首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we utilised a number of adenoviral constructs in order to examine the role of intermediates of the NF-kappaB pathway in the regulation of inducible nitric oxide synthase (iNOS) induction in rat aortic smooth muscle cells (RASMCs). Lipopolysaccharide (LPS) stimulated a significant increase in iNOS induction and NF-kappaB DNA binding. These parameters were substantially reduced by overexpression of a wild-type Ikappa-Balpha adenoviral construct (Ad.Ikappa-Balpha), confirming a role for NF-kappaB in iNOS induction. Infection with a dominant-negative IKKalpha adenoviral construct (Ad.IKKalpha+/-) did not significantly affect iNOS induction, NF-kappaB DNA binding or Ikappa-Balpha loss. Infection of RASMCs with adenovirus encoding a dominant-negative IKKbeta (Ad.IKKbeta+/-) essentially abolished iNOS induction and activation of the NF-kappaB pathway. Pretreatment of RASMCs with a novel specific inhibitor of IKKbeta, SC-514, significantly reduced iNOS induction, NF-kappaB DNA binding and I-kappaBalpha loss in a concentration-dependent manner. In both RASMCs and human umbilical vein endothelial cells (HUVECs), infection with Ad.IKKbeta+/- also inhibited COX-2 expression in response to LPS. However, Ad.IKKalpha+/- was again without effect. These data suggest that IKKbeta plays a predominant, selective role in the regulation of NF-kappaB-dependent induction of iNOS in RASMCs.  相似文献   

2.
3.
Proteinase-activated receptors (PARs1-4) have recently been identified as the molecular entity underlying the cellular effects of serine proteinases. In the present study we have investigated PAR2 signalling, expression and desensitization using cultured and acute slice preparations. Trypsin, SLIGRL and 2f-LIGKV-OH, agonists for PAR2, induced a transient increase in intracellular Ca(2+) levels in both neurons and astrocytes, via activation of the phospholipase C/IP(3) pathway. Furthermore, a single application of trypsin, but not SLIGRL nor 2f-LIGKV-OH, leads to prolonged desensitization of PAR2 responses. PAR2 immunoreactivity was observed in neurons (glutamatergic and GABAergic) and astrocytes within cultures and acute slices, with prominent labelling in neuronal somata and proximal dendrites. Functionally, cultured neurons which exhibited the highest levels of PAR2 labelling, also exhibited the largest Ca(2+) signals upon PAR2 activation. Given the importance of Ca(2+) signalling in hippocampal synaptic plasticity and neurodegeneration, PAR2 may play a key modulatory role in these processes.  相似文献   

4.
UTP causes interleukin (IL)-6 production via mRNA expression through P2Y(2)/P2Y(4) receptors in human HaCaT keratinocytes. In the present study, we analyzed the mechanism of UTP-induced IL-6 production in these cells. UTP, an agonist of P2Y(2)/P2Y(4) receptors, induced phosphorylation of extracellular signal-regulated kinase (ERK) in a concentration- and time-dependent manner. PD98059, a MEK (mitogen-activated protein kinase kinase) inhibitor, and BAPTA-AM [O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester], an intracellular Ca(2+) chelator, reduced UTP-induced ERK phosphorylation and IL-6 mRNA expression. 2-APB [(2-aminoethoxy)diphenylborane], an inositol 1,4,5-trisphosphate (IP(3))-receptor antagonist, inhibited UTP-induced IL-6 mRNA expression; and the action of A23187, a Ca(2+) ionophore, resembled the action of UTP. In contrast, protein kinase C (PKC) downregulation and pertussis toxin did not affect UTP-induced IL-6 mRNA expression, suggesting that PKC and G(i) are not involved in the UTP-induced IL-6 production. However, AG1478, an epidermal growth factor (EGF)-receptor inhibitor, partially decreased UTP-induced ERK phosphorylation and IL-6 expression. These results suggest that UTP-induced IL-6 production is in part mediated via phosphorylation of ERK through G(q/11)/IP(3)/[Ca(2+)](i) and transactivation of the EGF receptor.  相似文献   

