首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
OBJECTIVE: Previous studies evaluating the lipolytic effect of GH have in general been performed in subjects on chronic GH therapy. In this study we assessed the lipolytic effect of GH in previously untreated patients and examined whether the negative effect of enhanced lipolysis on glucose metabolism could be counteracted by acute antilipolysis achieved with acipimox. METHODS: Ten GH-deficient (GHD) adults participated in four experiments each, during which they received in a double-blind manner: placebo (A); GH (0.88+/-0.13 mg) (B); GH+acipimox 250 mg b.i.d. (C); and acipimox b.i.d. (no GH) (D), where GH was given the night before a 2 h euglycemic, hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose and indirect calorimetry. RESULTS: GH increased basal free fatty acid (FFA) levels by 74% (P=0.0051) and insulin levels by 93% (P=0.0051). This resulted in a non-significant decrease in insulin-stimulated glucose uptakes (16.61+/-8.03 vs 12.74+/-5.50 micromol/kg per min (s.d.), P=0.07 for A vs B). The rates of insulin-stimulated glucose uptake correlated negatively with the FFA concentrations (r=-0.638, P<0.0001). However, acipimox caused a significant improvement in insulin-stimulated glucose uptake in the GH-treated patients (17.35+/-5.65 vs 12.74+/-5.50 micromol/kg per min, P=0.012 for C vs B). The acipimox-induced enhancement of insulin-stimulated glucose uptake was mainly due to an enhanced rate of glucose oxidation (8.32+/-3.00 vs 5.88+/-2.39 micromol/kg per min, P=0.07 for C vs B). The enhanced rates of glucose oxidation induced by acipimox correlated negatively with the rate of lipid oxidation in GH-treated subjects both in basal (r=-0.867, P=0.0093) and during insulin-stimulated (r=-0.927, P=0.0054) conditions. GH did not significantly impair non-oxidative glucose metabolism (6.86+/-5.22 vs 8.67+/-6.65 micromol/kg per min, P=NS for B vs A). The fasting rate of endogenous glucose production was unaffected by GH and acipimox administration (10.99+/-1.98 vs 11.73+/-2.38 micromol/kg per min, P=NS for B vs A and 11.55+/-2.7 vs 10.99+/-1.98 micromol/kg per min, P=NS for C vs B). On the other hand, acipimox alone improved glucose uptake in the untreated GHD patients (24.14+/-8.74 vs 16.61+/-8.03 micromol/kg per min, P=0.0077 for D vs A) and this was again due to enhanced fasting (7.90+/-2.68 vs 5.16+/-2.28 micromol/kg per min, P=0.01 for D vs A) and insulin-stimulated (9.78+/-3.68 vs 7.95+/-2.64 micromol/kg per min, P=0.07 for D vs A) glucose oxidation. CONCLUSION: The study of acute administration of GH to previously untreated GHD patients provides compelling evidence that (i) GH-induced insulin resistance is mainly due to induction of lipolysis by GH; and (ii) inhibition of lipolysis can prevent the deterioration of insulin sensitivity. The question remains whether GH replacement therapy should, at least at the beginning of therapy, be combined with means to prevent an excessive stimulation of lipolysis by GH.  相似文献   

2.
CONTEXT: Plasma ghrelin concentration is diminished in gastrectomized patients. Acute ghrelin administration reduces insulin secretion, whereas insulin infusion has been shown to decrease ghrelin levels. Whether ghrelin has any effect on glucose utilization in humans is unknown. OBJECTIVE: Our objective was to reveal the effect of ghrelin on insulin-mediated glucose disposal in gastrectomized patients. STUDY AND SETTING: We conducted a double-blind, randomized, placebo-controlled, hospital-based study. PATIENTS: Seven men and three women who all had a previous total gastrectomy and truncal vagotomy entered and completed the study. Intervention: Each individual received infusion of saline alone or saline with ghrelin (5.0 pmol/kg.min) during a 5-h hyperinsulinemic (80 mU/m(2).min) euglycemic clamp on 2 separate days. MAIN OUTCOME MEASURES: We assessed glucose disposal rate and concentrations of C-peptide, ghrelin, GH, IGF-I, IGF-binding protein (IGFBP)-3 and -1, cortisol, leptin, and adiponectin. RESULTS: Glucose disposal rate decreased during ghrelin infusion (control study 8.6 +/- 0.2 vs. 7.2 +/- 0.1 mg/kg.min P < 0.001). In experiments with saline infusion, levels of ghrelin (P < 0.001), C-peptide (P < 0.001), glucagon (P < 0.001), adiponectin (P = 0.005), cortisol (P = 0.012), IGF-I (P < 0.001), IGFBP-3 (P = 0.038), and IGFBP-1 (P = 0.001) fell in response to euglycemic hyperinsulinemia. GH concentration maintained at baseline, whereas leptin significantly rose (P < 0.001). In the ghrelin infusion study, the plateau level of ghrelin concentration (6963.6 +/- 212.9 pg/ml) was maintained from 90 min throughout the experiment. GH (P < 0.001) and cortisol (P = 0.04) concentrations rose, whereas C-peptide levels were more suppressed than in the control study (P < 0.001). Other hormones and IGFBPs changed similarly as in the study with saline infusion. CONCLUSION: It appears that ghrelin might be involved in the negative control of insulin secretion and glucose consumption in gastrectomized patients, at least after acute administration.  相似文献   

