首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
In the rat hippocampus, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are synthesized by neurons in an activity-dependent manner. Glutamate receptor activation increases whereas GABAergic stimulation decreases NGF and BDNF mRNA levels. Here we demonstrate that NGF and BDNF mRNA and NGF protein are up-regulated in the rat hippocampus by the activation of muscarinic receptors. Conversely, NGF and BDNF enhance the release of acetylcholine (ACh) from rat hippocampal synaptosomes containing the nerve endings of the septal cholinergic neurons. NGF also rapidly increases the high-affinity choline transport into synaptosomes. The reciprocal regulation of ACh, NGF and BDNF in the hippocampus suggests a novel molecular framework by which the neurotrophins might influence synaptic plasticity.  相似文献   

2.
A study of the brain-derived neurotrophic factor (BDNF)-binding capacity of pure astrocytes demonstrated that these cells bind and endocytose [125l]BDNF rapidly using the gp95trkb truncated receptor. A linear Scatchard plot indicated the presence of only one type of receptor that bound the ligand, with a low Kd of 1.24 × 10−8 M. There were an average of 36 468 copies of this receptor on untreated astrocytes. Interestingly, the neurotrophin was not degraded intracellularly, as demonstrated by HPLC experiments. Furthermore, the stored molecule was released by a mechanism regulated by the extracellular BDNF concentration as a bioactive neurotrophic molecule that supports neuron survival, in a time- and temperature-dependent manner. The data demonstrate that astrocytes exert an active role in the bioavailability of this neurotrophin, which is further enhanced in an inflammatory-like situation induced experimentally in culture using interferon-SgM.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) is a pleiotropic molecule that acts as a neurotrophic factor for a wide range of embryonic neurons as well as a differentiation factor for sympathetic neuroblasts and O2A progenitor cells in culture. CNTF messenger RNA (mRNA) is present at very low levels in the normal adult rat central nervous system (CNS), but is dramatically up-regulated after an aspiration lesion of dorsal hippocampus and overlying cortex, in the area coincident with glial scar. The increased level of CNTF mRNA in lesioned hippocampus is maximal by 3 days and is sustained for up to 20 days, the longest time point examined. In contrast, mRNA levels for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were slightly decreased during the same period. In situ hybridization experiments revealed that cells expressing CNTF mRNA were concentrated at the margin of the wound, and also present within the gelfoam which filled the lesion cavity. This distribution of CNTF-expressing cells corresponded very closely to that of cells expressing high levels of glial fibrillary acidic protein mRNA at the wound site. Paralleling the observed increase in CNTF mRNA, increased levels of CNTF-like neurotrophic activity were apparent in soluble extracts of the lesioned tissues. This neurotrophic activity for ciliary ganglion neurons was completely blocked by the addition of neutralizing antiserum against CNTF. Basic fibroblast growth factor, which has been shown by others to increase after a similar lesion paradigm (Frautschy et al., Brain Res. , 553 , 291–299, 1991), does not contribute appreciably to this trophic activity. We conclude that CNTF is markedly increased as a function of injury to the CNS and that its expression is most likely restricted to reactive astrocytes in the glial scar.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) is a member of a family of related neurotrophic proteins which includes nerve growth factor (NGF) and hippocampus-derived neurotrophic factor/neurotrophin-3 (NT-3). To obtain information regarding possible roles for BDNF during postnatal brain development, we have examined the temporal and spatial expression of this trophic factor using in situ hybridization. In specific neocortical regions BDNF mRNA-expressing cells were seen at 2 weeks of age and thereafter. One particular neuronal cell type strikingly labelled was the inverted pyramidal cell population in the deep layers of parietotemporal cortex. In pyriform and cingulate cortices, BDNF mRNA was detected at postnatal day 1 and 1 week of age, respectively, with increasing levels during ontogeny. Several forebrain regions, including the thalamic anterior paraventricular nucleus, hypothalamic ventromedial nucleus as well as the preoptic area, contained moderate levels of BDNF mRNA throughout development. BDNF mRNA was detected transiently in several brainstem structures, notably in the substantia nigra and interpeduncular nucleus. Expression of this trophic factor in hippocampus was relatively low in the early neonatal brain, but attained high levels in the CA3 and CA4 regions as well as in the dentate gyrus by 2 weeks of age. At this early age, which is still during the period of neurogenesis in the dentate gyrus, labelling was restricted to the outer layer, which contained cells with a more mature appearance. However, by 3 weeks of age labelling was distributed throughout the granule cell layer. Our results show both transient and persistent expression of BDNF mRNA in various regions of the developing rat brain and suggest that there is a caudal to rostral gradient of BDNF expression during postnatal brain development, which may be correlated to neuronal maturation.  相似文献   