5.
Gastric epithelial cells were incubated with a panel of clinical isolates of Helicobacter pylori, including nonulcer dyspepsia with gastritis (HS, n = 20), gastric ulcer (HU, n = 20), duodenal ulcer (HD, n = 21), and gastric cancer (HC, n = 20). HC strains induced a higher cyclooxygenase-2 (COX-2) expression than those from HS, HD, and HU. The bacterial virulence factors and the host cellular pathways were investigated. Virulence genes of iceA, vacA, babA2, cagA 3' repeat region, and hrgA failed to show any association with the disease status and COX-2 expression. Methylation-specific polymerase chain reaction revealed HC strains not affecting the methylation status of COX-2 promoter. Nuclear factor (NF)-kappaB, NF-interleukin 6, and cAMP response element were found to be involved in COX-2 induction. We explored a novel NF-kappaB activation pathway. The mutants of TLR2 and TLR9, but not TLR4, inhibited H. pylori-induced COX-2 promoter activity, and neutralizing antibodies for TLR2 and TLR9 abolished H. pylori-induced COX-2 expression. Phosphatidylinositol-specific phospholipase C (PI-PLC), protein kinase C (PKC), and Src inhibitors inhibited COX-2 induction. The dominant-negative mutants of NIK and various IkappaB kinase complexes, including IKKbeta (Y188F), IKKbeta (Y199F), and IKKbeta (FF), inhibited the COX-2 promoter activity. Phosphorylation of GST-IKKbeta (132-206) at Tyr188 and Tyr199 by c-Src was found after H. pylori infection. In summary, H. pylori induces COX-2 expression via activations of NF-kappaB, NF-interleukin 6, the cAMP response element. In NF-kappaB activation, H. pylori acts through TLR2/TLR9 to activate both the cascade of PI-PLCgamma/PKCalpha/c-Src/IKKalpha/beta and the cascade of NIK/IKKalpha/beta, resulting in the IkappaBalpha degradation and the expression of COX-2 gene. The COX-2 overexpression may contribute to the carcinogenesis in patients colonized with these strains.  相似文献   

6.
7.
8.
We previously found that bee venom (BV) and melittin (a major component of BV) has anti-inflammatory effect by reacting with the sulfhydryl group of p50 of NF-kappaB. Since the sulfhydryl group is present in IkappaB kinase (IKKalpha and IKKbeta), anti-inflammatory effect of melittin via interaction with IKKs was investigated. We first examined binding of melittin to IKKs using surface plasmon resonance analyzer. Melittin binds to IKKalpha (K(d) = 1.34 x 10(-9) M) and IKKbeta (K(d) = 1.01 x 10(-9) M). Consistent with the high binding affinity, melittin (5 and 10 microg/ml) and BV (0.5, 1 and 5 microg/ml) suppressed sodium nitroprusside, TNF-alpha and LPS induced-IKKbeta and IKKbeta activities, IkappaB release, and NF-kappaB activity as well as the expressions of iNOS and COX-2, and the generation of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in Raw 264.7 mouse macrophages and synoviocytes obtained from rheumatoid arthritis patients. The binding affinities of melittin to mutant IKKs, was reduced, and the inhibitory effect of melittin on IKK and NF-kappaB activities, and NO and PGE(2) generation were abrogated by the reducing agents or in Raw 264.7 transfected with mutant plasmid IKKalpha (C178A) or IKKbeta (C179A). These results suggest that melittin binding to the sulfhydryl group of IKKs resulted in reduced IKK activities, IkappaB release, NF-kappaB activity and generation of inflammatory mediators, indicating that IKKs may be also anti-inflammatory targets of BV.  相似文献   

