首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gram-negative product-encoding Tn9-derived chloramphenicol-resistance (Cmr) gene can be cloned but not phenotypically expressed in Bacillus subtilis. We show that, even when transcribed from B. subtilis promoters, the ribosomal binding site for the Cmr gene does not function well in B. subtilis. The Cmr gene product, chloramphenicol acetyltransferase (CmAcTase; acetyl-CoA:chloramphenicol 3-O-acetyltransferase, EC 2.3.1.28), is detected in B. subtilis when the promoters, ribosomal binding sites, and initiation codons of B. subtilis genes are fused to the Cmr gene. These gene fusions lead to the in vivo production of mRNAs containing B. subtilis translation start signals followed in an open reading frame by the translation start site normally used by Escherichia coli to initiate translation of Cmr mRNA. Both fusion and native CmAcTase proteins are produced in E. coli, but only fusion CmAcTase is produced in B. subtilis. We conclude that the absence of native CmAcTase in B. subtilis is due to inability of the E. coli ribosomal binding site to function well in B. subtilis. Since fusion CmAcTase polypeptides are produced in E. coli, we conclude that these particular B. subtilis regulatory elements function heterologously in E. coli. The absence of a suitable binding site on the Cmr gene for B. subtilis ribosomes is consistent with reports that many E. coli genes are not expressed in B. subtilis and that E. coli mRNA functions poorly in B. subtilis in vitro translation systems. The functioning of B. subtilis regulatory sequences in E. coli is consistent with in vivo and in vitro data showing the expression of B. subtilis genes in E. coli. To confirm the hypothesis that the large CmAcTase proteins are NH2-terminal fusions of native CmAcTase we partially determined the sequence of one CmAcTase fusion protein.  相似文献   

2.
3.
4.
Site-directed mutagenesis was performed on a sequence motif within the 3' major domain of Escherichia coli 16S rRNA shown previously to be important for peptide chain termination. Analysis of stop codon suppression by the various mutants showed an exclusive response to UGA stop signals, which was correlated directly with the continuity of one or the other of two tandem complementary UCA sequences (bases 1199-1204). Since no other structural features of the mutated ribosomes were hampered and the translation initiation and elongation events functioned properly, we propose that a direct interaction occurs between the UGA stop codon on the mRNA and the 16S rRNA UCA motif as one of the initial events of UGA-dependent peptide chain termination. These results provide evidence that base pairing between rRNA and mRNA plays a direct role in termination, as it has already been shown to do for initiation and elongation.  相似文献   

5.
6.
7.
Fruit flies synthesize several monoamine neurotransmitters. Dopa decarboxylase (Ddc) mutations affect synthesis of two of these, dopamine and serotonin. Both transmitters are implicated in vertebrate and invertebrate learning. Therefore, we bred flies of various Ddc genotypes and tested their learning ability in positively and negatively reinforced learning tasks. Mutations in the Ddc gene diminished learning acquisition approximately in proportion to their effect on enzymatic activity. Courtship and mating sequences of the mutants appeared normal, except for one aspect of male courtship that had previously been shown to be experience dependent. In contrast, the effect on behavior patterns that do not involve learning--phototaxis, geotaxis, olfactory acuity, responsiveness to sucrose--was relatively slight under these conditions. Moderate Ddc mutations affected the acquisition of learned responses while leaving memory retention unaltered. This is in contrast to the mutations dunce , rutabaga , and amnesiac , which primarily affect short-term memory.  相似文献   

8.
DNA polymerase III gene of Bacillus subtilis.   总被引:6,自引:0,他引:6       下载免费PDF全文
The Bacillus subtilis dnaF (polC) gene that codes for the alpha subunit of the DNA polymerase III holoenzyme has been sequenced. It consists of 4005 base pairs coding for 1335 amino acids (from the start to the stop codon), giving a molecular weight of 151,273. A mutation (azp-12) that confers resistance to the antimicrobial drug 6-(p-hydroxyphenylazo)-uracil is due to a single base change at nucleotide 3523, from TCA to GCA, resulting in a change of the 1175th amino acid, serine, to alanine. It is in the active site and located at the C-terminal part of the enzyme. The amino acid composition in an N-terminal domain has 26% homology to the epsilon subunit coded by the dnaQ gene of Escherichia coli, which is a 3'----5' proofreading exonuclease, supporting an earlier observation that this function is an integral part of the polymerase molecule in B. subtilis.  相似文献   

