首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rationale The majority of volumetric magnetic resonance imaging (MRI) studies of the hippocampus in patients with bipolar disorder (BD) show no differences in hippocampal volume between patients and healthy controls. Significant variability, however, exists in the medication status of patients included in these studies. In particular, treatment with lithium may exert long-term effects on hippocampal volume, influencing cognitive outcomes in BD patients. Objectives To our knowledge, no longitudinal volumetric study has been performed in patients with BD, which would allow for an examination of whether lithium therapy used to treat BD can exert a long-term effect on hippocampal volume. Materials and methods We examined the effects of lithium on hippocampal volumes and recollective memory performance over a period of 2 to 4 years in 12 patients with BD who had never received pharmacotherapy before lithium initiation. Results We found bilateral increases in volume of the hippocampus over time. We also found some evidence of improvement in verbal memory performance over the 4-year measurement period as assessed by the California Verbal Learning Test. Conclusions Consistent with preclinical literature supporting the neuroprotective effects of lithium, long-term treatment is associated with preservation of recollective memory function and increased hippocampal size in vivo.  相似文献   

2.
Rationale 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is neurotoxic in animal studies and its use has been associated with cognitive impairments in humans. Objective To study hippocampal activation during the retrieval from episodic memory in polyvalent users of ecstasy. Methods Twelve polyvalent ecstasy users and twelve matched controls were examined by means of functional magnetic resonance imaging (fMRI) while they retrieved face-profession associations from episodic memory. Results Ecstasy users had a normal structural MRI scan without focal brain lesions or anatomical abnormalities. They exhibited equal retrieval accuracy during memory retrieval to that of the matched controls. Yet, their retrieval-related activity was lower and more spatially restricted in the left anterior hippocampus than that of the controls. Conclusions These results provide evidence for abnormal hippocampal functioning in MDMA users even at the presence of normal memory performance. This finding may be linked to MDMA-induced neurotoxicity and suggests that diminished hippocampal activation during memory retrieval might be a more sensitive or earlier index of MDMA-related neurotoxicity than neuropsychological performance.  相似文献   

3.
The hippocampus, a medial temporal lobe structure, is often considered to play an important role in the pathophysiology of schizophrenia. Recent developments of neuroimaging and molecular postmortem techniques have significantly increased our ability to study the role of discrete brain regions in the pathophysiology of schizophrenia. This article describes animal models, structural, histological, molecular biology, and neuropsychological evidence for the involvement of the hippocampus in the pathophysiology of schizophrenia. The major findings in schizophrenic patients are decreased volumes, hypometabolism, and cytoarchitectural abnormalities which are more robust on the left hippocampus, as well as verbal memory impairment. It is yet to be determined whether these changes are neurodevelopmental or neurodegenerative in nature. Overall, these findings indicate that there are subtle changes in the hippocampus of schizophrenic patients. More comprehensive and focused hippocampal research in schizophrenia is required to elucidate the contribution of this intriguing brain structure to the pathophysiology of schizophrenia.  相似文献   

4.
Mood disorders are common, recurrent and disabling illnesses which are frequently associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and memory loss. The hippocampus provides negative feedback to the HPA axis and has an important role in key aspects of spatial and declarative memory. Thus, hippocampal dysfunction could account for both the memory impairment and neuroendocrine abnormalities found in mood disorders. The critical role of the hippocampus in declarative memory, emotional processing, and vulnerability to stress has been demonstrated in both animal and human studies. Cellular processes in the hippocampus including long-term potentiation, neurogenesis, and dendritic remodeling are currently areas of intense study. Human studies report cognitive impairment consistent with hippocampal dysfunction in depression, bipolar disorder, Cushing's disease, and in those individuals receiving exogenous corticosteroids. This review examines data on the role of corticosteroids in hippocampal remodeling and atrophy in patients with mood disorders. Interventions to prevent or reverse the damaging effects of corticosteroids on the hippocampus are discussed.  相似文献   