9.
Imidacloprid (IMI) is the principal neonicotinoid (the only major new class of synthetic insecticides of the past three decades). The excellent safety profile of IMI is not shared with a metabolite, desnitro-IMI (DNIMI), which displays high toxicity to mammals associated with agonist action at the alpha4beta2 nicotinic acetylcholine receptor (nAChR) in brain. This study examines the hypothesis that IMI, DNIMI, and (-)-nicotine activate the extracellular signal-regulated kinase (ERK) cascade via primary interaction with the alpha4beta2 nAChR in mouse neuroblastoma N1E-115 cells. These three nicotinic agonists induce phosphorylation of ERK (p44/p42) in a concentration-dependent manner with an optimal incubation period of 30 min. DNIMI (1 microM)-induced ERK activation is blocked by nicotinic antagonist mecamylamine but not by alpha-bungarotoxin and muscarinic antagonist atropine. This activation is prevented by intracellular Ca(2+) chelator BAPTA-AM but not by removal of external Ca(2+) using EGTA and Ca(2+)-free medium. 2-Aminoethoxy-diphenylborate, a blocker for inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from intracellular stores, inhibits DNIMI-induced ERK activation but a high level of ryanodine (to block ryanodine receptor-mediated Ca(2+) release) does not. The inhibitor U-73122 for phospholipase C (to suppress IP(3) production) prevents ERK activation evoked by DNIMI. Inhibitors for protein kinase C (PKC) (GF109203X) and ERK kinase (PD98059) block this activation whereas an inhibitor (H-89) for cyclic AMP-dependent protein kinase does not. Thus, neonicotinoids activate the ERK cascade triggered by primary action at the alpha4beta2 nAChR with an involvement of intracellular Ca(2+) mobilization possibly mediated by IP(3). It is further suggested that intracellular Ca(2+) activates a sequential pathway from PKC to ERK.  相似文献   

10.
We have studied the cellular mechanism responsible for induction of preproendothelin (preproET)-1 mRNA and release of ET-1 by thrombin in cultured bovine endothelial cells (ECs). Thrombin induced an immediate and dose-dependent formation of inositol-1,4,5-trisphosphate (IP3) with a concomitant increase in intracellular Ca2+ concentration ([Ca2+]i). The thrombin-induced ET-1 release was abolished either by a phospholipase C inhibitor, a protein kinase C (PKC) inhibitor, or an intracellular Ca(2+)-chelator, whereas a Ca(2+)-channel antagonist was ineffective. A selective thrombin inhibitor (argatroban) decreased IP3 formation and the increase in [Ca2+]i and ET-1 release stimulated by thrombin. Northern blot analysis revealed that thrombin-induced expression of preproET-1 mRNA was inhibited completely by a PKC inhibitor and partially by argatroban. These data suggest that thrombin is involved in the mechanism of preproET-1 mRNA expression and subsequent ET-1 release, possibly through activation PKC and mobilization of intracellular Ca2+ resulting from the receptor-mediated phosphoinositide breakdown in ECs.  相似文献   

11.
The regulatory mode of the P2Y(11) purinoceptor-mediated signalling cascades towards phospholipase C and adenylyl cyclase was studied in HL-60 promyelocytes. Treatment with the potent P2Y(11) receptor activator dATP evoked an elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) and inositol 1,4,5-trisphosphate (IP(3)) production that was sustained for longer than 30 min. However, the dATP-induced responses were significantly inhibited by the activation of protein kinase C after a short exposure to phorbol 12-myristate 13-acetate (PMA). dATP also potently stimulated cyclic AMP production with half maximum effect seen at 23+/-7 microM dATP. In addition, a 5-min pretreatment with PMA enhanced the dATP-stimulated cyclic AMP accumulation. PMA potentiated the cyclic AMP production when adenylyl cyclase was activated directly by forskolin or indirectly by G protein activation after cholera toxin treatment. dATP also enhanced the forskolin-mediated cyclic AMP generation. Treatment of the cells with 10 microM U-73122, which almost completely blocked the dATP-stimulated IP(3) production and [Ca(2+)](i) rise, had no effect on cyclic AMP accumulation, while 10 microM 9-(tetrahydro-2-furyl)adenine (SQ 22536), which inhibited the adenylyl cyclase activation, did not effect the dATP-stimulated phosphoinositide turnover. Taken together, the results indicate that P2Y(11) receptor-mediated activation of phospholipase C and adenylyl cyclase occurs through independent pathways and is differentially regulated by protein kinase C in HL-60 cells.  相似文献   