3.
BACKGROUND: Circulating ghrelin levels are reported to be suppressed by insulin, GH and free fatty acids (FFAs). However, insulin, GH and FFA levels are all interdependent, and it is therefore difficult to delineate their independent effects on ghrelin secretion. OBJECTIVE: To isolate and define the impact of GH, GH receptor (GHR) blockade and intravenous FFA infusion on total circulating ghrelin levels during a hyperinsulinaemic glucose clamp with identical insulin levels. DESIGN: In a randomized design, eight healthy males each underwent an 8-h hyperinsulinaemic glucose clamp on four occasions together with either: (1) control (saline), (2) intravenous FFA infusion (intralipid/heparin infusion 4 h), (3) a GH bolus (0.5 mg i.v.) or (4) GHR blockade (pegvisomant, 30 mg s.c.). RESULTS: Hyperinsulinaemia per se resulted in a decrease in ghrelin concentrations of about 15%. During FFA exposure, ghrelin levels were suppressed by about 22% when compared with saline [area under the curve (AUC)(ghrelin0-240) 122.7 +/- 10.9 vs. 97.6 +/- 13.4 pg/ml/min, P = 0.001], followed by a rebound increase upon discontinuation of the infusion. Furthermore, average ghrelin concentration (AUC(ghrelin)) was significantly inversely correlated to average FFA levels (AUC(FFA)) (r = -0.33, P < 0.05). Neither GH administration nor GHR blockade resulted in significant alterations in total ghrelin levels in the presence of unaltered insulin and FFA levels. CONCLUSIONS: Elevation of FFAs by means of an intravenous infusion acutely suppresses ghrelin levels, whereas GH administration and GHR blockade have no detectable effect on ghrelin concentration when insulin and FFA levels are kept fixed.  相似文献   

4.
To investigate the influence of alcohol on glucose counterregulation and recovery during acute insulin-induced hypoglycemia in type 2 diabetic subjects, 8 diet-treated type 2 diabetic subjects were examined twice after an overnight fast. A graded hyperinsulinemic (1 mU/kg/min, 60 to 195 minutes) euglycemic/hypoglycemic clamp was performed with concomitant infusion of 3-(3)H-glucose to assess glucose turnover. After a euglycemic baseline period (150 to 180 minutes), 200 mL of water was taken either alone or with alcohol (0.4 g/kg body weight). Hypoglycemia (plasma glucose nadir, 2.8 mmol/L) was subsequently induced, and the recovery period followed after discontinuation of insulin and the variable glucose infusion. On both study days, circulating concentrations of insulin and glucose were comparable. Alcohol intake markedly increased plasma lactate (area under the curve [AUC], recovery period) (244 +/- 30 v 12 +/- 4 mmol/L x 240 minutes; P = .00009) and suppressed plasma nonesterified fatty acids (NEFA) (AUC, recovery period) (95 +/- 13 v 161 +/- 18 mmol/L x 240 minutes; P = .0008). No differences were found in the counterregulatory response of catecholamines, cortisol, and growth hormone (GH). However, alcohol intake decreased peak glucagon significantly (155 +/- 12 v 200 +/- 17 pg/mL; P = .038). In diet-treated, mild type 2 diabetic subjects, alcohol does not modify recovery from insulin-induced hypoglycemia.  相似文献   

5.
The purpose of this study was to investigate the effects of physiologic levels of ghrelin on insulin secretion and insulin sensitivity (glucose disposal) in scheduled fed-sheep, using the hyperglycemic clamp and hyperinsulinemic euglycemic clamp respectively. Twelve castrated Suffolk rams (69.8 +/- 0.6 kg) were conditioned to be fed alfalfa hay cubes (2% of body weight) once a day. Three hours after the feeding, synthetic ovine ghrelin was intravenously administered to the animals at a rate of 0.025 and 0.05 mug/kg body weight (BW) per min for 3 h. Concomitantly, the hyperglycemic clamp or the hyperinsulinemic euglycemic clamp was carried out. In the hyperglycemic clamp, a target glucose concentration was clamped at 100 mg/100 ml above the initial level. In the hyperinsulinemic euglycemic clamp, insulin was intravenously administered to the animals for 3 h at a rate of 2 mU/kg BW per min. Basal glucose concentrations (44+/- 1 mg/dl) were maintained by variably infusing 100 mg/dl glucose solution. In both clamps, plasma ghrelin concentrations were dose-dependently elevated and maintained at a constant level within the physiologic range. Ghrelin infusions induced a significant (ANOVA; P < 0.01) increase in plasma GH concentrations. In the hyperglycemic clamp, plasma insulin levels were increased by glucose infusion and were significantly (P < 0.05) greater in ghrelin-infused animals. In the hyperinsulinemic euglycemic clamp, glucose infusion rate, an index of insulin sensitivity, was not affected by ghrelin infusion. In conclusion, the present study has demonstrated for the first time that ghrelin enhances glucose-induced insulin secretion in the ruminant animal.  相似文献   

