首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathan NI  Chu P  Hariharan K  Cheney C  Molina A  Byrd J 《Blood》2008,111(3):1594-1602
Lumiliximab is a chimeric macaque-human monoclonal antibody to CD23, a protein expressed on virtually all chronic lymphocytic leukemia (CLL) cells. We examined the ability of lumiliximab to mediate apoptosis, antibody-dependent cellular cytotoxicity, and complement-dependent cytotoxicity against primary CLL cells and CD23-expressing B-cell lines. Our data suggest that lumiliximab kills CLL cells and CD23-expressing B cells predominantly by apoptosis, which occurs through the intrinsic pathway. Lumiliximab-induced apoptosis was accompanied by the down-regulation of antiapoptotic proteins Bcl-2, Bcl-X(L), and XIAP, activation of Bax, and release of cytochrome c from the mitochondria. We also found that the addition of lumiliximab to rituximab or fludarabine results in synergistic cytotoxicity of primary CLL cells and CD23-expressing B-cell lines. We investigated the in vivo activity of lumiliximab in a human disseminated CD23(+) B-cell lymphoma SCID mouse model and found greater antitumor activity with it than with control antibody. We also found that paralysis-free survival was greater with lumiliximab plus rituximab or fludarabine than with any of those agents alone. These results suggest that lumiliximab may be an effective treatment alone or in combination with rituximab or chemotherapy agents in CLL or other CD23-overexpressing B-cell malignancies.  相似文献   

2.
B cells of chronic lymphocytic leukemia (CLL) are long-lived in vivo, possibly because of defects in apoptosis. We investigated BL22, an immunotoxin composed of the Fv portion of an anti-CD22 antibody fused to a 38-kDa Pseudomonas exotoxin-A fragment. B cells from 22 patients with CLL were immunomagnetically enriched (96% purity) and were cultured with BL22 or an immunotoxin that does not recognize hematopoietic cells. The antileukemic activity of BL22 was correlated with CD22 expression, as determined by flow cytometry. BL22 induced caspase-9 and caspase-3 activation, poly(adenosine diphosphate [ADP]-ribose)polymerase (PARP) cleavage, DNA fragmentation, and membrane flipping. Cell death was associated with the loss of mitochondrial membrane potential and the down-regulation of Mcl-1 and X-chromosomal inhibitor of apoptosis protein (XIAP). Furthermore, BL22 induced a proapoptotic 18-kDa Bax protein and conformational changes of Bax. Z-VAD.fmk abrogated apoptosis, confirming that cell death was executed by caspases. Conversely, interleukin-4, a survival factor, inhibited spontaneous death in culture but failed to prevent immunotoxin-induced apoptosis. BL22 cytotoxicity was markedly enhanced when combined with anticancer drugs including vincristine. We also investigated HA22, a newly engineered immunotoxin, in which BL22 residues are mutated to improve target binding. HA22 was more active than BL22. In conclusion, these immunotoxins induce caspase-mediated apoptosis involving mitochondrial damage. Combination with chemotherapy is expected to improve the efficacy of immunotoxin treatment.  相似文献   

3.
Wang M  Zhang L  Han X  Yang J  Qian J  Hong S  Samaniego F  Romaguera J  Yi Q 《Blood》2007,109(12):5455-5462
Atiprimod is a novel cationic amphiphilic compound and has been shown to exert antimyeloma effects both in vitro and in mouse experiments. This study was undertaken to evaluate the therapeutic efficacy of atiprimod on mantle cell lymphoma (MCL) and elucidate the mechanism by which it induces cell apoptosis. Atiprimod inhibited the growth and induced apoptosis of MCL cell lines and freshly isolated primary tumor cells in vitro. More importantly, atiprimod significantly inhibited tumor growth in vivo and prolonged the survival of tumor-bearing mice. However, atiprimod also exhibited lower cytotoxicity toward normal lymphocytes. Atiprimod activated c-Jun N-terminal protein kinases (JNK) and up-regulated the level of Bax, Bad, and phosphorylated Bcl-2, resulting in release of apoptosis-inducing factor (AIF) and cytochrome c from mitochondria and activation and cleavage of caspase-9, caspase-3, and PARP. However, AIF, but not activation of caspases or PARP, was responsible for apoptosis in MCL cells because an AIF inhibitor, but not pan-caspase or paspase-9 inhibitors, completely abrogated atiprimod-induced apoptosis. Taken together, our results demonstrate that atiprimod displays a strong anti-MCL activity. Cell apoptosis was induced mainly via activation of the AIF pathway. These results support the use of atiprimod as a potential agent in MCL chemotherapy.  相似文献   