12.
1. The purpose of this study was to compare oocytes from the pipid frogs Xenopus tropicalis and Xenopus laevis, with respect to their utility for studying Ca(2+) signalling mechanisms and for expression of heterologous proteins. 2. We show that X. tropicalis oocytes possess an intracellular Ca(2+) store that is mobilized by inositol (1,4,5) trisphosphate (IP(3)). Ca(2+) signalling is activated by endogenous lysophosphatidic acid receptors and cytosolic Ca(2+) activates a plasma membrane chloride conductance. The spatiotemporal organization of cytosolic Ca(2+) signals, from the microscopic architecture of elementary Ca(2+) 'puffs' to the macroscopic patterns of Ca(2+) spiking are closely similar to the local and global patterns of Ca(2+) release previously characterized in oocytes from X. laevis. 3. By injecting X. tropicalis oocytes with cDNA encoding an ER-targeted fluorescent protein construct, we demonstrate the capacity of the X. tropicalis oocyte to readily express heterologous proteins. The organization of ER is polarized across the oocyte, with the IP(3)-releaseable store targeted within an approximately 8 microm wide band that circumscribes the cell. 4. We conclude that the X. tropicalis oocyte shares many of the characteristics that have made oocytes of X. laevis a favoured system for studying Ca(2+) signalling mechanisms. Moreover, X. tropicalis oocytes display further practical advantages in terms of imaging depth, Ca(2+) signal magnitude and electrical properties. These further enhance the appeal of X. tropicalis as an experimental system, in addition to its greater amenability to transgenic approaches.  相似文献   

13.
We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+)-sensor, and Orai1, a Ca(2+) selective channel, in regulating Ca(2+) entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (ECs) challenged with thrombin known to induce Ca(2+) entry via TRPC1/4. Deletion or knockdown of TRPC4 abolished Ca(2+) entry secondary to depletion of ER Ca(2+) stores, preventing the disruption of the endothelial barrier. Knockdown of STIM1 (but not of Orai1or Orai3) or expression of the dominant-negative STIM1(K684E-K685E) mutant in ECs also suppressed Ca(2+) entry secondary to store depletion. Ectopic expression of WT-STIM1 or WT-Orai1 in TRPC4(-/-)-ECs failed to rescue Ca(2+) entry; however, WT-TRPC4 expression in TRPC4(-/-)-ECs restored Ca(2+) entry indicating the requirement for TRPC4 in mediating store-operated Ca(2+) entry. Moreover, expression of the dominant-negative Orai1(R91W) mutant or Orai3(E81W) mutant in WT-ECs failed to prevent thrombin-induced Ca(2+) entry. In contrast, expression of the dominant-negative TRPC4(EE647-648KK) mutant in WT-ECs markedly reduced thrombin-induced Ca(2+) entry. In ECs expressing YFP-STIM1, ER-store Ca(2+) depletion induced formation of fluorescent membrane puncta in WT but not in TRPC4(-/-) cells, indicating that mobilization of STIM1 and engagement of its Ca(2+) sensing function required TRPC4 expression. Coimmunoprecipitation studies showed coupling of TRPC1 and TRPC4 with STIM1 on depletion of ER Ca(2+) stores. Thus, TRPC1 and TRPC4 can interact with STIM1 to form functional store-operated Ca(2+)-entry channels, which are essential for mediating Ca(2+) entry-dependent disruption of the endothelial barrier.  相似文献   