6.
There is controversy about the effect of replacement GH on insulin action in adult hypopituitary patients. GH replacement calculated from weight leads to unacceptable side effects in some patients. Recent studies suggest it should be individually titrated in adults using serum IGF-I levels. We have assessed the effect of titrated GH replacement on peripheral and hepatic insulin action in 13 adult-onset hypopituitary patients (8 males and 5 females; ages 47 +/- 10 yr, mean duration of hypopituitarism 6 yr) with confirmed GH deficiency (GHD; maximum GH <5 mU/liter during insulin induced hypoglycemia), ACTH deficiency, and normal glucose tolerance. All patients were on stable hydrocortisone replacement (15 mg with breakfast, 5 mg with evening meal) for at least 2 months before the trial. Insulin action was assessed by the euglycemic hyperinsulinemic glucose clamp technique (1 mU/kg x min) before and after 6 months of GH therapy. GH was started at 0.8 IU sc daily and titrated monthly until the serum IGF-I increased to within 1-2 SD of the mean of normal age-matched controls. Body mass index did not change significantly during the 6 months of GH therapy. Fasting plasma glucose and HbA1c increased significantly after 6 months (5.2 +/- 0.0 vs. 5.5 +/- 0.0 mmol/liter, P < 0.0001, and 4.5 +/- 0.1 vs. 4.7 +/- 0.1%, P < 0.0005, respectively). There was no increase in fasting serum insulin (51.6 +/- 10.2 vs. 60.0 +/- 10.2 pmol/liter, P = 0.12). Exogenous glucose infusion rates required to maintain euglycemia were similar after GH (23.0 +/- 0.4 vs. 21.1 +/- 0.3 micromol/kg x min, P = 0.6). Endogenous glucose production in the fasting state was also unchanged following GH (11.8 +/- 0.7 vs.12.3 +/- 0.9 micromol/kg x min, P = 0.5) and suppressed to a similar extent following insulin (4.4 +/- 0.8 vs. 5.5 +/- 0.8 micromol/kg x min, P = 0.3). In summary, GH therapy for 6 months, with serum IGF-I maintained in the upper physiological range, increased fasting plasma glucose and HbA1c. There was no effect on peripheral or hepatic insulin sensitivity. Patients receiving GH therapy require long-term monitoring of glucose tolerance.  相似文献   

7.
Peripheral and hepatic insulin antagonism in hyperthyroidism   总被引:3,自引:0,他引:3  
Eight hyperthyroid and eight normal subjects underwent 2-h oral glucose tolerance tests (OGTT) and euglycemic clamp studies to assess the presence of peripheral and hepatic insulin antagonism in hyperthyroidism. Although the mean total glucose area during the OGTT was similar in the hyperthyroid patients and normal subjects [16.4 +/- 0.8 (+/- SE) vs. 15.8 +/- 0.7 mmol/L.h], the mean insulin area was significantly elevated in the hyperthyroid group (1413 +/- 136 vs. 1004 +/- 122 pmol/L.h; P less than 0.05). Basal hepatic glucose production was measured during the second hour of a primed [3-3H]glucose infusion. A two-insulin dose euglycemic clamp study with [3-3H]glucose and somatostatin (500 micrograms/h) was carried out during the next 6 h. The insulin infusion rate was 0.05 mU/kg.min during the third, fourth, and fifth hours and 0.60 mU/kg.min during the sixth, seventh, and eighth hours. Hepatic glucose production and glucose utilization were measured during the final 0.5 h of each clamp period. Serum C-peptide concentrations were measured in the initial sample and in the last sample of each clamp period. The mean equilibrium serum insulin concentrations were similar in both groups during the final 0.5 h of the low (90 +/- 8 vs. 79 +/- 6 pmol/L) and high (367 +/- 11 vs. 367 +/- 15 pmol/L) insulin infusion rates. Basal serum C-peptide levels were significantly increased in the hyperthyroid patients (596 +/- 17 vs. 487 +/- 43 pmol/L; P less than 0.05) but were suppressed equally in both groups at the end of both clamp periods. The MCRs of insulin were similar in the hyperthyroid and normal subjects during the low (6.7 +/- 1.1 vs. 5.6 +/- 0.5 mL/kg.min) and high (11.9 +/- 0.4 vs. 12.1 +/- 0.5 mL/kg.mm) insulin infusion rates. Glucose production was significantly increased in the hyperthyroid patients during the basal state (17.6 +/- 0.9 vs. 11.5 +/- 0.5 mumol/kg.min; P less than 0.001) and remained elevated during the final 0.5 h of the low (12.1 +/- 1.1 vs. 5.9 +/- 1.7; P less than 0.01) and high (3.2 +/- 1.2 vs. 0.5 +/- 0.3; P less than 0.05) insulin infusion rates. Peripheral insulin action, assessed by Bergman's sensitivity index, was significantly decreased in the hyperthyroid patients (7.4 +/- 2.2 vs. 15.6 +/- 2.1 L/kg min-1/pmol/L; P less than 0.02). In conclusion, hyperthyroidism is characterized by 1) hyperinsulinemia after oral glucose loading, 2) increased basal hepatic glucose production, 3) impairment of insulin-mediated suppression of hepatic glucose production, and 4) antagonism to insulin-stimulated peripheral glucose utilization.  相似文献   