4.
The monoclonal antibodies (MoAbs) alemtuzumab (anti-CD52) and rituximab (anti-CD20) produce objective clinical responses in patients with chronic lymphocytic leukemia (CLL). However, their mechanisms of action are not fully understood. Therefore, we investigated the mechanisms of lymphoma and CLL cell killing by two anti-CD20 antibodies (rituximab, B1) and by alemtuzumab. All antibodies induced complement-independent cell death in B-lymphoid cell lines Raji, Ramos, and Mec-1. The efficiency of cell killing was increased by the addition of human complement in Raji but not Ramos cells. Both alemtuzumab and rituximab also killed freshly isolated CLL cells, with a much stronger response for alemtuzumab (from eight of eight patients) compared to rituximab (from two of six patients). Cell morphology and Western blot analyses revealed that the antibody-induced cell death lacked some typical features of apoptosis such as chromatin condensation or poly-ADP-ribose polymerase (PARP) cleavage. Taken together, the results suggest that the tumor killing activity of these MoAbs is not only mediated by complement-mediated cytotoxicity (CDC) or antibody-dependent cytotoxicity (ADCC), but also by a nonclassic, caspase-independent apoptotic pathway.  相似文献   

5.
Treatment options for chronic lymphocytic leukaemia (CLL) are limited and eventually fail because of the development of toxicities or drug resistance. Thus, identification of new therapeutic strategies and targets is a high priority. The semisynthetic geldanamycin derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) inhibits heat shock protein 90 (Hsp90) binding to client proteins, thereby leading to their degradation. We demonstrate that at biologically active and clinically attainable levels (1 mumol/l), 17-AAG treatment of CLL B cells in vitro causes modest apoptosis as well as decreased AKT protein levels. Given the potential activation of AKT following antibody therapy in CLL, we evaluated the combination of 17-AAG and rituximab. These agents produced synergistic cytotoxicity of CLL cells in vitro. However, rituximab-mediated antibody-dependent cellular cytotoxicity was modestly reduced with 17-AAG, and complement-dependent cytotoxicity was not altered. We conclude that the combination of Hsp90 inhibitors with therapeutic antibodies, such as rituximab may represent a novel strategy to enhance therapeutic response in CLL. Furthermore, our data indicates that AKT and Hsp70 protein levels are relevant pharmacodynamic endpoints to monitor the in vivo effect of 17-AAG therapy.  相似文献   

6.
BACKGROUND AND OBJECTIVES: Monoclonal antibody IDEC-C2B8 (rituximab) has been shown to be highly effective in the treatment of non-Hodgkin's lymphomas (NHL). The present study was designed to investigate relationships between the efficacy of IDEC-C2B8 and expression of CD20, presence of complement, and effects of differently acting chemotherapeutic agents used in lymphoma treatment (doxorubicin, mitoxantrone, cladribine, bendamustine). DESIGN AND METHODS: DOHH-2, WSU-NHL and Raji lymphoma cell lines and ex vivo cells from patients with chronic lymphocytic leukemia (CLL) (n=17) and leukemic B-cell lymphomas (n=9) were studied. Additionally, the effect of interleukin (IL)-2, IL-4, IL-6, IL-13, granulocyte/macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)alpha on expression of CD20 molecules per cell was determined. RESULTS: We demonstrate that 10 mg/mL rituximab saturated 80-95% of CD20 molecules per cell in all tested lymphoma samples. Although rituximab induced only a minor increase of apoptosis, combinations of rituximab with different cytotoxic drugs significantly decreased the IC(30)- and IC(50) dosages of the chemotherapeutic agents necessary for induction of apoptosis irrespective of addition of complement, demonstrating a chemosensitizing effect of rituximab in combination with cytotoxic drugs in the neoplastic lymphocytes. This effect seemed to be independent of the percentage of saturated CD20 molecules. After addition of caspase inhibitors to the cell lines incubated with rituximab and cytotoxic agents, caspase-7 and -8 were found, by Western blotting, to be the executioner caspases, possibly explaining the rituximab-sensitized apoptosis. Preincubation of lymphoma cells with cytokines did not alter the expression of CD20; IL-2 and IL-4 even decreased the rate of apoptosis. INTERPRETATION AND CONCLUSIONS: We conclude that rituximab sensitizes lymphoma cells to the effect of differently acting cytotoxic drugs used in lymphoma treatment, that this effect does not require complement, and that caspase-7 and -8 may represent the main executioner caspases in chemosensitization by rituximab.  相似文献   