9.
Two different mutations that greatly diminish the rate of synthesis of the gene 0.3 protein of bacteriophage T7 have been characterized. One is in the initiator triplet for the 0.3 protein, changing it from AUG to ACG. This mutation was found to have little effect on binding of ribosomes to the 0.3 mRNA in vitro, although 0.3 protein synthesis was greatly depressed in vitro as well as in vivo. A suppressor mutation that partially restores the wild-type rate of synthesis was found to lie within the 0.3 RNA but not close to the mutant ACG (more than 64 nucleotides away). The second mutation is a G-to-A transition located 11 bases to the 5' side of the initiator AUG. This change eliminates a possible five-base pairing with a sequence near the 3' end of 16S ribosomal RNA, an interaction previous workers have proposed to be important for initiation of protein synthesis. This mutation causes the site of ribosome binding to shift about 15 bases to the 3' side, centering on an internal AUG, but this new site has only a poor potential interaction with 16S RNA. A suppressor mutation that restores the rate of 0.3 protein synthesis to essentially wild-type levels and also restores wild-type ribosome-binding behavior was found to lie adjacent to the original mutation, creating a new four-base complementarity with 16S RNA. These results provide strong support for the idea that a pairing interaction between mRNA and 16S RNA is involved in specific initiation of protein synthesis in Escherichia coli and indicate that this interaction may be important in selecting the site in mRNA at which the ribosomes bind.  相似文献   

10.
The Streptococcus faecalis transposon Tn917 was introduced into Bacillus subtilis by transformation of competent cells with the plasmid pAM alpha 1::Tn917 and was tested for transposition activity by selection for insertions into the temperate phage SP beta. Insertions were obtained at a frequency indicating relatively efficient movement of the element, and Southern hybridization analysis of a particular insertion confirmed it to be the result of a genuine transposition event. A restriction fragment from pAM alpha 1::Tn917 containing the transposon sequences was ligated into a temperature-sensitive plasmid (pBD95), and transpositions into the B. subtilis chromosome were selected by requiring the transposon drug resistance to be maintained at temperatures nonpermissive for plasmid replication. Insertions have been recovered at many chromosomal sites, including ones that produced auxotrophy of different kinds and ones that produced various different sporulation-defective phenotypes, indicating good prospects for the use of Tn917 as a tool for insertional mutagenesis in B. subtilis.  相似文献   

11.
12.
We previously identified an internal ribosome entry site (IRES) within the 5' leader of the mRNA encoding the Gtx homeodomain protein and showed that shorter nonoverlapping segments of this 5' leader could enhance the translation of a second cistron in a dicistronic mRNA. One of these segments was 9 nt in length, and when multiple copies of this IRES module were linked together, IRES activity was greatly enhanced. To further expand the potential uses of these synthetic constructs and facilitate analyses of the mechanism by which they affect translation, we show here that an IRES containing five linked copies of the 9-nt sequence can also enhance translation in the 5' leader of a monocistronic mRNA. Moreover, a search for interactions of the IRES module with cellular factors revealed specific binding to 40S ribosomal subunits but not to other cellular components. Based on the results of earlier studies suggesting that this sequence could bind to a complementary segment of 18S rRNA, we tested various sequences for possible links between the length of the complementary match, their binding to ribosomes, and their influence on translational efficiency. We found that the length of the complementary match was directly correlated with the ability of RNA probes to bind to ribosomes. In addition, translation was maximally enhanced ( approximately 8-fold) by a 7-nt segment of the 9-nt element; the enhancement declined progressively as the complementary stretches became progressively longer or shorter. The results suggest that the Gtx 9-nt sequence affects translation efficiency by a mechanism that involves base pairing to 18S rRNA.  相似文献   