5.
The muscarinic-cholinergic system is involved in the pathophysiology of bipolar disorder (BD), and contributes to attention and the top-down and bottom-up cognitive and affective mechanisms of emotional processing, functionally altered in BD. Emotion processing can be assessed by the ability to inhibit a response when the content of the image is emotional. Impaired regulatory capacity of cholinergic neurotransmission conferred by reduced M2-autoreceptor availability is hypothesized to play a role in elevated salience of negative emotional distractors in euthymic BD relative to individuals with no history of mood instability. Thirty-three euthymic BD type-I (DSM-V-TR) and 50 psychiatrically-healthy controls underwent functional magnetic resonance imaging (fMRI) and an emotion-inhibition paradigm before and after intravenous cholinergic challenge using the acetylcholinesterase inhibitor, physostigmine (1 mg), or placebo. Mood, accuracy, and reaction time on either recognizing or inhibiting a response associated with an image involving emotion and regional functional activation were examined for effects of cholinergic challenge physostigmine relative to placebo, prioritizing any interaction with the diagnostic group. Analyses revealed that (1) at baseline, impaired behavioral performance was associated with lower activation in the anterior cingulate cortex in BD relative to controls during emotion processing; (2) physostigmine (vs. placebo) affected behavioral performance during the inhibition of negative emotions, without altering mood, and increased activation in the posterior cingulate cortex in BD (vs. controls); (3) In BD, lower accuracy observed during emotion inhibition of negative emotions was remediated by physostigmine and was associated with cingulate cortex overactivation. Our findings implicate abnormal regulation of cholinergic neurotransmission in the cingulate cortices in BD, which may mediate exaggerated emotional salience processing, a core feature of BD.Subject terms: Bipolar disorder, Diagnostic markers  相似文献   

6.
Recent post-mortem and imaging studies provide evidence for a glial reduction in different brain areas in mood disorders. This study was aimed to test whether glial cell line-derived neurotrophic factor (GDNF), a member of transforming growth factor (TGF)-beta superfamily, in blood levels was associated with mood disorders. We measured GDNF and TGF-beta levels in whole blood in remitted patients with mood disorders [n=56; major depressive disorders (MDD) 39, bipolar disorders (BD) 17] and control subjects (n=56). GDNF and TGF-beta were assayed with the sandwich ELISA method. Total GDNF levels were significantly lower in MDD and in BD than in control subjects (MDD, p=0.0003; BD, p=0.018), while no significant difference in total TGF-beta1 or total TGF-beta2 levels was found in these groups. Our study suggests that lower GDNF levels might be involved in the pathophysiology of mood disorders, although this preliminary study has several limitations.  相似文献   

7.
Dehydroepiandrosterone (DHEA) is a neurosteroid with anxiolytic, antidepressant, and antiglucocorticoid properties. It is endogenously released in response to stress, and may reduce negative affect when administered exogenously. Although there have been multiple reports of DHEA''s antidepressant and anxiolytic effects, no research to date has examined the neural pathways involved. In particular, brain imaging has not been used to link neurosteroid effects to emotion neurocircuitry. To investigate the brain basis of DHEA''s impact on emotion modulation, patients were administered 400 mg of DHEA (N=14) or placebo (N=15) and underwent 3T fMRI while performing the shifted-attention emotion appraisal task (SEAT), a test of emotional processing and regulation. Compared with placebo, DHEA reduced activity in the amygdala and hippocampus, enhanced connectivity between the amygdala and hippocampus, and enhanced activity in the rACC. These activation changes were associated with reduced negative affect. DHEA reduced memory accuracy for emotional stimuli, and also reduced activity in regions associated with conjunctive memory encoding. These results demonstrate that DHEA reduces activity in regions associated with generation of negative emotion and enhances activity in regions linked to regulatory processes. Considering that activity in these regions is altered in mood and anxiety disorders, our results provide initial neuroimaging evidence that DHEA may be useful as a pharmacological intervention for these conditions and invite further investigation into the brain basis of neurosteroid emotion regulatory effects.  相似文献   

8.
David De Wied had a fundamental interest in the brain and behaviour, with a particular interest in the interface between cognition and emotion, and how impairments at this interface could underlie human psychopathology. The NMDA subtype of glutamate receptor is an important mediator of synaptic plasticity and plays a central role in the neurobiological mechanisms of emotionality, as well as learning and memory. NMDA receptor antagonists affect various aspects of emotionality including fear, anxiety and depression, as well as impairing certain forms of learning and memory. The hippocampus is a key brain structure, implicated in both cognition and emotion. Lesion studies in animals have suggested that dorsal and ventral sub-regions of the hippocampus are differentially involved in dissociable aspects of hippocampus-dependent behaviour. Cytotoxic lesions of the dorsal hippocampus (septal pole) in rodents impair spatial learning but have no effect on anxiety, whereas ventral hippocampal lesions reduce anxiety but are without effect on spatial memory. This role for the ventral hippocampus in anxiety is distinct from the role of the amygdala in other aspects of emotional processing, such as fear conditioning. Recent studies with genetically modified mice have shown that NR1 NMDA receptor subunit deletion, specifically from the granule cells of the dentate gyrus, not only impairs short-term spatial memory but also reduces anxiety. This suggests that NMDA receptors in ventral hippocampus may be a key locus supporting the anxiolytic effects of NMDA receptor antagonists. These data support Gray's neuropsychological account of hippocampal function.  相似文献   