7.
The chimeric monoclonal antibody rituximab is the standard of care for patients with B-cell non-Hodgkin lymphoma (B-NHL). Rituximab mediates complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity of CD20-positive human B cells. In addition, rituximab sensitizes B-NHL cells to cytotoxic chemotherapy and has direct apoptotic and antiproliferative effects. Whereas expression of the CD20 antigen is a natural prerequisite for rituximab sensitivity, cell-autonomous factors determining the response of B-NHL to rituximab are less defined. To this end, we have studied rituximab-induced apoptosis in human B-NHL models. We find that rituximab directly triggers apoptosis via the mitochondrial pathway of caspase activation. Expression of antiapoptotic Bcl-xL confers resistance against rituximab-induced apoptosis in vitro and rituximab treatment of xenografted B-NHL in vivo. B-NHL cells insensitive to rituximab-induced apoptosis exhibit increased endogenous expression of multiple antiapoptotic Bcl-2 family proteins, or activation of phosphatidylinositol-3-kinase signaling resulting in up-regulation of Mcl-1. The former resistance pattern is overcome by treatment with the BH3-mimetic ABT-737, the latter by combining rituximab with pharmacologic phosphatidylinositol-3-kinase inhibitors. In conclusion, sensitivity of B-NHL cells to rituximab-induced apoptosis is determined at the level of mitochondria. Pharmacologic modulation of Bcl-2 family proteins or their upstream regulators is a promising strategy to overcome rituximab resistance.  相似文献   

8.
Interleukin-21 (IL-21) is a recently identified -chain receptor cytokine family member that promotes B-cell apoptosis as well as activation of innate immune system. Based on this, we hypothesized that IL-21 might enhance the apoptosis induced by fludarabine and rituximab and also play a role in augmenting immune-mediated clearance of the chronic lymphocytic leukemia (CLL) cells. Our studies demonstrate that the majority of CLL patients have surface IL-21 receptor-, and its expression correlates with apoptosis, tyrosine phosphorylation of STAT1, and up-regulation of the proapoptotic BH3 domain protein BIM. IL-21–induced BIM up-regulation is critical for apoptosis because inhibition of BIM expression using small interfering RNA prevented IL-21–induced apoptosis. IL-21 treatment of CLL cells but not normal T cells with fludarabine or rituximab additively enhanced the direct cytotoxic effect of these therapies. In addition to its proapoptotic effect, IL-21 promoted STAT1 and STAT5 phosphorylation in natural killer cells with concurrent enhanced antibody-dependent cellular cytotoxicity against rituximab-coated CLL cells in vitro. These data provide justification for combination studies of IL-21 with fludarabine and rituximab in CLL and suggest that BIM up-regulation might serve as relevant pharmacodynamic end point to measure biologic effect of this cytokine in vivo.  相似文献   

9.
Interleukin-21 (IL-21) is a member of the IL-2 cytokine family, which mediates proliferation or growth arrest and apoptosis of normal B cells, depending on their activation state. Here we demonstrate that surface IL-21 receptor (R) is expressed at variable levels by chronic lymphocytic leukemia (CLL) B cells freshly isolated from 33 different patients. IL-21R expression was up-regulated following cell stimulation via surface CD40. Therefore, IL-21 effects were more evident in CD40-activated CLL B cells. IL-21 induced an early signaling cascade in CLL B cells, which included JAK-1 and JAK-3 autophosphorylation and tyrosine phosphorylation of STAT-1, STAT-3, and STAT-5. IL-21 signaling failed to stimulate CLL B-cell proliferation, but induced their apoptosis. In addition, IL-21 counteracted the proliferative and antiapoptotic signals delivered by IL-15 to CLL B cells. IL-21-mediated apoptosis involved activation of caspase-8 and caspase-3, cleavage of Bid to its active form t-Bid, and cleavage of PARP and of p27Kip-1. Recent data indicate that CLL B cells require interaction with the microenvironment for their survival and expansion. The present findings thus provide a set of new mechanisms involved in the balance between cell-survival and apoptotic signals in CLL B cells.  相似文献   