8.
Our objective was to determine whether Type 1 diabetic patients with microalbuminuria are less sensitive to the effects of insulin on glucose metabolism and skeletal muscle blood flow, compared to those with normal albumin excretion, after careful matching for confounding variables. We recruited 10 normotensive Type 1 diabetic patients with microalbuminuria and 11 with normoalbuminuria matched for age, sex, body mass index, duration of diabetes and HbA(1c). Peripheral and hepatic insulin action was assessed using a two-step euglycaemic hyperinsulinaemic clamp (2 h at 0.4 mU x kg(-1) x min(-1), 2 h at 2.0 mU x kg(-1) x min(-1)) combined with isotope dilution methodology. Skeletal muscle blood flow was determined by venous occlusion plethysmography. During the clamps, glucose infusion rates required to maintain euglycaemia were similar in the microalbuminuric subjects and controls (step 1, 8.2+/-1.4 (SE) vs 9.2+/-1.3 micromol x kg(-1) x min(-1): step 2, 30.9+/-2.7 vs 32.0+/-3.8 micromol x kg(-1) x min(-1)), as was hepatic glucose production basally and at steady state in step 1. In step 2, hepatic glucose production was lower in the microalbuminuric group (2.9+/-0.9 vs 6.4+/-0.7 micromol x kg(-1) x min(-1), P=0.005). During step 2, skeletal muscle blood flow increased significantly above baseline in the normoalbuminuric group (4.1+/-0.5 vs 3.2+/-0.4 ml x 100-ml(-1) x min(-1), P=0.01) but not in the microalbuminuric group (2.4+/-0.3 vs 2.3+/-0.4 ml x 100-ml(-1) x min(-1)). In conclusion, microalbuminuria in Type 1 diabetes was found to be associated with impairment of insulin-mediated skeletal muscle blood flow, but not with insulin resistance.  相似文献   

9.
OBJECTIVE: The standard dynamic test used to diagnose hypopituitarism is the insulin tolerance test (ITT), in which insulin-induced secretion of ACTH, GH and cortisol is measured. However, because of differences in insulin sensitivity some patients fail achieve sufficient hypoglycaemia to assess pituitary function and colleagues experience severe hypoglycaemia and are at risk for cardiac dysrhythmia, seizure or coma. This risk may be particularly pertinent in the evaluation of older adults. We hypothesized that the hypoglycaemic clamp may be useful in assessing pituitary function in some patients. PATIENTS AND MEASUREMENTS: Twenty-one normal subjects (14 old [50-76 years] and 7 young [18-36 years]) and 7 hypopituitary subjects were studied. A clamp study was performed in which insulin infusion was given at 2 mU/kg/min and increased to 4 mU/kg/min if the target glucose concentration was not reached after 40 min. Dextrose was infused as needed to clamp the plasma glucose concentration at 2.2 mmol/l for 30 min. On a separate day, 7 young controls also underwent an ITT in which 0.15 U/kg insulin was administered as a bolus intravenous injection at time 0. In both studies, baseline values were taken at - 10, - 5 and 0 min. Samples were then collected every 5 min for plasma glucose and every 10 min for insulin, ACTH, cortisol and GH. RESULTS: ACTH and GH secretion during each test were similar in younger controls (P = NS) but cortisol secretion was lower during ITT (P < 0.01 vs. clamp). Hypopituitary subjects had significantly less ACTH, cortisol and GH secretion than controls of all ages (P < 0.001 for all). Peak GH secretion was significantly lower in the old controls than in young controls (22 +/- 12 vs. 48 +/- 26 mU/l, respectively; P < 0.01) but significantly higher than the hypopituitary subjects (2 +/- 2 mu/l; P < 0.001). CONCLUSION: These data demonstrate that the hypoglycaemic clamp can be used in the assessment of pituitary function and suggest that this technique may be particularly beneficial in the evaluation of GH deficiency in older adults who may not tolerate the ITT.  相似文献   