9.
It is unknown how antidepressants reverse mood-congruent memory bias, a cognitive core factor causing and maintaining depression. Using a double-blind, placebo-controlled, cross-over design, we investigated the effect of a short-term treatment (14 days) with the dual reuptake inhibitor duloxetine on neural correlates of mood-congruent and mood-incongruent memory formation and retrieval in healthy volunteers who underwent a sad mood induction procedure. Duloxetine did not affect acute mood state or memory performance, but interacted with brain processes mediating mood-congruent memory. It decreased activity related to successful memory formation for mood-congruent and -incongruent items in a set of brain regions comprising the putamen and the middle frontal gyrus, as well as the middle and the anterior cingulate cortex. Duloxetine specifically increased amygdala activity related to successful memory retrieval for mood-incongruent items. Here we show that short-term administration of duloxetine affects the neural correlates of emotional memory formation and retrieval in a set of brain regions whose processing is related to affective state and its regulation. While duloxetine suppressed the neural correlates of emotional memory formation in general, it specifically enhanced amygdala processes associated with mood-incongruent memory retrieval. This pattern of results shows how an antidepressant may reduce emotional memory formation and reverse mood-congruent processing biases at retrieval.  相似文献   

10.
11.
Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation.  相似文献   

12.
Type 2 diabetes mellitus (T2DM) damages the brain, especially the hippocampus, and frequently co-occurs with bipolar disorders (BD). Reduced hippocampal volumes are found only in some studies of BD subjects and may thus be secondary to the presence of certain clinical variables. Studying BD patients with abnormal glucose metabolism could help identify preventable risk factors for hippocampal atrophy in BD. We compared brain structure using optimized voxel-based morphometry of 1.5T MRI scans in 33 BD subjects with impaired glucose metabolism (19 with insulin resistance/glucose intolerance (IR/GI), 14 with T2DM), 15 euglycemic BD participants and 11 euglycemic, nonpsychiatric controls. The group of BD patients with IR, GI or T2DM had significantly smaller hippocampal volumes than the euglycemic BD participants (corrected p=0.02) or euglycemic, nonpsychiatric controls (corrected p=0.004). Already the BD subjects with IR/GI had smaller hippocampal volumes than euglycemic BD participants (t(32)=−3.15, p=0.004). Age was significantly more negatively associated with hippocampal volumes in BD subjects with IR/GI/T2DM than in the euglycemic BD participants (F(2, 44)=9.96, p=0.0003). The gray matter reductions in dysglycemic subjects extended to the cerebral cortex, including the insula. In conclusion, this is the first study demonstrating that T2DM or even prediabetes may be risk factors for smaller hippocampal and cortical volumes in BD. Abnormal glucose metabolism may accelerate the age-related decline in hippocampal volumes in BD. These findings raise the possibility that improving diabetes care among BD subjects and intervening already at the level of prediabetes could slow brain aging in BD.  相似文献   

13.
Genetic variants in GPR85 (SREB2: rs56080411 and rs56039557) have been associated with risk for schizophrenia. Here, we test the hypothesis that these variants impact on brain function in normal subjects, measured with functional magnetic resonance imaging (fMRI) paradigms that target regions with greatest SREB2 expression (hippocampal formation and amygdaloid complex). During a facial emotion recognition paradigm, a significant interaction of rs56080411 genotype by sex was found in the left amygdaloid complex (male risk allele carriers showed less activation than male homozygotes for the non-risk allele, while females showed the opposite pattern). During aversive encoding of an emotional memory paradigm, we found that risk allele carriers for rs56080411 had greater activation in the right inferior frontal gyrus. Trends in the same direction were present for rs56039557 in the right occipital cortex and right fusiform gyrus. During a working memory paradigm, a significant sex-by-genotype interaction was found with male risk allele carriers of rs56080411 having inefficient activation within the left dorsolateral prefrontal cortex (DLPFC), compared with same sex non-risk carriers, while females revealed an opposite pattern, despite similar levels of performance. These data suggest that risk-associated variants in SREB2 are associated with phenotypes similar to those found in patients with schizophrenia in the DLPFC and the amygdala of males, while the pattern is opposite in females. The findings in females and during the emotional memory paradigm are consistent with modulation by SREB2 of brain circuitries implicated in mood regulation and may be relevant to neuropsychiatric conditions other than schizophrenia.  相似文献   

