounds, causes DNA single strand breaks,sister chromatid exchanges and mutations in cultured human fibroblasts.These results indicate that fec-12 is a potent genotoxic agentin human cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号