10.
空腹血糖水平与胰岛素抵抗的关系   总被引:4,自引:0,他引:4  
Li L  Wang GX  Li P  Shang XJ  Liu C  Wang YJ  Yue GY 《中华内科杂志》2005,44(10):755-758
目的探讨美国糖尿病协会2003年修订的空腹血糖受损(IFG)下限新切点(5·6mmol/L)划分出的中国血糖调节异常(IGR)者是否存在胰岛素抵抗。方法选取糖调节正常者(NGR)9例;以新标准划分的单纯IFG者9例;空腹及糖负荷后血糖均异常的糖调节受损者共20例,其中以新空腹血糖(FPG)切点划分的新联合糖耐量低减(IGT)者10例;以旧FPG切点划分的旧联合IGT者10例;2型糖尿病患者10例。以高胰岛素正葡萄糖钳夹技术测定受试对象的胰岛素敏感性,以静脉葡萄糖耐量试验评估其胰岛β细胞分泌功能。结果(1)新单纯IFG组、新联合IGT组和旧联合IGT组的葡萄糖输注率(GIR)[分别为(7·2±0·8、7·0±1·5、4·8±0·4)mg·kg-1·min-1]明显低于NGR组[(10·3±0·9)mg·kg-1·min-1,P值均<0·05];旧IGT组和DM组[(5·6±1·0)mg·kg-1·min-1]处于相近水平。(2)空腹胰岛素水平在所有IGR组均升高,在DM组下降。(3)新IFG组的胰岛素一、二相分泌量和NGR组相似,但随糖代谢紊乱程度加重,胰岛素一相分泌量进行性下降,而二相分泌水平先逐渐升高,后有所降低。结论(1)新空腹血糖切点划分出的中国IGR者已经出现胰岛素抵抗。(2)随糖代谢紊乱程度的加重,胰岛素分泌缺陷趋于明显。  相似文献   

11.
CONTEXT: During insulin-modified frequently sampled iv glucose tolerance tests (IM-FSIGT), which allow assessment of insulin action, plasma glucose can markedly decrease. OBJECTIVE: This study aimed to assess the counterregulatory impact of the insulin-induced fall of glucose on minimal model-derived indices of insulin sensitivity (S(I)) and glucose effectiveness. PARTICIPANTS: Thirteen nondiabetic volunteers (seven males, six females, aged 26 +/- 1 yr, body mass index 22.1 +/- 0.7 kg/m(2)) were studied. DESIGN: All participants were studied in random order during IM-FSIGT (0.3 g/kg glucose; 0.03 U/kg insulin at 20 min) and during identical conditions but with a variable glucose infusion preventing a decrease of plasma glucose concentration below euglycemia (IM-FSIGT-CLAMP). Five participants additionally underwent euglycemic-hyperinsulinemic (1 mU.kg(-1).min(-1)) clamp tests. RESULTS: Plasma glucose declined during IM-FSIGT to its nadir of 50 +/- 3 mg/dl at 60 min in parallel to a rise (P < 0.05 vs. basal) of plasma glucagon, cortisol, epinephrine, and GH. Glucose infusion rates of 4.6 +/- 0.5 mg.kg(-1).min(-1) between 30 and 180 min during IM-FSIGT-CLAMP prevented the decline of plasma glucose and the hypoglycemia counterregulatory hormone response. S(I) was approximately 68% lower during IM-FSIGT (3.40 +/- 0.36 vs. IM-FSIGT-CLAMP: 10.71 +/- 1.06 10(-4).min(-1) per microU/ml, P < 0.0001), whereas glucose effectiveness did not differ between both protocols (0.024 +/- 0.002 vs. 0.021 +/- 0.003 min(-1), P = NS). Compared with the euglycemic hyperinsulinemic clamp test, S(I) expressed in identical units from IM-FSIGT was approximately 66% (P < 0.001) lower but did not differ between the euglycemic hyperinsulinemic clamp test and the IM-FSIGT-CLAMP (P = NS). CONCLUSIONS: The transient fall of plasma glucose during IM-FSIGT results in lower estimates of S(I), which can be explained by hormonal response to hypoglycemia.  相似文献   

12.
To determine whether physiological increments in circulating GH concentrations influence glucose-induced glucose uptake (GIGU), two-step sequential hyperglycemic clamp (plasma glucose, 6 and 14 mmol/L) studies were performed in six normal subjects with and without GH infusion (40 ng/kg.min). The latter resulted in serum GH levels of 15 +/- 1 (+/- SE) microgram/L. Infusion of somatostatin (250 micrograms/h during step 1 and 750 micrograms/h during step 2) together with a replacement dose of insulin (1.1 pmol/kg.min) resulted in serum insulin levels comparable to basal levels in both studies. The GIGU ([3-3H]glucose), assessed as the difference between steps 2 and 1 glucose utilization during the final 60 min of each step (150 min) was markedly impaired during GH infusion (with GH, 1.1 +/- 0.2 mg/kg.min; without GH, 3.1 +/- 0.3 mg/kg.min; P less than 0.001). Moreover, the percent increase in glucose uptake was considerably reduced during hypersomatotropinemia (with GH, 44 +/- 9%; without GH, 97 +/- 11%; P less than 0.01). In the GH infusion as well as control studies, endogenous glucose production (EGP) was similar at the two levels of glycemia, whereas GH infusion approximately doubled EGP [2.3 +/- 0.2 vs. 1.1 +/- 0.3 mg/kg.min and 2.0 +/- 0.4 vs. 1.1 +/- 0.4 mg/kg.min (step 1 and 2, respectively)]. We conclude that moderate hypersomatotropinemia for several hours is characterized by impaired GIGU as well as augmented EGP.  相似文献   