14.
Neuroimaging studies have consistently shown functional brain abnormalities in patients with Bipolar Disorder (BD) and Major Depressive Disorder (MDD). However, the extent to which these two disorders are associated with similar or distinct neural changes remains unclear. We conducted a systematic review of functional magnetic resonance imaging studies comparing BD and MDD patients to healthy participants using facial affect processing paradigms. Relevant spatial coordinates from twenty original studies were subjected to quantitative Activation Likelihood Estimation meta-analyses based on 168 BD and 189 MDD patients and 344 healthy controls. We identified common and distinct patterns of neural engagement for BD and MDD within the facial affect processing network. Both disorders were associated with increased engagement of limbic regions. Diagnosis-specific differences were observed in cortical, thalamic and striatal regions. Decreased ventrolateral prefrontal cortical engagement was associated with BD while relative hypoactivation of the sensorimotor cortices was seen in MDD. Increased responsiveness in the thalamus and basal ganglia were associated with BD. These findings were modulated by stimulus valence. These data suggest that whereas limbic overactivation is reported consistently in patients with mood disorders, future research should consider the relevance of a wider network of regions in formulating conceptual models of BD and MDD.  相似文献   

15.
Major depressive disorder (MDD) is characterized by a heterogeneous course and identifying patients at risk for an unfavorable course is difficult. Neuroimaging studies may identify brain predictors of clinical course and may help to further unravel the neurobiological processes underlying an unfavorable course. We investigated whether brain activation during an emotional memory paradigm is associated with depressive course. To this end, we followed 74 MDD patients and 45 healthy controls (HCs) for 2 years. At baseline, participants performed an emotional word-encoding and -recognition task during functional magnetic resonance imaging. Activation patterns were compared between patients with fast remission (n=22), remission with recurrence (n=23), non-remission (n=29), and HCs. Additionally, linear relations of brain activation and time to remission during the follow-up period were investigated across patients. We observed that during encoding of negative words, non-remitters showed higher activation of the left insula than HCs. Groups also differed in activation of the right hippocampus and left amygdala during negative encoding, with a trend for higher activation in non-remitters compared with HCs. Furthermore, hippocampal activation during negative word encoding was significantly and positively correlated with time to remission, irrespective of illness severity. Our findings suggest that higher activation in the left insula could serve as a neural marker of a naturalistic non-remitting course, whereas higher hippocampal activation is associated with delayed remission. Longitudinal analyses should clarify whether abnormal activation progresses further as a function of time with depression or may serve as load-independent markers of MDD course.  相似文献   

16.
Extensive preclinical studies suggest neuropeptide Y (NPY) to be involved in stress regulation and coping. NPY counteracts the behavioral consequences of stress and anxiety to maintain emotional homeostasis. NPY is also involved in learning, memory, and cognition, all of which are dysregulated in many psychiatric states. Dense localization of NPY and NPY receptors is found in brain areas implicated in psychopathology such as the amygdala, hippocampus, neocortex, septum, caudate-putamen, hypothalamus and locus coeruleus. Impaired central NPY signaling may therefore be involved in the pathophysiology of depression, anxiety, schizophrenia, alcoholism, and trauma-induced disorders like PTSD. Studies on the readily accessible plasma from psychiatric patients have provided some information on the relevance of NPY as a marker for sympathetic tone in certain conditions. Reports on cerebrospinal fluid (CSF) NPY in subjects with depression indicate a dysregulation of central NPY in this disorder, however, other conditions still need to be investigated.  相似文献   