5.
Role of Bcl-2 in the Brain-derived Neurotrophic Factor Survival Response   总被引:8,自引:0,他引:8  
Developing neurons die if they fail to obtain an adequate supply of neurotrophins from their targets but how neurotrophins suppress cell death is not known. Although over-expression of exogenous Bcl-2 can prevent the death of cultured neurons deprived of members of the nerve growth factor family of neurotrophins it is not known if this effect is physiologically relevant. To determine if Bcl-2 participates in the neurotrophin survival response we used antisense bcl-2 RNA to inhibit endogenous Bcl-2 expression. Here we show that brain-derived neurotrophic factor (BDNF)-dependent neurons are killed by antisense bcl-2 RNA in the presence of BDNF. However, when these neurons were supported with ciliary neurotrophic factor (CNTF) their survival was not affected by antisense bcl-2 RNA. Likewise, the survival of CNTF-dependent ciliary neurons was not affected by antisense bcl-2 RNA. Our findings suggest that Bcl-2 is required for the BDNF survival response and that alternative, Bcl-2-independent survival mechanisms operate in sensory and parasympathetic neurons exposed to CNTF.  相似文献   

6.
目的 :观察脑缺血再灌注损伤后脑皮层、梗塞区和海马神经元脑源性神经营养因子 (BDNF)水平的变化 ,及与脑病理变化的关联性 ;探讨 BDNF在脑缺血再灌注损伤中的可能作用机理。方法 :线栓法复制大鼠大脑中动脉脑缺血再灌注模型 ,原位核酸分子杂交检测脑不同区域 BDNFm RNA,图象分析间接定量其水平。结果 :1.脑缺血及缺血再灌注均能诱导双侧脑皮层、海马和梗塞区及其对侧相应区神经元 BDNFm RNA水平增高。2 .梗塞区因缺血损伤过重 ,神经元 BDNFm RNA水平增高的幅度小。 3.再灌注后神经元 BDNFm RNA的水平继续升高 ;其变化规律在不同脑区大致相似。 4.神经元 BDNFm RNA基础水平与神经元抗损伤力呈正相关。结论 :脑缺血及缺血再灌注损伤均导致双侧大脑 BD-NFm RNA表达的变化 ,BDNFm RNA水平的提高能增强神经元的抗损伤能力。  相似文献   

7.
目的 探讨针刺对缺血再灌注大鼠海马内脑源性神经营养因子(BONF)基因表达的影响,推测针刺改善缺血再灌注的可能机制。方法 采用4-血管阴断法制备大鼠全脑缺血再灌注模型,电针刺激百会、肾俞、足三里穴后,利用RT-PCR检测BDNF mRNA。结果 正常组大鼠海马BDNF mRNA表达极低,缺血再灌注组大鼠海马BDNF mRNA表达明显增高,治疗15d的针刺1、2组大鼠海马BDNF mRNA表达较缺血再灌注组更高,及早治疗且治疗时间为20d的针刺3组大鼠海马BDNF mRNA表达较降低。结论 缺血再灌注大鼠海马BDNF水平增高有利于损伤的神经元存活、恢复;针刺促进脑内细胞分泌内源性BDNF可能是针刺有效治疗缺血再灌注的机制之一。  相似文献   

8.
9.
10.
Cultured astrocytes are known to possess a range of neurotrophic activities in culture. In order to examine which factors may be responsible for these activities, we have examined the expression of the genes for four known neurotrophic factors – ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) – in purified astrocyte cultures derived from neonatal rat hippocampus. Hippocampal astrocytes were found to express mRNA for three neurotrophic factors – CNTF, NGF and NT3 – at significantly higher levels than other cultured cell types or cell lines examined. BDNF messenger RNA (mRNA), however, was undetectable in these astrocytes. The levels of CNTF, NGF and NT3 mRNA in astrocytes were largely unaffected by their degree of confluency, while serum removal caused only a transient decrease in mRNA levels, which returned to basal levels within 48 h. Astrocyte-derived CNTF was found to comigrate with recombinant rat CNTF at 23 kD on a Western blot. Immunocytochemical analysis revealed strong CNTF immunoreactivity in the cytoplasm of astrocytes, weak staining in the nucleus, but no CNTF at the cell surface. NGF and NT3 were undetectable immunocytochemically. CNTF-like activity, as assessed by bioassay on ciliary ganglion neurons, was found in the extract of cultured astrocytes but not in conditioned medium, whereas astrocyte-conditioned medium supported survival of dorsal root ganglion neurons but not ciliary or nodose ganglion neurons. This conditioned medium activity was neutralized with antibodies to NGF. Astrocyte extract also supported survival of dorsal root ganglion and nodose ganglion neurons, but these activities were not blocked by anti-NGF. Part, but not all, of the activity in astrocyte extracts which sustained nodose ganglion neurons could be attributed to CNTF.  相似文献   

