首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Physiologically based models, when verified in pre-clinical species, optimally predict human pharmacokinetics. However, modeling of intestinal metabolism has been a gap. To establish in vitro/in vivo scaling factors for metabolism, the expression and activity of CYP enzymes were characterized in the intestine and liver of beagle dog.

Methods

Microsomal protein abundance in dog tissues was determined using testosterone-6??-hydroxylation and 7-hydroxycoumarin-glucuronidation as markers for microsomal protein recovery. Expressions of 7 CYP enzymes were estimated based on quantification of proteotypic tryptic peptides using multiple reaction monitoring mass spectrometry. CYP3A12 and CYP2B11 activity was evaluated using selective marker reactions.

Results

The geometric mean of total microsomal protein was 51?mg/g in liver and 13?mg/cm in intestine, without significant differences between intestinal segments. CYP3A12, followed by CYP2B11, were the most abundant CYP enzymes in intestine. Abundance and activity were higher in liver than intestine and declined from small intestine to colon.

Conclusions

CYP expression in dog liver and intestine was characterized, providing a basis for in vitro/in vivo scaling of intestinal and hepatic metabolism.  相似文献   

2.
The catalytic efficiency, regioselectivity, and response to chemical inhibitors of diclofenac (DF) hydroxylation in three Old World monkey liver microsomes (rhesus, cynomolgus, and African green monkey) are different from those determined with human liver microsomes. In contrast to the high affinity-high capacity (low Km-high Vmax) characteristics of DF 4'-hydroxylation in humans, this reaction proceeded in all monkey species with catalytic efficiencies >20-fold lower. However, DF 5-hydroxylation, a negligible reaction in human liver microsomes, was kinetically favored in monkeys mainly due to the increased Vmax values. Chemical inhibitors (reversible or mechanism-based) selective to human CYP3A4 and CYP2C9 failed to differentiate monkey orthologs involved in DF hydroxylation. Immunoinhibition studies with monoclonal antibodies against human CYPs revealed the major contribution of CYP2C and CYP3A to 4'- and to 5-hydroxylation, respectively, in rhesus and cynomolgus liver microsomes. However, in African green monkeys, in addition to CYP2C, CYP3A also appeared to be involved in 4'-hydroxylation. Further studies with recombinant rhesus and African green monkey CYP2C and CYP3A enzymes (rhesus CYP2C75, 2C74, and 3A64; African green monkey CYP2C9agm and CYP3A4agm) confirmed the major role of CYP enzymes of these two subfamilies in DF 4'- and 5-hydroxylation. Clearly, while monkey CYP2C and 3A enzymes retain the same substrate selectivity towards DF hydroxylation as their human orthologs, their altered catalytic efficiency and response to chemical inhibitors may indicate different structural features of active sites as opposed to human orthologs.  相似文献   

3.

AIM

The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin.

METHODS

The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences.

RESULTS

The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A.

CONCLUSIONS

These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins.  相似文献   

4.
Cytochromes P450 (CYPs) catalyze the 4-hydroxylation of all-trans-retinoic acid (ATRA), an agent used in the treatment of certain malignancies. Literature studies have implicated several CYPs in this reaction, but the relative importance of individual CYPs is unclear. Human microsomal CYPs that contribute to the activity were evaluated by correlation with activities of hepatic drug-metabolizing CYPs, the capacity of cDNA-derived CYPs to catalyze the reaction, and inhibition of the microsomal activity by chemicals. 4-HydroxyATRA formation in microsomes varied 7-fold (8.7 to 61 pmol/mg protein/min) and correlated partially with activities mediated by CYPs 3A, 2C, and 1A (p = 0.53 to 0.66). cDNA-derived CYPs 2C8, 2C9, and 3A4, but not 1A1 or 1A2, catalyzed ATRA 4-hydroxylation (2.53, 4.68, and 1.29 pmol/pmol CYP/hr). The Km for the reaction was 9 +/- 3 microM in hepatic microsomes (N = 3) and 6 microM in microsomes containing cDNA-derived CYP2C8; by comparison, Km values for the activity mediated by CYPs 2C9 and 3A4 were 100 and 74 microM, respectively. Inhibition of microsomal ATRA 4-hydroxylation was elicited by chemicals that interact with CYP2C8 (paclitaxel and diclofenac), but not those that interact with CYP2C9 (sulfaphenazole, tolbutamide, and torasemide). The CYP3A inhibitor troleandomycin and an anti-CYP3A IgG inhibited the activity slightly. Greater inhibition was produced by the less selective CYP3A inhibitors parathion, quinidine, and ketoconazole; CYP1A inhibitors were ineffective. These findings suggest that CYP2C8 is a major contributor to ATRA 4-hydroxylation in human liver and that 3A subfamily CYPs may be minor participants. Individual variation in CYP2C8 and 3A4 expression may influence ATRA pharmacokinetics and drug interactions during therapy.  相似文献   