17.
Over the past two decades, brain-imaging studies have examined the mechanisms possibly involved in the pathophysiology of bipolar and unipolar mood disorders. The available findings suggest subtle anatomical changes in sub-regions of the prefrontal cortex, medial temporal lobe and cerebellum, and functional abnormalities in brain circuits inter-connecting these same brain regions and the striatum in patients suffering from bipolar disorder. 1H magnetic resonance spectroscopy (MRS) studies reported decreased N-acetyl aspartate (NAA) levels in the dorsolateral prefrontal cortex, and 31P-MRS studies found abnormalities in membrane phospholipids in frontal and temporal regions in bipolar individuals. Few studies have utilized in-vivo receptor imaging to study bipolar patients. Even though preliminary findings from cross-sectional studies indicate anatomical, neurochemical, and functional brain abnormalities in bipolar patients in key regions involved in mood regulation, the relationship of such abnormalities with illness phase and their clinical relevance needs further investigation. The potential for utilization of brain-imaging tools to elucidate the pathophysiology of bipolar disorder is still largely unrealized, and it is anticipated that important new developments in this area will come about over the next years and beyond.  相似文献   

18.
While the hippocampal formation and the prefrontal cortex each have a well-established role in cognitive and mnemonic processes, the extent and manner in which these structures interact to achieve these functions has not been fully delineated. Recent research in rodents compellingly supports the idea that the projection of neurons extending from the CA1 region of the hippocampus and from the subiculum to the prefrontal cortex, referred to here as the H-PFC pathway, is critically involved in aspects of cognition related to executive function and to emotional regulation. Concurrently, it is becoming evident that persons suffering from schizophrenia, depression, and post-traumatic stress disorder display structural anomalies and aberrant functional coupling within the hippocampal–prefrontal circuit. Considering that these disorders involve varying degrees of cognitive impairment and emotional dysregulation, dysfunction in the H-PFC pathway might therefore be the common element of their pathophysiology. This overlap might also be intertwined with the pathway's evident susceptibility to stress and with its relationship to the amygdala. In consequence, the H-PFC pathway is a potentially crucial element of the pathophysiology of several psychiatric diseases, and it offers a specific target for therapeutic intervention, which is consistent with the recent emphasis on reframing psychiatric diseases in terms of brain circuits.  相似文献   

19.
The development of new treatments for mood disorders, as anxiety and depression, is based on identification of neural substrates and the mechanisms underlying their etiology and pathophysiology. The heterogeneity of mood disorders indicates that its origin may lie in dysfunction of multiple brain regions (amygdala, nucleus accumbens, hippocampus, prefrontal cortex and cingulate cortex). The hippocampus of patients with depression show signs of atrophy and neuronal loss. This suggests the contribute of new neurons to the biology of mood disorders that is still under debate. The production of new neurons, referred to as neurogenesis, occurs throughout life in discrete brain areas such as the dentate gyrus (DG) of the hippocampus and the subventricular zone/olfactory bulb. Findings describing that neurogenesis process in DG is increased by antidepressants, like fluoxetine, and it is required for the behavioral effect of antidepressants, lead to a new strategy and drugs for the treatment of mood disorders. As many patients display poor response to therapy, research on depression and antidepressant drugs is necessary. In this regard, focusing on neurogenesis and neuroplasticity processes in experimental models is particularly interesting for the understanding of the pathophysiology of mood disorders and should define the role of adult-born neurons in hippocampal physiology. Different classes of drugs are currently prescribed for the treatment of mood disorders. Among them selective serotonin reuptake (SSRIs), monoamine oxidase inhibitors (MAOIs), specific norepinephrine reuptake inhibitors (SNRIs) and tricyclic acids (TCA) alleviate symptoms of mood disorders. Here we review different strategies that may be adopted for impairing mood disorders and that may be further developed for innovative therapeutic approaches.  相似文献   

20.
Synaptic consolidation is a process thought to consolidate memory in the brain. Although lesion studies have mainly implicated the hippocampus (HPC) in this process, it is unknown which cell type(s) or regions of the HPC might be essential for synaptic consolidation. To selectively and reversibly suppress hippocampal neuronal activity during this process, we developed a new Gi-DREADD (hM4Di) transgenic mouse for in vivo manipulation of neuronal activity in freely moving animals. We found that CA1 pyramidal neurons could be dose-dependently inactivated by clozapine-n-oxide (CNO). Inactivation of hippocampal neurons within 6 h immediately after conditioned fear training successfully impaired the consolidation of contextual memory, without disturbing cued memory. To anatomically define the brain subregion critical for the behavioral effects, hM4Di viral vectors were transduced and selectively expressed in the glutamatergic neurons in either the dorsal or ventral HPC. Significantly, we found that selective inactivation of ventral but not dorsal glutamatergic hippocampal neurons suppressed the synaptic consolidation of contextual memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号