首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
CCAAT/enhancer binding protein alpha (C/EBPalpha)-ER induces 32Dcl3 neutrophilic differentiation and inhibits 32DPKCdelta maturation to macrophages in response to phorbol ester. In 32Dcl3 cells, C/EBPalpha-ER rapidly induces the PU.1 and C/EBPalpha RNAs even in the presence of cycloheximide, suggesting that these are direct C/EBPalpha genetic targets. C/EBPalpha strongly binds and modestly activates the murine PU.1 promoter via an evolutionarily conserved binding site. C/EBPalpha-ER variants incapable of binding DNA still slow G1 progression but do not induce differentiation. N-terminally truncated C/EBPalpha variants, including the p30 isoform expressed in a subset of AMLs, also retain the ability to slow 32D cl3 proliferation, whereas the C/EBPalpha(BRM2)-ER variant does not slow G1 progression, has a reduced capacity to induce early granulocytic markers, and does not induce terminal maturation. In 32DPKCdelta cells, C/EBPalpha-ER strongly inhibits endogenous or exogenous JunB induction, dependent upon the outer surface of the C/EBPalpha basic region, but does not inhibit c-Jun, PU.1, or C/EBPbeta expression. Exogenous JunB restores AP-1 DNA binding but does not overcome inhibition of monopoiesis by C/EBPalpha-ER. In summary, we propose that while C/EBPalpha is required for development of immature granulocyte-monocyte progenitors, C/EBPalpha subsequently inhibits monopoiesis, via inhibition of JunB express and via additional activities, and induces granulopoiesis, via induction of PU.1, C/EBPepsilon, and cell cycle arrest.  相似文献   

5.
X Wang  E Scott  C L Sawyers  A D Friedman 《Blood》1999,94(2):560-571
Within hematopoiesis, C/EBPalpha is expressed only in myeloid cells, and PU.1 is expressed mainly in myeloid and B-lymphoid cells. C/EBPalpha-deficient mice lack the neutrophil lineage and retain monocytes, whereas PU.1-deficient mice lack monocytes and have severely reduced neutrophils. We expressed a C/EBPalpha-estrogen receptor ligand-binding domain fusion protein, C/EBPalphaWT-ER, in 32D cl3 myeloblasts. 32D cl3 cells proliferate in interleukin-3 (IL-3) and differentiate to neutrophils in granulocyte colony-stimulating factor (G-CSF). In the presence of estradiol, C/EBPalphaWT-ER induced morphologic differentiation and the expression of the myeloperoxidase, lactoferrin, and G-CSF receptor mRNAs. C/EBPalphaWT-ER also induced a G1/S cell cycle block, with induction of p27 and Rb hypophosphorylation. bcr-ablp210 prevented 32D cl3 cell differentiation. Activation of C/EBPalpha-ER in 32D-bcr-ablp210 or Ba/F3 B-lymphoid cells induced cell cycle arrest independent of terminal differentiation. C/EBPalphaWT-ER induced endogenous PU.1 mRNA within 8 hours in both 32D cl3 and Ba/F3 cells, even in the presence of cycloheximide, indicating that C/EBPalpha directly activates the PU.1 gene. However, activation of a PU.1-ER fusion protein in 32D cl3 cells induced myeloperoxidase (MPO) RNA but not terminal differentiation. Thus, C/EBPalpha acts downstream of G-CSF and upstream of PU.1, p27, and potentially other factors to induce myeloblasts to undergo granulocytic differentiation and cell cycle arrest.  相似文献   