5.
  1. Characteristics of twelve cytochromes P450 (CYPs) from cynomolgus monkeys were compared with those of human CYPs that play an important role in drug metabolism.

  2. Eleven members of CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A subfamilies from cynomolgus monkeys exhibited a high degree of homologies (more than 90%) in cDNA and amino acid sequences with corresponding human CYPs, and catalysed typical reactions of corresponding human CYPs.

  3. One member of the cynomolgus monkey CYP2C subfamily, CYP2C76, exhibited a lower homology (around 70%) in amino acid sequences with other cynomolgus monkey and human CYP2C subfamilies. CYP2C76 catalysed typical CYP2C substrates with low activities, and has not been found in humans.

  4. CYPs identified in cynomolgus monkeys were similar to CYP1A1, CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 in humans.

  5. These results indicate that cynomolgus monkeys express CYPs similar to human CYPs that are important in drug metabolism.

  相似文献   

6.

Purpose

To investigate the metabolism of phospho-aspirin (PA, MDC-22), a novel anti-cancer and anti-inflammatory agent.

Methods

The metabolism of PA was studied in the liver and intestinal microsomes from mouse, rat and human.

Results

PA is rapidly deacetylated to phospho-salicylic acid (PSA), which undergoes regioselective oxidation to generate 3-OH-PSA and 5-OH-PSA. PSA also can be hydrolyzed to give salicylic acid (SA), which can be further glucuronidated. PA is far more stable in human liver or intestinal microsomes compared to those from mouse or rat due to its slowest deacetylation in human microsomes. Of the five major human cytochrome P450 (CYP) isoforms, CYP2C19 and 2D6 are the most active towards PSA. In contrast to PSA, conventional SA is not appreciably oxidized by the CYPs and liver microsomes, indicating that PSA is a preferred substrate of CYPs. Similarly, PA, in contrast to PSA, cannot be directly oxidized by CYPs and liver microsomes, indicating that the acetyl group of PA abrogates its oxidation by CYPs.

Conclusions

Our findings establish the metabolism of PA, reveal significant inter-species differences in its metabolic transformations, and provide an insight into the role of CYPs in these processes.  相似文献   

7.
MAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors and is increasingly used as an illicit recreational drug. The inhibitory effects of MAM-2201 on major drug-metabolizing enzymes such as cytochrome P450s (CYPs) and uridine 5′-diphospho-glucuronosyltransferases (UGTs) have not yet been investigated although it is widely abused, sometimes in combination with other drugs. We evaluated the inhibitory effects of MAM-2201 on eight major human CYPs (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six UGTs (UGTs 1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) of pooled human liver microsomes; we thus explored potential MAM-2201-induced drug interactions. MAM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, and UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with K i values of 5.6, 5.4 and 5.0 µM, respectively. MAM-2201 exhibited mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-de-ethylation with K i and k inact values of 1.0 µM and 0.0738 min?1, respectively. In human liver microsomes, MAM-2201 (50 µM) negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7. Based on these in vitro results, we conclude that MAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP3A4, and UGT1A3.  相似文献   