11.
Until recently, astrocytes were not considered as sites for neurotrophic factor action. We show here that, both in vivo and in vitro , astrocytes express receptors for two separate families of neurotrophic factors. In the intact adult rat CNS, astrocytes express the extracellular domain of the neurotrophin receptor TrkB and, in a more restricted population, the low-affinity nerve growth factor receptor p75LNGFR. In the lesioned CNS, expression of the alpha component of the receptor for ciliary neurotrophic factor (CNTFRα) switches from a purely neuronal localization to cells in the glial scar at the edge of the wound. Using cultured hippocampal astrocytes as a model to address the functional status of these receptors, we have found only the truncated forms of TrkB and TrkC, which are incapable of signal transduction as measured by protein tyrosine phosphorylation or immediate early gene induction. In contrast, a fully functional CNTF receptor complex capable of signal transduction is present on cultured astrocytes. Thus, the neurotrophin receptors may act primarily to sequester or present the neurotrophins, whereas in the case of CNTF a functional response can be initiated within the astrocyte.  相似文献   

12.
13.
Neurotrophic effects of human brain-derived neurotrophic factor (hBDNF) on forebrain cholinergic neurons were addressed after ex vivo gene transfer to the intact adult rat brain, using a conditionally immortalized neural progenitor cell line (CINP) engineered to secrete the neurotrophin (2.8 ng/h/106 cells). This cell line was derived by repeated retroviral infection of the parental neural precursor line HiB5 followed by subcloning. The cells survived well in the host brain for long periods of time (up to 4 weeks), and induced a hypertrophic response of cholinergic neurons (positive for acetylcholinesterase, choline acetyltransferase or low-affinity nerve growth factor receptor) in the nucleus basalis magnocellularis and striatum. We conclude that these cholinergic cell groups are responsive to a low-level supply (nanograms per day) of BDNF in vivo when the neurotrophin is administered locally in the vicinity of the cell bodies.  相似文献   

14.
目的通过观察雌激素对缺血性脑卒中后抑郁大鼠模型海马和杏仁核的脑源性生长因子(BDNF)-磷酸化酪氨酸激酶B(pTrkB)的表达,探讨缺血性脑卒中后内源性抑郁的发病机制。方法将SD雌性大鼠随机分为对照组12只(无任何干预)、模型组16只(MCAO术后2周,皮下注射大豆油,持续2周)和雌激素组16只(MCAO术后2周,皮下注射溶有10μg 17β-雌二醇的0.1 mL大豆油,持续2周)。通过旷场实验和强迫游泳实验观察大鼠行为学变化,应用免疫组化和Western blot方法观察海马和杏仁核中BDNF和pTrkB表达。结果雌激素干预后:①旷场实验和强迫游泳中,大鼠行为学评分均显著提高,雌激素组与模型组比较,差异有统计学意义(P0.01);②免疫组化法观察示雌激素组海马和杏仁核BDNF阳性细胞数与模型组比较明显增多,差异有统计学意义(P0.05);③Western blot法检测示雌激素组BDNF/β-actin和pTrkB/TrkB灰度比值较模型组明显提高(P0.05)。结论雌激素能改善脑卒中后大鼠的抑郁行为,其机制可能是通过BDNF-pTrkB信号通路的变化而改善PSD症状。  相似文献   