6.
7.
8.
9.
10.
11.
CCAAT/enhancer binding proteins (C/EBPs) are a family of factors that regulate cell growth and differentiation. These factors, particularly C/EBPalpha and C/EBPepsilon, have important roles in normal myelopoiesis. In addition, loss of C/EBP activity appears to have a role in the pathogenesis of myeloid disorders including acute myeloid leukemia (AML). Acute promyelocytic leukemia (APL) is a subtype of AML in which a role for C/EBPs has been postulated. In almost all cases of APL, a promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein is expressed as a result of a t(15;17)(q22;q12) chromosomal translocation. PML-RARalpha inhibits expression of C/EBPepsilon, whereas all-trans retinoic acid (tRA), a differentiating agent to which APL is particularly susceptible, induces C/EBPepsilon expression. PML-RARalpha may also inhibit C/EBPalpha activity. Thus, the effects of PML-RARalpha on C/EBPs may contribute to both the development of leukemia and the unique sensitivity of APL to tRA. We tested the hypothesis that increasing the activity of C/EBPs would revert the leukemic phenotype. C/EBPalpha and C/EBPepsilon were introduced into the FDC-P1 myeloid cell line and into leukemic cells from PML-RARA transgenic mice. C/EBP factors suppressed growth and induced partial differentiation in vitro. In vivo, enhanced expression of C/EBPs prolonged survival. By using a tamoxifen-responsive version of C/EBPepsilon, we observed that C/EBPepsilon could mimic the effect of tRA, driving neutrophilic differentiation in leukemic animals. Our results support the hypothesis that induction of C/EBP activity is a critical effect of tRA in APL. Furthermore, our findings suggest that targeted modulation of C/EBP activities could provide a new approach to therapy of AML.  相似文献   

12.
Zheng R  Friedman AD  Levis M  Li L  Weir EG  Small D 《Blood》2004,103(5):1883-1890
Constitutively activating mutations of FMS-like tyrosine kinase 3 (FLT3) occur in approximately one third of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Altered FLT3 signaling leads to antiapoptotic and proliferative signaling pathways. We recently showed that these mutations can also contribute to the differentiation arrest that characterizes leukemia. In this report we investigated the mechanism by which internal tandem duplication (ITD) mutation of FLT3 signaling blocks differentiation. Normally, myeloid differentiation requires the induction of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and PU.1 expression. Expression of both genes was repressed by FLT3/ITD signaling in 32Dcl3 (32D) cells and this repression was overcome by treatment with a FLT3 inhibitor, allowing differentiation to proceed. We also observed increased expression of C/EBPalpha and PU.1 accompanied by signs of differentiation in 2 of 3 primary AML samples from patients with FLT3/ITD mutations receiving a FLT3 inhibitor, CEP-701, as part of a clinical trial. Forced expression of C/EBPalpha was also able to overcome FLT3/ITD-mediated differentiation block, further proving the importance of C/EBPalpha in this process.  相似文献   

13.
14.
15.
16.
Wang QF  Friedman AD 《Blood》2002,99(8):2776-2785
Potential redundancy among members of the CCAAT/enhancer-binding protein (C/EBP) family in myeloid cells is indicated by the ability of C/EBPbeta to replace C/EBPalpha in vivo, by the expression of granulocyte colony-stimulating factor receptor (G-CSFR) on C/EBPalpha(-/-) cell lines, and by our finding that as with C/EBPalpha-estrogen receptor (C/EBPalpha-ER), either C/EBPbeta-ER or C/EBPdelta-ER can induce terminal granulopoiesis in 32D cl3 cells. To assess the consequences of globally inhibiting C/EBPs, we employed KalphaER, containing a Kruppel-associated box (KRAB) transrepression domain, the C/EBPalpha DNA-binding domain, and an ER ligand-binding domain. C/EBPs have a common DNA-binding consensus, and activation of KalphaER repressed transactivation by endogenous C/EBPs 50-fold and reduced endogenous G-CSFR expression. In 32D cl3 cells coexpressing exogenous G-CSFR, activation of KalphaER prevented and even reversed myeloperoxidase, lysozyme, lactoferrin, and C/EBPepsilon RNA induction by G-CSF. In contrast, induction of PU.1 and CD11b, a gene regulated by PU.1 but not by C/EBPs, was unaffected. A KalphaER variant incapable of binding DNA owing to an altered leucine zipper did not affect 32D cl3 differentiation. Transduction of KalphaER into murine hematopoietic progenitor cells suppressed the formation of granulocyte colony-forming units, even in cytokines that enable C/EBPalpha(-/-) progenitors to differentiate into neutrophils. The formation of macrophage and of granulocyte-macrophage colony-forming units were also inhibited, but erythroid burst-forming units grew normally. Thus, in 32D cl3 cells and perhaps normal progenitors, C/EBPs are required for granulopoiesis beyond their ability to induce receptors for G-CSF and other cytokines. One requisite activity may be activation of the C/EBPepsilon gene by C/EBPalpha, as either C/EBPalpha-ER or C/EBPbeta-ER rapidly elevated C/EBPepsilon RNA in 32D cl3 cells in the presence of cycloheximide but not actinomycin D.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号