8.
Different roles of individual forms of human cytochrome P-450 (CYP) in the oxidation of 7-ethoxycoumarin and chlorzoxazone were investigated in liver microsomes of different human samples, and the microsomal activities thus obtained were predicted with kinetic parameters obtained from cDNA-derived recombinant CYP enzymes in microsomes of Trichoplusia ni cells. Of 14 forms of recombinant CYP examined, CYP1A1 had the highest activities (V(max)/K(m) ratio) in catalyzing 7-ethoxycoumarin O-deethylation followed by CYP1A2, 2E1, 2A6, and 2B6, although CYP1A1 has been shown to be an extrahepatic enzyme. With these kinetic parameters (excluding CYP1A1) we found that CYP1A2 and 2E1 were the major enzymes catalyzing 7-ethoxycoumarin; the contributions of these two forms were dependent on the contents of these CYPs in liver microsomes of different humans. Similarly, chlorzoxazone 6-hydroxylation activities of liver microsomes were predicted with kinetic parameters of recombinant human CYP enzymes and it was found that CYP3A4 as well as CYP1A2 and 2E1 were involved in chlorzoxazone hydroxylation, depending on the contents of these CYP forms in the livers. Recombinant CYP2A6 and 2B6 and CYP2D6 had considerable roles (V(max)/K(m) ratio) for 7-ethoxycoumarin O-deethylation and chlorzoxazone 6-hydroxylation, respectively; however, these CYP forms had relatively minor roles in the reactions, probably due to low expression in human livers. These results support the view that the roles of individual CYP enzymes in the oxidation of xenobiotic chemicals in human liver microsomes could be predicted by kinetic parameters of individual CYP enzymes and by the levels of each of the CYP enzymes in liver microsomes of human samples.  相似文献   

9.
  1. Cytochrome P450 enzymes (CYPs) in the liver metabolize drugs prior to excretion, with different enzymes acting at different molecular motifs. At present, the human CYPs responsible for the metabolism of the flavonoid, nobiletin (NBL), are unidentified. We investigated which enzymes were involved using human liver microsomes and 12 cDNA-expressed human CYPs.

  2. Human liver microsomes metabolized NBL to three mono-demethylated metabolites (4′-OH-, 7-OH- and 6-OH-NBL) with a relative ratio of 1:4.1:0.5, respectively, by aerobic incubation with nicotinamide adenine dinucleotide phosphate (NADPH). Of 12 human CYPs, CYP1A1, CYP1A2 and CYP1B1 showed high activity for the formation of 4′-OH-NBL. CYP3A4 catalyzed the formation of 7-OH-NBL with the highest activity and of 6-OH-NBL with lower activity. CYP3A5 also catalyzed the formation of both metabolites but considerably more slowly than CYP3A4. In contrast, seven CYPs (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1) were inactive for NBL.

  3. Both ketoconazole and troleandomycin (CYP3A inhibitors) almost completely inhibited the formation of 7-OH- and 6-OH-NBL. Similarly, α-naphthoflavone (CYP1A1 inhibitor) and furafylline (CYP1A2 inhibitor) significantly decreased the formation of 4′-OH-NBL.

  4. These results suggest that CYP1A2 and CYP3A4 are the key enzymes in human liver mediating the oxidative demethylation of NBL in the B-ring and A-ring, respectively.