14.
1. Previously, we found that contractions in response to receptor-dependent (i.e. a(1)-adrenoceptor agonist phenylephrine) and -independent (i.e. cyclopiazonic acid) stimuli are decreased in rat aorta during late diabetes. The aim of the present study was to further investigate the changes of intracellular Ca(2+) homeostasis in diabetic aortic smooth muscle cells. Functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores of the sarcoplasmic reticulum (SR) were evaluated using Fluo-3 acetoxymethyl ester fluorescence, western blot and organ bath techniques. 2. In aortic smooth muscle cells from diabetic rats, the Ca(2+) release and Ca(2+) influx caused by both 10 mmol/L phenylephrine (depletion of IP(3)-sensitive Ca(2+) stores) and 1 mmol/L ryanodine (depletion of ryanodine-sensitive Ca(2+) stores) were both significantly decreased compared with control. Moreover, protein expression levels of IP(3) (260 kDa) and ryanodine receptors (500 kDa) were reduced by 31.8 +/- 7.7 and 69.2 +/- 8.4%, respectively, in aortas from diabetic rats compared with those from control rats. 3. In diabetic rat aorta, phenylephrine-induced contractility was decreased to approximately two-thirds of that in controls, whereas ryanodine alone did not cause obvious contraction in aortas from either control or diabetic rats. 4. The present results suggest that the hyporeactivity of aortic smooth muscle to vasoconstrictors in diabetes results mainly from changes to the IP(3)-sensitive Ca(2+) release pathway. The SR Ca(2+) signalling pathway plays a crucial role in the development of diabetic vascular complications.  相似文献   

15.
The involvement of Ca(2+) sensitization mediated through Rho kinase in the contractility of rat epididymal vas deferens was investigated using Rho kinase inhibitors, trans-4-[(1R)-1-aminoethyl]-N-4-pyridinilcyclohexanecarboxamide dihydrochloride (Y-27632) and 1-(5-isoquinolinesulphonyl)homopiperazine (HA 1077), in comparison with myosin light chain kinase (MLCK) inhibitors, wortmannin and 1-(5-chloronaphthalenesulphonyl)homopiperazine (ML-9) and agents that affect protein kinase C (PKC) and non-receptor tyrosine kinase intracellular signalling. 2 In Ca(2+)-free/ethyleneglycol-bis-(beta-aminoethylether)N,N,N('),N(')-tetraacetic acid (EGTA) (1 mM) medium, noradrenaline evoked sustained contractions. Y-27632 and HA 1077 caused a concentration-dependent inhibition and complete relaxation (IC(50), 1.08 and 1.75 microM respectively). The Ca(2+)-free contraction was reduced by wortmannin (10 microM) or ML-9 (10 microM) but not by inhibitors of diacylglycerol metabolism, 3-[2-[4[bis(4-Fluoropheny)methylene]-1-piperidinyl]-2,3-dihydro-2-thioxi-4(H)-quinazolinone (R59949) (10 microm) or 1,6-bis(cyclohexyloximinocarbonylamino)hexane (RHC-80267) (10 microM) or by the phospholipase A(2) (PLA(2)) inhibitor, quinacrine (up to 100 microM) or tyrosine kinase inhibitor, genistein (30 microM). 3 In the presence of Ca(2+) (2.5 mM), noradrenaline (100 microM) evoked rhythmic activity and biphasic tonic contractions. Y-27632 (1-10 microM) or HA 1077 (1-10 microM) reduced the amplitude of rhythmic activity and tonic contractions. ML-9 (10 microM) attenuated the occurrence of rhythmic activity and modestly reduced the tonic contractions. ML-9 (10 microM) combined with Y-27632 (10 microM) significantly reduced the tonic contractions. ML-9 (30 microM) alone (or combined with Y-27632 10 microM) suppressed the rhythmic activity and substantially reduced (or abolished) the tonic contractions. 4 Contractions evoked by high [K(+)](o) (120 mM) or alpha,beta-methylene ATP (10 microM) were reduced significantly by Y-27632 (1-3 microM) indicating that the Rho kinase signalling pathway is activated by direct tissue depolarization or by stimulation of ligand-gated P(2X) purinoceptors. 5 Collectively, these results indicate that Ca(2+)-sensitization mediated by Rho kinase is involved in agonist- or depolarization-induced contraction of rat epididymal vas deferens. It is the major contractile mechanism underlying noradrenaline-induced Ca(2+)-free responses. It contributes to Ca(2+)-dependent rhythmic contractility and optimizes the development of full contractile tension triggered through calmodulin/MLCK activation by stimulated influx of Ca(2+).  相似文献   