13.
14.
DNA cloning in Bacillus subtilis.   总被引:48,自引:6,他引:42       下载免费PDF全文
A plasmid pC194, encoding resistance to chloramphenicol, can serve as a cloning vector in Bacillus subtilis 168 for other HindIII-cleaved DNA segments. Replicons constructed by linking pC194 to several Escherichia coli plasmids can be used to introduce and compare the expression of the same genes in these two bacterial hosts.  相似文献   

15.
16.
17.
Previous studies have shown a correlation between the locomotory component of larval and adult foraging behavior in the fruit fly. Here we show that this relationship is far more than mere correlation. It can be attributable to different alleles at the same genetic locus of the behavioral gene foraging (for). The for gene offers us the unique opportunity to study the genetic basis and evolutionary significance of a naturally occurring behavioral polymorphism. Until now, only the effect of for on Drosophila melanogaster larval behavior was studied. Larvae with the rover allele (forR) move significantly more while eating during a set time period than those homozygous for the sitter alleles (fors). Here, we show that rover and sitter larval strains derived from nature differ in the distance adults walk after feeding per unit time and that this variation results from different alleles at the foraging locus, the very gene originally defined on the basis of larval behavior. We hypothesize that for may be involved in the way flies evaluate a food resource.  相似文献   

18.
Several independent experiments suggest that cell walls of Bacillus subtilis are protonated during growth. When cells were grown in the presence of fluorescein-labeled dextran to saturate the cell walls, centrifuged, and suspended in PBS, fluorescence-activated cell sorter analyses revealed the bacteria were only poorly fluorescent. In contrast, when the bacteria were purged with N(2) to dissipate protonmotive force (pmf) fluorescence became intense. Upon reconstitution of the pmf with phenazine methosulfate, glucose, and oxygen, fluorescence declined. Another approach used pH-dependent chemical modification of cell walls. The walls of respiring B. subtilis cells were amenable to carboxylate modification by [(14)C]ethanolamine and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The carbodiimide activation of carboxylate groups occurs only in acidic conditions. Upon dissipation of pmf the walls were refractory to chemical modification. Ammonium groups can be condensed with FITC in alkaline medium, but the condensation is very slow in acidic buffers. It was found that the derivatization of the walls with FITC could occur in the absence of pmf. The use of pH-dependent fluorophores and pH-dependent chemical modification reactions suggest that cell walls of respiring B. subtilis cells have a relatively low pH environment. This study shows a bacterium has a protonated compartment. Acidification of cell walls during growth may be one means of regulating autolytic enzymes.  相似文献   

19.
Evidence is presented that the sporulation-essential locus spoIIG codes for both sigma 29 and a structurally related protein, P31. This demonstrates that at least one specific Bacillus subtilis RNA polymerase binding protein provides a critical function in endospore formation. spoIIG-specific RNA is present in B. subtilis cultures that are synthesizing P31 and sigma 29 and is absent in those that are not. A monoclonal antibody specific for an antigenic determinant on P31/sigma 29 detected crossreacting proteins (P25/P21) but not P31 or sigma 29 in a Spo- B. subtilis strain with a mutation at the spoIIG locus (spoIIG41). The appearance of P25 and P21 occurs in this mutant at a time when P31 and sigma 29 would normally appear and suggests that they are homologous proteins. Transformation of the spoIIG41 strain with plasmid DNA carrying the structural gene for spoIIG complements the Spo- phenotype and results in the synthesis of P31, sigma 29, P25, and P21 at the appropriate times during sporulation. In Escherichia coli, the cloned spoIIG sequence encoded a protein that reacted with the anti-P31/sigma 29 monoclonal antibody and had the electrophoretic mobility of authentic P31.  相似文献   

20.
Induced mRNA stability in Bacillus subtilis.   总被引:32,自引:1,他引:31       下载免费PDF全文
We have investigated the induced stability of mRNA encoded by the ermC gene in Bacillus subtilis. Induction of ermC gene expression by erythromycin is known to occur at the translational level. We show that this induction is accompanied by an increase in ermC mRNA half-life from about 2 min to about 40 min. Induced stabilization of ermC mRNA occurs independently of induced translation. The regulatory sequences required for stability are promoter-proximal and can confer induced stability on large mRNAs having diverse 3' ends. Translation of the ermC leader peptide and ribosome-stalling in the leader peptide sequence are necessary for induced stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号