10.
The effects of two CD20 antibodies, namely rituximab, the current standard for treatment of chronic lymphocytic leukaemia (CLL) in combination with chemotherapy, and GA101, a glyco-engineered type II antibody were compared on CLL cells ex vivo. Antibody-induced phosphatidylserine exposure was examined in isolated CLL cells. For a more comprehensive assessment of antibody-mediated cell killing including Fc-mediated mechanisms, B cell depletion from whole blood samples was monitored. Treatment with rituximab or GA101 reduced the average viability of isolated CLL cells by 6% or 11%, and the ratio of B to T cells in whole blood samples by 12% or 33%, respectively. Combination with GA101 enhanced the cytotoxicity of the chemotherapeutic agent chlorambucil on isolated CLL cells. CD20 surface expression on CLL cells correlated with GA101-induced B cell depletion, but not with direct cell death induction. Treatment of whole blood samples from CLL patients with a CpG-containing oligonucleotide increased CD20 expression on CLL cells and GA101-dependent B cell depletion. Despite the variable responses of individual CLL samples, the CLL cell depletion from whole blood by GA101 was consistently much stronger than by rituximab, which argues for clinical investigation of GA101 in CLL patients.  相似文献   

11.
OBJECTIVE: Chronic lymphocytic leukemia (CLL) cells develop chemoresistance over time associated with defects in apoptosis pathway. Novel treatment strategies are required to overcome resistance of cells to commonly used agents. The effects of valproic acid (VPA), an antiepileptic drug with histone deacetylase inhibitory activity, on mononuclear cells isolated from 40 CLL patients were evaluated. METHODS: CLL cells were treated with increasing doses of VPA (0.5, 1, 2, and 5 mM). The mode of cytotoxic drug action was determined by annexin binding, DNA fragmentation, and caspase activation. RESULTS: Exposure of CLL cells to VPA resulted in dose-dependent cytotoxicity and apoptosis in the 40 CLL patients. VPA treatment induced apoptotic changes in CLL cells including phosphatidylserine externalization and DNA fragmentation. The mean apoptotic rates were similar between IgV(H) mutated and unmutated patients, the latter presenting a more aggressive clinical course. VPA induced apoptosis via the extrinsic pathway involving engagement of the caspase-8-dependent cascade. Although CLL cells are commonly resistant to death receptor-induced apoptosis, VPA significantly increased sensitivity of leukemic cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and led to downregulation of c-FLIP (L) expression. VPA caused no potentialization of TRAIL-induced apoptosis on normal B cells. In addition, VPA overcame the prosurvival effects of bone marrow stromal cells. CONCLUSION: These findings point out that the combination of TRAIL and VPA, at clinically relevant concentration, may be valuable in the treatment of CLL.  相似文献   

12.
Chemoimmunotherapy with anti-CD20 monoclonal antibody rituximab is increasingly used for the treatment of patients with chronic lymphocytic leukemia (CLL). Antibody-dependent cytotoxicity (ADCC) is one of the most important mechanisms of action of rituximab against B-cell malignancies. We studied ways to increase the cytotoxic effect of rituximab on CLL cells by enhancing ADCC. Peripheral blood mononuclear cell (PBMC) or purified natural killer (NK) cells from healthy donors were activated with interleukin-15 (IL-15) and cultured with rituximab-coated CLL cells, and ADCC was evaluated using a (51)chromium release assay. The IL-15 significantly enhanced in?vitro ADCC against CLL cells, and this effect was mainly mediated by NK cells. The IL-15 treated effector cells with the low affinity FcγRIIIA receptor (158FF) had an ADCC comparable to those with the high affinity FcγRIIIA form (158VF). In?addition, IL-15 enhanced rituximab-mediated ADCC of CLL cells in the presence of transforming growth factor-beta. The IL-15 increases rituximab-mediated ADCC against CLL, and supports the use of such agents with the goal of improving clinical response to chemoimmunotherapy in patients with CLL.  相似文献   

13.
Melatonin, a naturally occurring molecule, is produced by the pineal gland in a circadian manner to regulate biologic rhythms in humans. Recent studies report that melatonin may be an attractive candidate as an anticancer agent or for combined therapy because of its antioxidant, oncostatic and immunoregulatory activities. In this study, the potentiating effect of melatonin was evaluated on the apoptosis induced by puromycin as an anticancer drug in acute promyelocytic leukemia HL-60 cells. Melatonin did not show significant cytotoxicity against HL-60 cells compared to puromycin. However, melatonin significantly augmented the cytotoxicity of puromycin. Consistently, combined treatment of melatonin and puromycin reduced the expression of anti-apoptotic proteins, such as bcl-2 and bcl-x(L) , and also induced caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage compared to puromycin treatment alone. Furthermore, cell cycle analysis revealed that melatonin promoted puromycin-induced apoptosis by increasing the sub-G1 population, but suppressing G2/M arrest in HL-60 cells. Interestingly, melatonin activated the phosphorylation of 5'-adenosine monophosphate-activated kinase (AMPK) in combination with puromycin. Taken together, our results suggest that melatonin potentiates puromycin-induced apoptosis with caspase-3 and AMPK activation in HL-60 cells, and thus, melatonin treatment can be effectively applied to leukemia treatment as a potential sensitizer for chemotherapeutic agents.  相似文献   