  相似文献   

10.
The human cytochrome P450 (CYP) isoforms mediating nortriptyline 10-hydroxylation have been identified using kinetic studies on heterologously expressed human CYPs and chemical inhibition studies on human liver microsomes. Nortriptyline was metabolized to E-10-hydroxynortriptyline by human lymphoblast-expressed CYPs 2D6 (Km 2.1 microM) and 3A4 (Km 37.4 microM) with high and low affinity, respectively, whereas CYPs 1A2, 2A6, 2B6, 2C9, 2C19, and 2E1 had no detectable activity. Human liver microsomal nortriptyline E-10-hydroxylation displayed biphasic kinetics. The high-affinity component (Km 1.3 +/- 0.4 microM, n = 11 livers) was selectively inhibited by the CYP 2D6 inhibitor quinidine, whereas the CYP3A4 inhibitor ketoconazole selectively inhibited the low-affinity component (K(m) 24.4 +/- 7 microM, n = 11 livers). Inhibition by ketoconazole increased with increasing substrate concentration, whereas the reverse was true for quinidine. The Vmax of the low-affinity component in human liver microsomes was significantly correlated (r2 = 0.84) with the relative activity factor for CYP3A4, a measure of the amount of catalytically active enzyme. A simulation of the relative contribution of CYPs 2D6 and 3A4 to net nortriptyline hydroxylation rate suggested that the relative contribution of CYP3A4 is only 20% even at the higher end of the therapeutic range. Induction of CYP3A4 will increase its importance and increase the net metabolic rate, whereas inhibition of CYP3A4 will be of little importance due to its minimal relative contribution under uninduced conditions. The identification of CYP3A4 as a low-affinity nortriptyline E-10-hydroxylase explains the ability of poor metabolizers of debrisoquin to hydroxylate nortriptyline, as well as the increased in vivo clearance via this pathway caused by CYP3A4-inducing drugs such as pentobarbital, carbamazepine, and rifampin.  相似文献   

11.
  1. Ilaprazole is a new proton pump inhibitor, designed for treatment of gastric ulcers, and developed by Il-Yang Pharmaceutical Co (Seoul, Korea). It is extensively metabolised to the major metabolite ilaprazole sulfone.

  2. In the present study, several in vitro approaches were used to identify the cytochrome P450 (CYP) enzymes responsible for ilaprazole sulfone formation. Concentrations of ilaprazole sulfone were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

  3. Incubation of ilaprazole with cDNA-expressed recombinant CYPs indicated that CYP3A was the major enzyme that catalyses ilaprozole to ilaprazole sulfone. This reaction was inhibited significantly by ketoconazole, a CYP3A inhibitor, and azamulin, a mechanism-based inhibitor of CYP3A, while no substantial effect was observed using selective inhibitors for eight other P450s (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1).

  4. In addition, the formation of ilaprazole sulfone correlated well with CYP3A-catalysed testosterone 6β-hydroxylation and midazolam 1′-hydroxylation in 20 different human liver microsome panels. The intrinsic clearance of the formation of ilaprazole sulfone by CYP3A4 was 16-fold higher than that by CYP3A5.

  5. Collectively, these results indicate that the formation of the major metabolite of ilaprazole, ilaprazole sulfone, is predominantly catalysed by CYP3A4/5.

  相似文献   

12.
We investigated cytochrome P450 (P450)-catalyzed metabolism of the important cancer drugs paclitaxel and docetaxel in rat, pig, minipig, and human liver microsomes and cDNA-expressed P450 enzymes. In rat microsomes, paclitaxel was metabolized mainly to C3'-hydroxypaclitaxel (C3'-OHP) and to a lesser extent to C2-hydroxypaclitaxel (C2-OHP), di-hydroxypaclitaxel (di-OHP), and another unknown monohydroxylated paclitaxel. In pig and minipig microsomes, this unknown hydroxypaclitaxel was the main metabolite, whereas C3'-OHP was a minor product. In minipigs, C2-OHP was the next minor product. In human liver microsomes, 6 alpha-hydroxypaclitaxel (6 alpha-OHP) was the main metabolite, followed by C3'-OHP and C2-OHP. Among different cDNA-expressed human P450 enzymes (CYP1A2, 1B1, 2A6, 2C9, 2E1, and 3A4), only CYP3A4 enzyme formed C3'-OHP and C2-OHP. Docetaxel was metabolized in pig, minipig, rat, and human liver microsomes mainly to hydroxydocetaxel (OHDTX), whereas CYP3A-induced rat microsomes produced primarily diastereomeric hydroxyoxazolidinones. Human liver microsomes from 10 different individuals formed OHDTX at different rates correlated with CYP3A4 content. Troleandomycin as a selective inhibitor of CYP3A inhibited the formation of C3'-OHP, C2-OHP, and di-OHP, as well as the unknown OHP produced in rat, minipig, and pig microsomes. In human liver microsomes, troleandomycin inhibited C3'-OHP and C2-OHP formation, and a suitable inhibitor of human CYP2C8, fisetin, strongly inhibited the formation of 6 alpha-OHP, known to be catalyzed by human CYP2C8. In conclusion, the metabolism of docetaxel is the same in all four species, but metabolism of paclitaxel is different, and 6 alpha-OHP remains a uniquely human metabolite. Pigs and minipigs compared with each other formed the same metabolites of paclitaxel.  相似文献   