13.
We evaluated insulin action in skeletal muscle (glucose disposal), liver (glucose production), and adipose tissue (lipolysis) in 5 extremely obese women with acanthosis nigricans (AN), who had normal oral glucose tolerance, and 5 healthy lean subjects, by using a 5-stage pancreatic clamp and stable isotopically labeled tracer infusion. Basal plasma insulin concentration was much greater in obese subjects with AN than lean subjects (54.8 +/- 4.5 vs 8.0 +/- 1.3 microU/mL, P < .001), but basal glucose and free fatty acid concentrations were similar in both groups. During stage 1 of the clamp, glucose rate of appearance (R(a)) (2.6 +/- 0.3 vs 3.7 +/- 0.3 micromol x kg FFM(-1) x min(-1), P = .02) and palmitate R(a) (2.4 +/- 0.6 vs 7.0 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < .05) were greater in obese subjects with AN than lean subjects despite slightly greater plasma insulin concentration in subjects with AN (3.0 +/- 0.7 vs 1.1 +/- 0.4 microU/mL, P < .05). The area under the curve for palmitate R(a) (1867 +/- 501 vs 663 +/- 75 micromol x kg FFM(-1) x 600 min(-1), P = .03) and glucose R(a) (1920 +/- 374 vs 1032 +/- 88 micromol x kg FFM(-1) x 600 min(-1), P = .02) during the entire clamp procedure was greater in subjects with AN than lean subjects. During intermediate insulin conditions (plasma insulin, approximately 35 microU/mL), palmitate R(a) was 5-fold greater in subjects with AN than in lean subjects (2.6 +/- 1.1 vs 0.5 +/- 0.2 micromol x kg FFM(-1) x min(-1), P = .05). Maximal glucose disposal was markedly lower in obese subjects with AN than in lean subjects (13.0 +/- 0.8 vs 23.4 +/- 1.8 mg x kg FFM(-1) x min(-1), P = .01) despite greater peak plasma insulin concentration (1842 +/- 254 vs 598 +/- 38 microU/mL, P < .05). These data demonstrate obese young adults with AN have marked insulin resistance in multiple tissues. However, marked insulin hypersecretion can compensate for impaired insulin action, resulting in normal glucose and fatty acid metabolism during basal conditions.  相似文献   

14.
The aim of this study was to investigate the effect of two different glucose levels on GH response to the combined administration of GHRH+GHRP-6 in patients with type 2 diabetes. GH response to i.v. bolus of GHRH+GHRP-6 (100 mcg, each) was measured in 12 male patients with type 2 diabetes (mean age: 53.9+/-1.59 years; BMI: 25.58+/-0.39 kg/m(2); mean HbA(1c): 8.7+/-0.42%), during a euglycemic (mean glucose: 4.92+/-0.08 mmol) hyperinsulinemic clamp (insulin infusion rate of 100 mU/kg/h) and a hyperglycemic clamp (mean glucose: 12.19+/-0.11 mmol/l). There was no difference in basal GH levels between the hyperglycemic and euglycemic clamps (2.9+/-0.99 mU/l versus 1.48+/-0.44 mU/l; P>0.05). Peak GH response to GHRH+GHRP-6 during the hyperglycemic clamp was lower than in the englycemic clamp (112.45+/-14.45 mU/l versus 151.06+/-16.87 mU/l; P<0.05). Area under the GH curve was lower in the hyperglycemic than in the euglycemic clamp (6974.49+/-1001.95 mU/l/min versus 9560.75+/-1140.65 mU/l/min; P<0.05). It is concluded that hyperglycemia significantly reduces GH response to combined administration of GHRH+GHRP-6 in normal weight patients with type 2 diabetes. It is suggested that ambient glucose levels should be taken into account during interpretation of GH response to combined administration of GHRH+GHRP-6 in patients with type 2 diabetes.  相似文献   