14.
Mechanisms involving the in vitro effect of rituximab in cells from 55 patients with B-cell lymphoproliferative disorders were investigated. No cytotoxic effect was observed when cells were incubated with rituximab alone, but in the presence of human AB serum rituximab induced complement-dependent cell death (R-CDC). A cytotoxic effect was observed in cells from 9 of 33 patients with B-cell chronic lymphocytic leukemia, 16 of 16 patients with mantle-cell lymphoma, 4 of 4 patients with follicular lymphoma, and 2 of 2 patients with hairy-cell leukemia. R-CDC was observed in cells from patients expressing more than 50 x 10(3) CD20 molecules per cell, and directly correlated with the number of CD20 molecules per cell. Preincubation with anti-CD59 increased the cytotoxic effect of rituximab and sensitized cells from nonsensitive cases. Neither cleavage of poly-ADP ribose polymerase (PARP) nor activation of caspase-3 was observed in R-CDC. In addition, no cells with a hypodiploid DNA content were detected and R-CDC was not prevented by a broad-spectrum caspase inhibitor, suggesting a caspase-independent mechanism. Incubation with rituximab in the presence of AB serum induced a rapid and intense production of reactive oxygen species (ROS). R-CDC was blocked by the incubation of cells with N-acetyl-L-cysteine (NAC) or Tiron, 2 ROS scavengers, indicating that the cytotoxic effect was due to the generation of superoxide (O) radicals. In conclusion, the results of the present study suggest that CD20, CD59, and complement have a role in the in vitro cytotoxic effect of rituximab, which is mediated by a caspase-independent process that involves ROS generation.  相似文献   

15.
The chimaeric anti-CD20 antibody rituximab (Rituxan) sensitises lymphoma cells to small molecule cytotoxic drugs and to protein toxins. We have explored the augmentive effect of rituximab on the anti-CD19 immunotoxin BU12-SAPORIN in a model of human lymphoma. Intact rituximab and its F(ab)2 derivative both augmented the immunospecific protein synthesis inhibitory effects of BU12-SAPORIN in a complement-independent manner. A combination of rituximab + BU12-SAPORIN completely abolished the proliferation of Ramos cells in vitro and also induced a significantly greater degree of apoptosis in these cells. Treatment with rituximab, BU12-SAPORIN or a combination of both induced poly(ADPribose) polymerase and caspase 3 cleavage, although this was always consistently greater in combination-treated cells. zVAD almost completely inhibited apoptosis in rituximab- or BU12-SAPORIN-treated cells but only partially in combination-treated cells. In severe combined immunodeficient (SCID)-Ramos mice the combination of rituximab + BU12-SAPORIN was significantly better therapeutically than either single agent. The immunological fidelity of the therapeutic effect because of combination treatment was demonstrated through the failure of rituximab to augment an irrelevant anti-CD7 immunotoxin. The therapeutic efficacy of rituximab and combination treatment was reduced in SCID-Ramos mice depleted of serum complement while natural killer cell depletion failed to show any convincing role for antibody-dependent cellular cytotoxicity. This study shows a clear therapeutic advantage from using rituximab to immunospecifically augment immunotoxin cytotoxicity warranting further investigation.  相似文献   

16.
Drug resistance and associated immune deregulation limit use of current therapies in chronic lymphocytic leukaemia (CLL), thus warranting alternative therapy development. Herein we demonstrate that OSU-DY7, a novel D-tyrosinol derivative targeting p38 mitogen-activated protein kinase (MAPK), mediates cytotoxicity in lymphocytic cell lines representing CLL (MEC-1), acute lymphoblastic leukaemia (697 cells), Burkitt lymphoma (Raji and Ramos) and primary B cells from CLL patients in a dose- and time-dependent manner. The OSU-DY7-induced cytotoxicity is dependent on caspase activation, as evidenced by induction of caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage and rescue of cytotoxicity by Z-VAD-FMK. Interestingly, OSU-DY7-induced cytotoxicity is mediated through activation of p38 MAPK, as evidenced by increased phosphorylation of p38 MAPK and downstream target protein MAPKAPK2. Pretreatment of B-CLL cells with SB202190, a specific p38 MAPK inhibitor, results in decreased MAPKAPK2 protein level with concomitant rescue of the cells from OSU-DY7-mediated cytotoxicity. Furthermore, OSU-DY7-induced cytotoxicity is associated with down regulation of p38 MAPK target BIRC5, that is rescued at protein and mRNA levels by SB202190. This study provides evidence for a role of OSU-DY7 in p38 MAPK activation and BIRC5 down regulation associated with apoptosis in B lymphocytic cells, thus warranting development of this alternative therapy for lymphoid malignancies.  相似文献   