13.
Objective This in-vitro study aimed at an identification of cytochrome P450 (CYP) enzymes catalysing the (S)- and (R)-hydroxylation of the widely used anticoagulant phenprocoumon (PPC) to its major, inactive metabolites.Methods Relevant catalysts were identified by kinetic, correlation and inhibition experiments using human liver microsomes and recombinant enzymes.Results Kinetics revealed (S)-7-hydroxylation as quantitatively most important. Biphasic Eadie-Hofstee plots indicated more than one catalyst for the 4-, 6- and 7-hydroxylation of both enantiomers with mean Km1 and Km2 of 144.5±34.9 and 10.0±6.49 µM, respectively. PPC hydroxylation rates were significantly correlated with CYP2C9 and CYP3A4 activity and expression analysing 11 different CYP-specific probes. Complete inhibition of PPC hydroxylation was achieved by combined addition of the CYP3A4-specific inhibitor triacetyloleandomycin (TAO) and a monoclonal, inhibitory antibody (mAb) directed against CYP2C8, 9, 18 and 19, except for the (R)-4-hydroxylation that was, however, inhibited by ~80% using TAO alone. (S)-PPC hydroxylation was reduced by ~2/3 and ~1/3 using mAb2C8–9-18–19 and TAO, respectively, but (R)-6- and 7-hydroxylation by ~50% each. Experiments with mAbs directed against single CYP2C enzymes clearly indicated CYP2C9 as a major catalyst of the 6- and 7-hydroxylation for both enantiomers. However, CYP2C8 was equally important regarding the (S)-4-hydroxylation. Recombinant CYP2C8 and CYP2C9 were high-affinity catalysts (Km <5 µM), whereas CYP3A4 operated with low affinity (Km >100 µM).Conclusion CYP2C9 and CYP3A4 are major catalysts of (S)- and (R)-PPC hydroxylation, while CYP2C8 partly catalysed the (S)-4-hydroxylation. Increased vigilance is warranted when PPC treatment is combined with substrates, inhibitors, or inducers of these enzymes.Part of this work was presented at the 6th Congress of the European Association for Clinical Pharmacology and Therapeutics, Istanbul, June 2003.  相似文献   

14.
  1. This study aims to characterize the metabolism of α-thujone in human liver preparations in vitro and to identify the role of cytochrome P450 (CYP) and possibly other enzymes catalyzing α-thujone biotransformations.

  2. With a liquid chromatography–mass spectrometry (LC-MS) method developed for measuring α-thujone and four potential metabolites, it was demonstrated that human liver microsomes produced two major (7- and 4-hydroxy-thujone) and two minor (2-hydroxy-thujone and carvacrol) metabolites. Glutathione and cysteine conjugates were detected in human liver homogenates, but not quantified. No glucuronide or sulphate conjugates were detected. Major hydroxylations accounted for more than 90% of the primary microsomal metabolism of α-thujone.

  3. Screening of α-thujone metabolism with CYP recombinant enzymes indicated that CYP2A6 was principally responsible for the major 7- and 4-hydroxylation reactions, although CYP3A4 and CYP2B6 participated to a lesser extent and CYP3A4 and CYP2B6 catalyzed minor 2-hydroxylation. Based on the intrinsic efficiencies of different recombinant CYP enzymes and average abundances of these enzymes in human liver microsomes, CYP2A6 was calculated to be the most active enzyme in human liver microsomes, responsible for 70–80% of the metabolism on average.