16.
1. Inhibition of creatine kinase is known to suppress cardiac contractile reserve in intact hearts, although the underlying mechanism has not been elucidated. 2. The present study was designed to examine whether cardiac depression induced by creatine kinase inhibition was due to action at the level of the essential contractile element, namely cardiomyocytes. Adult rat cardiomyocytes were perfused with the creatine kinase inhibitor iodoacetamide (90 micromol/L) for 90 min. Mechanical and intracellular Ca(2+) properties were evaluated using edge-detection and fluorescence microscopy, respectively. Myocytes were superfused with normal (1.3 mmol/L) or high (3.3 mmol/L) extracellular Ca(2+) contractile buffer. Mechanical function was examined, including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time to 90% PS (TPS(90)), time to 90% relengthening (TR(90)) and integration of shortening/relengthening (normalized to PS). Intracellular Ca(2+) transients were evaluated using the following indices: resting and rise of fura-2 fluorescence intensity (Delta FFI) and intracellular Ca(2+) decay time constant. 3. The results indicate that elevated extracellular Ca(2+) stimulated cardiomyocyte positive inotrope, manifested as increased PS, +/-dL/dt, area of shortening, resting FFI and Delta FFI associated with a shortened TR(90) and intracellular Ca(2+) decay time constant. High extracellular Ca(2+) did not affect TPS(90) and area of relengthening. Iodoacetamide ablated high Ca(2+)-induced increases in PS, +/-dL/dt, area of shortening, resting FFI, Delta FFI and shortened TR(90) and intracellular Ca(2+) decay time constant. Iodoacetamide itself significantly enhanced the area of relengthening and TR(90) without affecting other indices. 4. Collectively, these data demonstrate that inhibition of creatine kinase blunts high extracellular Ca(2+)-induced increases in cardiomyocyte contractile response (i.e. cardiac contractile reserve).  相似文献   

17.
18.
1. Alterations in a(1)-adrenoceptor signalling that result in enhanced contraction in resistance arteries in heart failure are not well characterized. To clarify whether this enhanced constriction is due to Ca(2+)-dependent or -independent effects, we measured the phenylephrine-induced changes in [Ca(2+)](i) in the presence of a Rho kinase inhibitor or an inositol 1,4,5-trisphosphate (IP(3)) receptor inhibitor. 2. Heart failure was induced in rats by ligation of the left coronary artery. Changes in the internal diameter of pressurized small femoral arteries were examined using videomicroscopy. Phenylephrine concentration-response curves, constructed in the presence of the Rho kinase inhibitor Y27632 (0.3 micromol/L) or the IP(3) receptor inhibitor xestospongin C (0.3 micromol/L), were compared in heart failure rats and sham-operated (control) rats; fura-2 Ca(2+) signals were measured in the arteries of both groups. 3. The heart : bodyweight ratio, lung : bodyweight ratio, left ventricular end-diastolic pressure and plasma B-type natriuretic peptide were significantly higher in heart failure rats compared with control rats. Phenylephrine-induced contractile responses and increases in [Ca(2+)](i) were significantly greater in arteries from heart failure rats compared with arteries from control rats. At 0.3 micromol/L, Y27632 selectively inhibited phenylephrine-induced constrictions of heart failure arteries, but had no effect on the increase in [Ca(2+)](i). 4. Immunohistochemical staining for Rho kinase was greater in heart failure rats compared with control rats. 5. The degree of inhibition of both the phenylephrine-induced constriction and the increase in [Ca(2+)](i) by xestospongin C (0.3 micromol/L) was greater in arteries from heart failure rats than in those from control rats. 6. The increased contractile response to phenylephrine in arteries of heart failure rats results from IP(3)-dependent increases in [Ca(2+)](i) and from an enhanced Ca(2+) sensitivity via a Rho kinase-dependent mechanism.  相似文献   