15.
We analysed the distribution of brain-derived neurotrophic factor (BDNF) and its receptor trkB in the adult rat visual cortex, paying particular attention to a GABAergic neuronal subpopulation—the parvalburnin-positive cells. We found expression of trkB in the cell body and apical dendrite of pyramidal neurons and in the cell body of non-pyramidal neurons. Double labelling experiments revealed extensive colocalization of parvalbumin and trkB immunoreactivity in non-pyramidal neurons. Interestingly, the trkB-positive pyramidal neurons appeared surrounded by parvalbumin-labelled boutons. The use of double immunohistochemistry and in situ hybridization histochemistry showed that parvalbumin-positive neurons express trkB mRNA. BDNF rnRNA was found in several cells. Coexpression of BDNF mRNA and parvalbumin immunoreactivity was extremely rare. These data strongly suggest that BDNF synthesized by cortical neurons acts as a postsynaptically derived factor for parvalbumin-positive neurons in the adult rat visual cortex.  相似文献   

16.
17.
Brain‐derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic‐pituitary‐adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF‐specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (?31%) and hypothalamus (?35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild‐type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress.  相似文献   

18.
Summary. In the present study, cell death induced by glucose deprivation in primary cultures of cerebellar granule neurons was examined. Glucose deprivation-induced apoptotic cell death was demonstrated using the terminal transferase-mediated (TdT) deoxyuridine triphosphate (d-UTP)-biotin nick end labeling (TUNEL) method and DNA fragmentation assays. When the effects of different neurotrophins on the survival of cerebellar granule neurons after glucose deprivation were assessed, BDNF, but not NT-3 or NGF, was found to protect cerebellar granule neurons against glucose deprivation-induced cell death. In addition, BDNF treatment increased c-Fos immunoreactivity in the cerebellar granule neurons. These results are consistent with the hypothesis that neuronal death due to glucose deprivation has a significant apoptotic component and that neurotrophins can protect against hypoglycemic damage. Received December 17, 1997; accepted May 19, 1998  相似文献   

19.
We investigated the effect of brain-derived neurotrophic factor (BDNF) on hippocampal long-term potentiation (LTP) and cognitive functions after global cerebral ischemia in the rat. After four-vessel occlusion, BDNF was administered via an osmotic minipump continuously over 14 days intracerebroventricularly. Electrophysiological experiments were performed 14 days after cerebral ischemia. Test stimuli and tetanization were delivered to the Schaffer collaterals of the hippocampus and field excitatory postsynaptic potentials (fEPSP) were recorded in the CA1 region. Cognitive impairment was analyzed repeatedly with a passive avoidance test, a hole-board test, and with an activity center on the same animal. In sham-operated animals, LTP was consistantly induced after delivering a tetanus (increase of initial slope of fEPSP to 173 +/- 12% of baseline; n = 6). After transient forebrain ischemia LTP could not be induced (117 +/- 4% of baseline; n = 7). In ischemic animals treated with BDNF, LTP could be induced (168 +/- 28% of baseline; n = 8). Transient forebrain ischemia resulted in a significant decrease in spatial discrimination performance but not of associative memory. The ratios for working memory (WM) and reference memory (RM) 15 days after ischemia were lower in the ischemic rats (n = 10) than in the sham-operated control animals (n = 10; WM: 22 +/- 6 vs 72 +/- 7; RM: 30 +/- 7 vs 72 +/- 5). Postischemic intracerebroventricular BDNF infusion increased both WM (63 +/- 4; n = 10) and RM (58 +/- 5; n = 10). The spontaneous locomotor activity did not differ significantly in the three groups. These data indicate a protective effect of BDNF for synaptic transmission and cognitive functions after transient forebrain ischemia.  相似文献   

20.
目的:探讨红景天苷和脑源性神经营养因子(BDNF)、神经干细胞(NSCs)共移植对致鼠NSCs定向分化影响。方法:将戊四氮致大鼠分为模型组、NSCs组、NSCs+BDNF组和NSCs+BDNF+红景天苷组。取新生大鼠海马组织,将培养的NSCs与BDNF+红景天苷+BDNF和基础培养基分别移植至致鼠海马组织中,苏木精-伊红染色及免疫组化检测不同时间点5-溴脱氧尿嘧啶核苷(BrdU)、谷氨酸脱羧酶(GAD65)阳性细胞数,并观察大鼠行为学改变。结果:NSCs+BDNF+红景天苷共移植组与其他组比较,各时间点BrdU、GAD65阳性细胞数均增多(P〈0.05)。第3周开始,大鼠癫发作次数最少(P〈0.05)。结论:BDNF与红景天苷联合有利于神经干细胞向γ-氨基丁酸能神经元分化。两者联合移植至致鼠后能减少大鼠的癫发作次数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号