  4. Inhibition screening indicated that α-thujone inhibited both CYP2A6 and CYP2B6, with 50% inhibitory concentration values of 15.4 and 17.5 µM, respectively.

  相似文献   

15.
Cytochrome P450 2E1 was isolated from minipig liver microsomes. The protein has been cloned and the respective cDNA sequenced (GenBank Accession Number AY581116). Minipig CYP2E1 is two residues shorter than its human ortholog. The only difference between pig and minipig sequence is the presence of aspartic acid residue in position 346 contrary to valine in the pig enzyme. Minipig CYP2E1 was shown to be able to convert two prototypical substrates of human CYP2E1, chlorzoxazone and p-nitrophenol, to the respective metabolites. The experiments performed with both the liver microsomal fraction and reconstituted systems with human or minipig CYP2E1 confirmed the similarity of both enzymes. Inhibition with diethyldithiocarbamate gave comparable Ki values for minipig as well as for the human CYP2E1. The results indicate that the systems containing minipig CYP2E1 may be used to model the respective CYP2E1-catalyzed reactions of drug metabolism in humans.  相似文献   

16.
1. Studies using human liver microsomes and six recombinant human CYP isoforms (i.e. CYP1A2, 2A6, 2B6, 2D6, 2E1 and 3A4) were performed to identify the cytochrome P450 (CYP) isoform(s) involved in the ring 4-hydroxylation and side-chain N-desisopropylation of propranolol enantiomers in humans. 2. alpha-Naphthoflavone and 7-ethoxyresorufin (selective inhibitors of CYP1A1/2) inhibited the N-desisopropylation of R- and S-propranolol by human liver microsomes by 20 and 40%, respectively, while quinidine (a selective inhibitor of CYP2D6) abolished the 4-hydroxylation of both propranolol enantiomers almost completely. In contrast, sulphaphenazole (CYP2C8/9 inhibitor), S-mephenytoin (CYP2C19 inhibitor), troleandomycin (CYP3A3/4 inhibitor) and diethyldithiocarbamate (CYP2E1 inhibitor) elicited only weak inhibitory effects on propranolol metabolism via the two measured metabolic pathways. 3. Significant (P < 0.01) correlations were observed between the microsomal N-desisopropylation of both propranolol enantiomers and that for the O-deethylation of phenacetin among the 11 different human liver microsome samples (r = 0.98 and 0.77 for R- and S-propranolol, respectively). A marginally significant (r = 0.60, P congruent to 0.05) correlation was also observed between N-desisopropylation of S-, but not of R-propranolol and the 4'-hydroxylation of S-mephenytoin. No significant correlations were observed between the N-desisopropylation of propranolol enantiomers and the 2-hydroxylation of desipramine, the hydroxylation of tolbutamide or the 6 beta-hydroxylation of testosterone. 4. Significant (P < 0.01) correlations were observed between the microsomal 4-hydroxylation of R- and S-propranolol and the 2-hydroxylation of desipramine (r = 0.85 and 0.98, respectively). A weak (r = 0.66), albeit significant (P < 0.05) correlation was observed between the 4-hydroxylation of R-, but not of S-propranolol and the hydroxylation of tolbutamide. No significant correlations were observed between the 4-hydroxylation of propranolol enantiomers and the oxidation of other substrates for CYP1A2, 2C19, and 3A3/4. 5. Recombinant human CYP1A2 and CYP2D6 exhibited comparable catalytic activity with respect to the N-desisopropylation of both propranolol enantiomers; only expressed CYP2D6 exhibited a marked catalytic activity with respect to the 4-hydroxylation of both propranolol enantiomers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.

BACKGROUND AND PURPOSE

Fenretinide (4-HPR) is a retinoic acid analogue, currently used in clinical trials in oncology. Metabolism of 4-HPR is of particular interest due to production of the active metabolite 4′-oxo 4-HPR and the clinical challenge of obtaining consistent 4-HPR plasma concentrations in patients. Here, we assessed the enzymes involved in various 4-HPR metabolic pathways.

