首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 19 毫秒
1.

Purpose

This study aimed to investigate the association between target volume margins and clinical outcomes for patients with inoperable non-small cell lung cancer (NSCLC) treated with concurrent chemoradiation therapy.

Methods and materials

We reviewed the records of 82 patients with inoperable NSCLC treated between 2009 and 2016 with concurrent chemoradiation. All patients received positron emission tomography–based treatment planning, 4-dimensional computed tomography simulation to define an internal target volume, and daily cone beam computed tomography. We quantified variations in target volume margins with a margin deviation index (MDI), calculated as the percentage change in equivalent uniform dose between the original planning target volume (PTV) and a standard reference PTV 10 mm beyond the original gross tumor volume, consistent with the minimum margins mandated by recent NSCLC trials. Greater MDIs equated to smaller effective target volume margins. We dichotomized patients by the upper tercile MDI value (5.8%). Endpoints included time to locoregional progression and time to grade ≥ 3 radiation esophagitis (RE3) or radiation pneumonitis (RP3), modelled with the Fine-Gray method.

Results

Median follow-up was 37.8 months (range, 5.9-58.1 months). Larger MDIs correlated with smaller clinical target volume (CTV) + PTV margins, larger gross tumor volumes, later treatment year, and intensity modulated radiation therapy use. The risk of locoregional progression did not differ for MDI ≥5.8% versus <5.8% (adjusted hazard ratio: 0.88; P = .76), but the risk of RE3 or RP3 was decreased for MDI ≥5.8% (adjusted hazard ratio: 0.27; P = .027). Patients with MDI ≥5.8% were treated with smaller CTV + PTV margins (median, 5.6 vs 8 mm; P < .0001) and a marginally lower volume of esophagus receiving ≥50 Gy (median, 31.1% vs 35.3%; P = .069).

Conclusions

Smaller margins were used for larger tumors but were not associated with an increase in locoregional failures. Additional studies could clarify whether smaller margins, when used alongside modern radiation therapy techniques, decrease treatment-related toxicity for inoperable NSCLC.  相似文献   

2.
3.
IntroductionOsimertinib is approved for advanced EGFR-mutated NSCLC, and identification of on-target mechanisms of resistance (i.e., EGFR C797S) to this third-generation EGFR inhibitor are evolving. Whether durable control of subsequently osimertinib-resistant NSCLC with the EGFR-sensitizing mutation (SM)/C797S is possible with first-generation EGFR inhibitors (such as gefitinib or erlotinib) remains underreported, as does the resultant acquired resistance profile.MethodsWe used N-ethyl-N-nitrosourea mutagenesis to determine the profile of EGFR SM/C797S preclinical models exposed to reversible EGFR inhibitors. In addition, we retrospectively probed a case of EGFR SM lung adenocarcinoma treated with first-line osimertinib, followed by second-line erlotinib in the setting of EGFR SM/C797S.ResultsUse of N-ethyl-N-nitrosourea mutagenesis against the background of EGFR L858R/C797S in conjunction with administration of gefitinib revealed preferential outgrowth of cells with EGFR L858R/T790M/C797S. A patient with EGFR delE746_T751insV NSCLC was treated with osimertinib with sustained response for 10 months before acquiring EGFR C797S. The patient was subsequently treated with erlotinib, with response for a period of 4 months, but disease progression ensued. Liquid biopsy disclosed EGFR delE746_T751insV with T790M and C797S present in cis.ConclusionEGFR SM NSCLC can acquire resistance to osimertinib through development of the EGFR C797S mutation. In this clinical scenario, the tumor may respond transiently to reversible first-generation EGFR inhibitors (gefitinib or erlotinib), but evolving mechanisms of on-target resistance—in clinical specimens and preclinical systems—indicate that EGFR C797S along with EGFR T790M can evolve. This report adds to the growing understanding of tumor evolution or adaptability to sequential EGFR inhibition and augments support for exploring combination therapies to delay or prevent on-target resistance.  相似文献   

4.
5.
6.
7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号