19.
ATP is released at the neuromuscular junction to regulate development and proliferation. The sequential expression of P2X and P2Y receptors has been correlated to these effects in many species and cell lines. We have therefore investigated ATP mediated signalling in differentiated primary human skeletal muscle cells. ATP was capable to trigger Ca2+ transients in these cells via P2Y receptors which were not attributable to Ca2+ influx via P2X receptors. Instead, ATP propagated the formation of inositol phosphate (IP) with an EC50 of 21.3 microM. The Ca2+ transient provoked by ATP was abrogated roughly 75% by the phospholipase C (PLC) inhibitor, U73122. Interestingly, the ryanodine sensitive Ca2+ pool was not involved in ATP triggered Ca2+ release. On mRNA level and by a pharmacological approach we confirmed the presence of the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Substantially, ATP activated IP formation via a P2Y1 receptor. In addition, ATP elicited extracellular signal regulated kinase (ERK)1/2 phosphorylation in a time and concentration dependent manner, again mainly via P2Y1 receptors. The ATP mediated ERK1/2 phosphorylation was strictly dependent on phospholipase C and PI3 kinase activity. Importantly, ATP mediated ERK1/2 phosphorylation was Ca2+ independent. This observation was corroborated by the finding that conventional protein kinase C inhibitors did not suppress ATP triggered ERK1/2 phosphorylation. Taken together, these observations highlight the importance of ATP as a co-neurotransmitter at the neuromuscular junction via dual signalling, i.e. IP3 receptor mediated Ca2+ transients and Ca2+ insensitive phosphorylation of ERK1/2.  相似文献   

20.
1. The present study was performed to determine the role of Rho-Rho kinase signalling pathway in smooth muscle cells from both healthy and varicose human saphenous vein. 2. The Rho kinase inhibitor Y-27632 inhibited the noradrenaline (NA)-induced contraction in human saphenous veins with IC(50) corresponding to 0.5 microM and 10.9 microM in control and varicose veins, respectively. The maximal amplitude of the NA-induced contraction was smaller in varicose vein compared to control (1263+/-172 mg versus 1974+/-245 mg, P<0.05). 3. In beta-escin permeabilized strips, GTPgammaS induced a rise in tension that was inhibited by Y-27632. The amplitude of the GTPgammaS-induced contraction was smaller in varicose compared to control veins (23.1+/-2.4% versus 41.3+/-2.2%, P<0.002). 4. In smooth muscle cells, Y-27632 induced disassembly of both actin cytoskeleton and extracellular fibronectin matrix. In comparison to control cells, varicose vein smooth muscle cells show decreased actin cytoskeleton organization and reduction of fibronectin matrix deposition. 5. The Rho proteins Rnd1 and RhoA, and Rho kinase 1 are expressed in human saphenous veins. A 2.6 fold reduction of Rho kinase expression was found in varicose veins. 6. These results indicate that RhoA-Rho kinase mediated Ca(2+) sensitization of the contraction and regulated actin cytoskeleton and extracellular fibronectin matrix assembly in human saphenous smooth muscle. The decrease of Rho kinase expression and Rho kinase-dependent functions detected in smooth muscle from varicose veins supports a role of this signalling pathway in the functional alterations of the vein wall occurring in the course of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号