EXPERIMENTAL APPROACH

Enzymes involved in 4-HPR metabolism were characterized using human liver microsomes (HLM), supersomes over-expressing individual human cytochrome P450s (CYPs), uridine 5′-diphospho-glucoronosyl transferases (UGTs) and CYP2C8 variants expressed in Escherichia coli. Samples were analysed by high-performance liquid chromatography and liquid chromatography/mass spectrometry assays and kinetic parameters for metabolite formation determined. Incubations were also carried out with inhibitors of CYPs and methylation enzymes.

KEY RESULTS

HLM were found to predominantly produce 4′-oxo 4-HPR, with an additional polar metabolite, 4′-hydroxy 4-HPR (4′-OH 4-HPR), produced by individual CYPs. CYPs 2C8, 3A4 and 3A5 were found to metabolize 4-HPR, with metabolite formation prevented by inhibitors of CYP3A4 and CYP2C8. Differences in metabolism to 4′-OH 4-HPR were observed with 2C8 variants, CYP2C8*4 exhibited a significantly lower Vmax value compared with *1. Conversely, a significantly higher Vmax value for CYP2C8*4 versus *1 was observed in terms of 4′-oxo formation. In terms of 4-HPR glucuronidation, UGTs 1A1, 1A3 and 1A6 produced the 4-HPR glucuronide metabolite.

CONCLUSIONS AND IMPLICATIONS

The enzymes involved in 4-HPR metabolism have been characterized. The CYP2C8 isoform was found to have a significant effect on oxidative metabolism and may be of clinical relevance.  相似文献   

18.

AIMS

To investigate time-dependent inhibition (TDI) of human drug metabolizing CYP enzymes by tricyclic antidepressants (TCAs).

METHODS

CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A/CYP3A4 activities were investigated following co- and preincubation with TCAs using human liver microsomes (HLM) and human recombinant CYP proteins (expressed in Escherichia coli) as the enzyme sources. A two-step incubation method was employed to examine the in vitro mechanism-based inactivation (MBI) criteria. Potential metabolite–intermediate complex (MIC) formation was studied by spectral analysis.

RESULTS

TCAs generally exhibited significant TDI of recombinant CYP1A2, CYP2C19 and CYP2D6 (>10% positive inhibition differences between co- and preincubation conditions). TDI of recombinant CYP2C9 was minor (<10%), and was minor or absent in experiments utilizing recombinant CYP3A4 or HLM as the enzyme sources. Where observed, TDI of recombinant CYP occurred via alkylamine MIC formation, but evidence to support similar behaviour in HLM was limited. Indeed, only secondary amine TCAs reduced the apparent P450 content of HLM (3–6%) consistent with complexation. As a representative TCA, nortriptyline fulfilled the in vitro MBI criteria using recombinant CYP2C19 and CYP3A4 (KI and kinact values of 4 µm and 0.19 min−1, and 70 µm and 0.06 min−1), but not with the human liver microsomal enzymes.

CONCLUSIONS

TCAs appear to have minimal potential for MBI of human liver microsomal CYP enzymes involved in drug metabolism. HLM and recombinant CYP (expressed in E. coli) are not equivalent enzyme sources for evaluating the TDI associated with some drugs.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

  • Much of the literature evidence for mechanism-based inactivation (MBI) of CYP by tricyclic antidepressants is limited to studies in rat liver microsomes.
  • One report from this laboratory characterized MBI of human recombinant CYP2C8 by nortriptyline.