15.
To determine whether glucagon stimulates lipolysis in adipose tissue, seven healthy young male volunteers were studied, with indwelling microdialysis catheters placed sc in abdominal adipose tissue. Subjects were studied three times: 1) during euglucagonemia (EG; glucagon infusion rate, 0.5 ng/kg.min); 2) during hyperglucagonemia (HG; (glucagon infusion rate, 1.5 ng/kg.min); and 3) during EG and a concomitant glucose infusion mimicking the glucose profile from the day of HG (EG+G). Somatostatin (450 microg/h) was infused to suppress hormonal secretion, and replacement doses of insulin and GH were administered. Sampling was done every 30 min for 420 min. Baseline circulating values of insulin, C-peptide, glucagon, GH, glycerol, and free fatty acids were comparable in all three conditions. During EG and EG+G, plasma glucagon was maintained at fasting level (20-40 ng/L); whereas, during HG, it increased (110-130 ng/L). Interstitial concentrations of glycerol were similar in the three conditions [30,870 +/- 5,946 (EG) vs. 31,074 +/- 7,092 (HG) vs. 29,451 +/- 6,217 (EG+G) micromol/L.120 min, P = 0.98]. Plasma glycerol (ANOVA, P = 0.5) and free fatty acids (ANOVA, P = 0.3) were comparable during the different glucagon challenges. We conclude that HG per se does not increase interstitial glycerol (and thus lipolysis) in abdominal sc adipose tissue; nor does modest hyperglycemia, during basal insulinemia and glucagonemia, influence indices of abdominal sc lipolysis.  相似文献   

16.
OBJECTIVE: Insulin resistance is a frequent consequence of GH replacement therapy but patients on GH replacement therapy often also have replacement of other hormone deficiencies which theoretically could modify the metabolic effects of GH. In particular, cortisol replacement if given in supra physiologic doses immediately before the evaluation of insulin sensitivity could influence insulin sensitivity. The aim of this study was thus to evaluate the effect of morning cortisol replacement given prior to a euglycaemic clamp combined with infusion of [3-(3)H]glucose and indirect calorimetry on glucose and lipid metabolism. METHODS: Ten GH/ACTH-deficient adults received, in a double-blind manner, either cortisol (A) or placebo (B) before the clamp whereas five GH-deficient-ACTH-sufficient adults participated in a control (C) clamp experiment. All subjects received GH replacement therapy. RESULTS: Serum cortisol levels were significantly higher after cortisol than after placebo (324+/-156 vs 132+/-136 mmol/l; P=0.006) and similar to controls (177+/-104 mmol/l). As a measure of the biological effect of cortisol, eosinophil leukocyte counts in peripheral blood decreased (164+/-91 x 10(9)/l vs 216+/-94 x 10(9)/l; P=0.04). Cortisol replacement had no significant effect on insulin-stimulated glucose uptake (11.8+/-1.8 vs 13.2+/-3.9 micromol/kg min), either on glucose oxidation or on glucose storage. There was also no significant effect of cortisol on fasting endogenous glucose production and no effect was seen on serum free fatty acid concentrations. CONCLUSION: Administration of cortisol in the morning before a clamp cannot explain the insulin resistance seen with GH replacement therapy.  相似文献   

17.
The characteristics of insulin resistance, in Turner syndrome are still unclear. For this purpose in 4 patients with Turner syndrome and in 8 control females we performed an euglycaemic hyperinsulinemic glucose clamp at the following insulin infusion rates (50 and 100 mU/Kg x h), each period lasting 120 min. A simultaneous infusion of D-3-H-glucose allowed us to determine in basal conditions and during the clamp hepatic glucose output and glucose disappearance rate (Rd). In basal conditions plasma glucose (4.8 +/- 0.1 vs 4.6 +/- 0.2 mmol/1 p = NS) and plasma glucagon (102 +/- 7.5 vs 112 +/- 11.3 ng/l p = NS) were similar in both groups despite higher plasma insulin (19 +/- 1.8 vs 7 +/- 2.2 mU/l p less than 0.05) and C-peptide (1.0 less than 0.1 vs 0.8 +/- 0.06 pmol/l p less than 0.05) levels in patients with Turner syndrome. In the last 60 min of the lower insulin infusion rate glucose infusion rate (4.1 +/- 0.3 vs 2.9 +/- 0.4 mg/Kg x min p less than 0.05) and glucose disappearance rate (3.89 +/- 0.12 vs 2.63 +/- 0.11 mg/Kg x min p less than 0.01) were significantly reduced in patients with Turner. On the contrary hepatic glucose output was similarly suppressed in both groups of subjects. Doubling the insulin infusion rate, we obtained similar results in patients and controls respectively. So we conclude that in Turner syndrome the insulin resistance state is mainly due to a muscular receptor defect.  相似文献   