17.
B-cell chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal lymphocytes resistant to apoptosis. We evaluated the ability of the investigational antileukemic agent adaphostin to induce apoptosis in CLL B cells and synergize with fludarabine in vitro. Analysis by annexin V/propidium iodide (PI) staining revealed that the concentration of adaphostin required to induce 50% cell death (IC50) at 24 hours was 4.2 microM (range, 1.10-11.25 microM; median, 4.25 microM; n=29) for CLL isolates and more than 10 microM for B and T cells from healthy donors. Immunoblots demonstrated adaphostin induced poly(adenosine diphosphate-ribose) polymerase (PARP) cleavage and cleavage of caspase-3 substrates, suggesting that adaphostin induces apoptosis. Adaphostin increased the level of reactive oxygen species (ROS) within CLL B cells, and the antioxidant N-acetylcysteine blocked both adaphostin-induced ROS generation and apoptosis. Adaphostin also caused a decrease in the level of the antiapoptotic protein Bcl-2. When adaphostin was combined with fludarabine (F-ARA-AMP), a synergistic effect on cell death was observed in all 10 CLL samples. These findings not only indicate that adaphostin induces apoptosis selectively in CLL B cells through a mechanism that involves ROS generation but also demonstrate its ability to augment the effects of fludarabine. Further preclinical development of adaphostin as a novel agent for the treatment of CLL appears warranted.  相似文献   

18.
Battle TE  Arbiser J  Frank DA 《Blood》2005,106(2):690-697
B-cell chronic lymphocytic leukemia (B-CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Honokiol is a natural product known to possess potent antineoplastic and antiangiogenic properties. We examined whether honokiol can overcome apoptotic resistance in primary tumor cells derived from B-CLL patients. Honokiol induced caspase-dependent cell death in all of the B-CLL cells examined and was more toxic toward B-CLL cells than to normal mononuclear cells, suggesting greater susceptibility of the malignant cells. Honokiol-induced apoptosis was characterized by the activation of caspase-3, -8, and -9 and cleavage of poly(adenosine diphosphate-ribose) polymerase (PARP). Exposure of B-CLL cells to honokiol resulted in up-regulation of Bcl2-associated protein (Bax) and down-regulation of the expression of the key survival protein myeloid-cell leukemia sequence 1 (Mcl-1), which is associated with response to treatment in B-CLL patients. In addition, B-CLL cells pretreated with interleukin-4 (IL-4), a cytokine known to support B-CLL survival, underwent apoptosis when subsequently incubated with honokiol, indicating that honokiol could also overcome the prosurvival effects of IL-4. Furthermore, honokiol enhanced cytotoxicity induced by fludarabine, cladribine, or chlorambucil. These data indicate that honokiol is a potent inducer of apoptosis in B-CLL cells and should be examined for further clinical application either as a single agent or in combination with other anticancer agents.  相似文献   

19.
20.
B-cell chronic lymphocytic leukemia (CLL), an incurable leukemia, is characterized by defective apoptosis. We found that the SET oncoprotein, a potent inhibitor of the protein phosphatase 2A (PP2A) tumor suppressor, is overexpressed in primary CLL cells and B-cell non-Hodgkin lymphoma (NHL) cell line cells. In CLL, increased levels of SET correlated significantly with disease severity (shorter time to treatment and overall survival). We developed SET antagonist peptides that bound SET, increased cellular PP2A activity, decreased Mcl-1 expression, and displayed selective cytotoxicity for CLL and NHL cells in vitro. In addition, shRNA for SET was cytotoxic for NHL cells in vitro. The SET antagonist peptide COG449 inhibited growth of NHL tumor xenografts in mice. These data demonstrate that SET is a new treatment target in B-cell malignancies and that SET antagonists represent novel agents for treatment of CLL and NHL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号