WHAT THIS STUDY ADDS

  • Tricyclic antidepressants form alkylamine metabolite-intermediate complexes with human recombinant CYP enzymes (expressed in Escherichia coli) relatively easily, resulting in time-dependent inhibition.
  • Evidence to support similar irreversible inhibition using human liver microsomal (HLM) fractions is limited.
  • HLM and recombinant CYP (expressed in E. coli) are not equivalent enzyme sources for evaluating the time-dependent inhibition of human drug metabolizing CYP that is associated with some drugs.
  相似文献   

19.
The oral anticoagulant acenocoumarol is given as a racemic mixture. The (S)-enantiomer is rapidly cleared and is the reason why only (R)-acenocoumarol contributes to the pharmacological effect. The objective of the study was to establish the cytochrome P450 (CYP) enzymes catalyzing the hydroxylations of the acenocoumarol enantiomers. Of various cDNA-expressed human CYPs, only CYP2C9 hydroxylated (S)-acenocoumarol. Hydroxylation occurred at the 6-, 7-, and 8-position with equal K(m) values and a ratio of 0.9:1:0.1 for V(max). CYP2C9 also mediated the 6-, 7-, and 8-hydroxylations of (R)-acenocoumarol with K(m) values three to four times and V(max) values one-sixth times those of (S)-acenocoumarol. (R)-Acenocoumarol was also metabolized by CYP1A2 (6-hydroxylation) and CYP2C19 (6-, 7-, and 8-hydroxylation). In human liver microsomes one enzyme only catalyzed (S)-acenocoumarol hydroxylations with K(m) values < 1 microM. In most of the samples tested the 7-hydroxylation of (R)-acenocoumarol was also catalyzed by one enzyme only. The 6-hydroxylation was catalyzed by at least two enzymes. Sulfaphenazole could completely inhibit in a competitive way the hydroxylations of (S)-acenocoumarol and the 7-hydroxylation of (R)-acenocoumarol. The 6-hydroxylation of (R)-acenocoumarol could be partially inhibited by sulfaphenazole, 40 to 50%, and by furafylline, 20 to 30%. Significant mutual correlations were obtained between the hydroxylations of (S)-acenocoumarol, the 7-hydroxylation of (R)-acenocoumarol, the 7-hydroxylation of (S)-warfarin, and the methylhydroxylation of tolbutamide. The results demonstrate that (S)-acenocoumarol is hydroxylated by a single enzyme, namely CYP2C9. CYP2C9 is also the main enzyme in the 7-hydroxylation of (R)-acenocoumarol. Other enzymes involved in (R)-acenocoumarol hydroxylation reactions are CYP1A2 and CYP2C19. Drug interactions must be expected, particularly for drugs interfering with CYP2C9. Also, drugs interfering with CYP1A2 and CYP2C19 may potentiate acenocoumarol anticoagulant therapy.  相似文献   

20.
The pig and especially the minipig are becoming increasingly used as a test animal both in pharmacological and toxicological testing of new compounds. The minipig is used because of its size, it is easy to handle and less test substrate is required. When using an animal species for testing it is of importance to know if the test animal's posses the same abilities to metabolize drugs as humans. Some of the P450 enzymes have been characterized in the pig regarding substrate specificity, inhibition and regulation. The porcine enzymes CYP1A, CYP2A and CYP3A all metabolize the same test substrates as the human enzymes, whereas the enzymes CYP2B, CYP2D, and CYP2E in pig on the other hand seem to be different from the human enzymes concerning metabolism of the well know test substrates. Some of the porcine enzymes have been sequenced i.e. CYP1A, CYP2A, CYP2B, CYP2D, CYP2E and CYP3A and not surprisingly the porcine CYPs that metabolize the human test substrates are about 75% identical in cDNA sequences. What is needed is inhibitory antibodies against each of the porcine enzymes, in order to test whether a test compound is metabolized by one or the other enzyme. Until now chemical inhibitors have been used, but they are rarely 100% specific. Anti-human inhibitory antibodies have also been used, but they may not recognize the porcine enzyme and therefore will not inhibit the reaction. Antibodies for immunoblotting would also make it possible to estimate how much of the total P450 the individual enzymes comprise. From what is known about the porcine P450, it can be concluded that the pig seems to be a good test species if CYP1A, CYP2A or CYP3A are involved in the metabolism of the test compound, depending on the contribution of other enzymes in competing pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号