18.
The effect of 7 day continuous subcutaneous infusion of octreotide (200 microg day(-1)) was evaluated in seven insulin-pump treated Type 1 diabetic patients (age 43+/-1.5 year; BMI 25.1+/-0.7 kg m(-2); HbA(1c) 7.4+/-0.3%). A 24-h metabolic and hormonal profile, and a euglycaemic hyperinsulinaemic clamp (0.25, 0.5, 1.0 mg kg(-1) min(-1)), with [3H]glucose infusion and indirect calorimetry, were performed before and after a 7-day octreotide infusion. Mean 24-h plasma glucose was similar before and after octreotide (9.7+/-0.8 vs. 9.1+/-1.0 mmol l(-1)) but insulin requirement dropped by 45% (49+/-4 vs. 27+/-2 U day(-1); P<0.01). Both 24-h plasma hGH and glucagon were suppressed by octreotide (1.85+/-0.35 vs. 0.52+/-0.04 microg l(-1), and 117+/-23 vs. 102+/-14 ng l(-1), respectively). Glucose utilisation increased after octreotide (insulin 0.5 mU kg(-1) min(-1) clamp 3.09+/-0.23 vs. 4.19+/-0.19 mg kg(-1) min(-1); 1 mU kg(-1) min(-1) clamp 5.64+/-0.61 vs. 7.93+/-0.57 mg kg(-1) min(-1); both P<0.05) and endogenous glucose production was similarly suppressed. Glucose oxidation was not affected by octreotide, while the improvement in glucose storage (insulin 1.0 mU kg(-1) min(-1) clamp 3.89+/-0.60 vs. 5.64+/-0.67 mg kg(-1) min(-1), P<0.05) entirely accounted for the increase in glucose disposal. Endogenous glucose production was more effectively suppressed at the two lower insulin infusion rates (P>0.05). Energy expenditure declined after octreotide. Continuous subcutaneous octreotide infusion suppresses counterregulatory hormones, increases insulin-mediated glucose metabolism by enhancing glucose storage, and reduces energy expenditure. These results support a role for counterregulatory hormones in the genesis of insulin resistance and the catabolic state of Type 1 diabetes.  相似文献   

19.
OBJECTIVE: Concentrations of the orexigenic peptide ghrelin is affected by a number of hormones, which also affect circulating levels of free fatty acids (FFAs). The present study was therefore designed to determine the direct effect of FFAs on circulating ghrelin. DESIGN: Eight lean, healthy men were examined for 8 h on four occasions using variable infusion rates (0, 3, 6 and 12 microl/kg per min) of intralipid to create different plasma FFA concentrations. Constant levels of insulin and GH were obtained by administration of acipimox (250 mg) and somatostatin (300 microg/h). At the end of each study day a hyperinsulinaemic-euglycaemic clamp was performed. RESULTS: Four distinct levels of FFAs were obtained at the end of the lipid infusion period (FFA(LIPID): 0.03 +/- 0.00 vs: 0.49 +/- 0.04, 0.92 +/- 0.08 and 2.09 +/- 0.38 mmol/l; ANOVA P < 0.0001) and during hyperinsulinaemia (FFA(LIPID+INSULIN): 0.02 +/- 0.00 vs: 0.34 +/- 0.03, 0.68 +/- 0.09 and 1.78 +/- 0.32 mmol/l; ANOVA P < 0.0001). Whereas, somatostatin infusion alone reduced ghrelin concentration by approximately 67%, concomitant administration of increasing amounts of intralipid reduced circulating ghrelin by a further 14, 19 and 19% respectively (change in ghrelin: 0.52 +/- 0.05 vs: 0.62 +/- 0.06, 0.72 +/- 0.09 and 0.71 +/- 0.05 microg/l; ANOVA P = 0.04). No further reduction in ghrelin concentration was observed during hyperinsulinaemia. CONCLUSION: FFA exposure between 0 and 1 mmol/l significantly suppresses ghrelin levels independent of ambient GH and insulin levels.  相似文献   

20.
To determine whether the dawn phenomenon occurs in normal elderly subjects and thus contributes to the progressive mild fasting hyperglycemia of aging, we examined the effect of physiological insulin levels on glucose disposal and hepatic glucose production (HGO) between 0530 and 0800 h, and 0930 and 1200 h. Paired euglycemic insulin clamp studies (8 mU/m2 X min) were performed on healthy old subjects (n = 5), employing [3H]glucose methodology to measure glucose production and disposal rates. Basal plasma insulin, GH, glucagon, and cortisol levels, and HGO and glucose disposal rates were similar before each study. Steady state plasma insulin values were slightly, but not significantly, lower during the dawn study [dawn: 20.3 +/- 1.1 (SE); control: 23.5 +/- 2.1 microU/ml, P = 0.08]. Insulin clearance rates were higher during the dawn study (dawn: 523 +/- 16; control: 430 +/- 19 ml/m2 X min, P less than 0.01). Maximum glucose disposal rates (dawn: 3.10 +/- 0.24; control: 3.03 +/- 0.23 mg/kg X min) and minimum HGO levels (dawn: 0.83 +/- 0.09; control: 0.62 +/- 0.03 mg/kg X min) were not significantly different in each part of the study. There was a significant decrease in plasma GH during the dawn (P less than 0.01, analysis of variance) but not the control studies. There was no difference in cortisol levels during the euglycemic clamp between the dawn and control studies. The mean decrement in glucagon during the insulin infusion was similar in each part of the study. We conclude that the dawn phenomenon does not occur in healthy elderly subjects despite an increase in insulin clearance during the dawn period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号