首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The CD40/CD40L costimulatory pathway plays a crucial role in allograft rejection. The purpose of this study was to determine the effectiveness of anti-CD40L monoclonal antibody (mAb) treatment as a method to induce long-term, tissue-specific, immunologic hyporesponsiveness to peripheral nerve allografts. Sciatic nerve allografts were performed from BALB/c donor mice into C57BL/6 recipients. Anti-CD40L mAb (1 mg) was administered intraperitoneally to recipient mice on postoperative days 0, 1, and 2. After a 14-, 28-, or 60-day recovery period, the mice were rechallenged with either a BALB/c cardiac or peripheral nerve allograft. Rejection was assessed by measuring the production of interferon gamma (IFN-gamma), interleukin (IL)-2, -4, and -5, and alloantibodies immunoglobulin (Ig) M and IgG. IFN-gamma, IL-2, IL-4, IL-5, IgM, and IgG responses were much lower in the anti-CD40L mAb group compared with controls. Nerve allograft and nerve isograft rechallenge 60 days following the original nerve allotransplantation produced low cytokine responses, whereas cardiac allograft rechallenge produced high cytokine production, indicative of acute rejection. Short-term anti-CD40L treatment may cause long-term, tissue-specific, immunologic hyporesponsiveness. This may allow time for native axons to traverse the transplanted nerve allograft and replace the graft with autogenous peripheral nerve tissue.  相似文献   

3.
The proinflammatory cytokine IL-6 plays an important role in controlling T-cell differentiation, especially the development of Th17 and regulatory T cells. To determine the function of IL-6 in regulating allograft rejection and tolerance, BALB/c cardiac grafts were transplanted into wild-type or IL-6-deficient C57BL/6 mice. We observed that production of IL-6 and IFN-γ was upregulated during allograft rejection in untreated wild-type mice. In IL-6-deficient mice, IFN-γ production was greater than that observed in wild-type controls, suggesting that IL-6 production affects Th1/Th2 balance during allograft rejection. CD28-B7 blockade by CTLA4-Ig inhibited IFN-γ production in C57BL/6 recipients, but had no effect on the production of IL-6. Although wild-type C57BL/6 recipients treated with CTLA4-Ig rejected fully MHC-mismatched BALB/c heart transplants, treatment of IL-6-deficient mice with CTLA4-Ig resulted in graft acceptance. Allograft acceptance appeared to result from the combined effect of costimulatory molecule blockade and IL-6-deficiency, which limited the differentiation of effector cells and promoted the migration of regulatory T cells into the grafts. These data suggest that the blockade of IL-6, or its signaling pathway, when combined with strategies that inhibit Th1 responses, has a synergistic effect on the promotion of allograft acceptance. Thus, targeting the effects of IL-6 production may represent an important part of costimulation blockade-based strategies to promote allograft acceptance and tolerance.  相似文献   

4.
5.
冻干同种与异种骨移植免疫反应的比较研究   总被引:4,自引:0,他引:4  
目的: 通过比较冻干同种与异种骨移植免疫反应, 探讨异种骨移植排斥机制。方法: 取C57BL/6小鼠 10只和新西兰兔 1只, 分别为同种和异种骨供体, 通过处理制成冻干骨。取 40只BALB/c小鼠为骨移植受体, 随机分为A、B两组 (每组 20只), 分别在其股后肌袋植入冻干同种和冻干异种骨。分别于术后 1、2、4、6周分批取材检测。通过观察术后受者的淋巴细胞刺激指数、淋巴细胞亚群分析、细胞因子产生及组织学表现, 比较冻干同种与异种骨移植免疫反应。结果: 冻干异种骨移植组的细胞刺激反应在各不同时期均比同种组强 (P<0. 05 ), 而且其CD4 和CD8 T细胞亚群及IL 2分泌均高于同种组 (P<0. 05)。组织学检查也表明其细胞浸润多、成骨少。结论: 冻干同种与异种骨移植排斥机制基本相同, 二者均以Th1反应为主, 但异种骨移植排斥反应较强。  相似文献   

6.
BACKGROUND: There are conflicting reports on the importance of antibody and cell-mediated mechanisms and the influence of TH1 or TH2 cytokines on acute vascular xenograft rejection. We sought to resolve some of the recent discrepancies in the rat-to-mouse xenograft model where different recipient strains are used and investigated the TH1/TH2 influence on rejection. METHODS: Lewis rat heart xenograft survival was compared between BALB/c and C57BL/6 recipients. Antigraft antibody deposition, serum anti-rat antibody levels and B-cell deficient recipients were used to examine the contribution of antibody to rejection. To further investigate a TH1 or TH2 bias effect in vivo, we used BALB/c STAT4 knockout (KO) and STAT6 KO recipient mice. Experiments were repeated with rat skin xenografts to examine TH1/TH2 influences on cell-mediated rejection. RESULTS: The median survival (MS) of rat heart xenografts in BALB/c and C57BL/6 mice was five and eight days, respectively (P = 0.002). The MS in B-cell deficient mice was 16 days (P < 0.001). The MS in STAT4 KO and STAT6 KO mice was six and seven days respectively (P = 0.009). All non-B-cell deficient recipients showed strong IgM deposition and histological features of both cellular and antibody-mediated rejection. There was no correlation between serum anti-rat antibody levels and graft outcome or graft deposition. There was no survival difference of skin xenografts in BALB/c, C57BL/6, B-cell deficient, STAT6 KO, or STAT4 KO mice (8-9 days). CONCLUSIONS: Both humoral and cell-mediated immunity have significant roles in vascularized heart xenograft rejection. TH1/TH2 biases minimally affect rejection through humoral but not cellular immunity.  相似文献   

7.
BACKGROUND: The ability to block interferon signaling represents an important strategy in designing therapies to prevent beta-cell destruction during islet allograft rejection. METHODS: The SOCS proteins regulate cytokine signaling by blocking activation of JAK/STAT proteins. Using islets isolated from SOCS-1 transgenic mice (SOCS-1-Tg; these mice express SOCS-1 under the control of the human insulin promoter and are on the C57BL6/J background), we investigated whether SOCS proteins can prevent the destruction pancreatic islet cells transplanted beneath the kidney capsule of major histocompatibility complex mismatched normal BALB/c and spontaneously-diabetic NOD mouse recipients. RESULTS: Immunohistochemical staining for insulin confirmed the presence of donor SOCS-1-Tg islets in islet allografts harvested at 22 days posttransplant, whereas grafts of control non-Tg islets were destroyed by 14 days. In contrast, SOCS-1-Tg allogeneic islets were not protected from beta-cell destruction in clinically diabetic NOD mice. The islet allografts functioned for 1 week posttransplant; however, hyperglycemia returned after 2 weeks and the grafts were destroyed. Rejection of SOCS-1-Tg and non-Tg islets in autoimmune diabetic NOD mice was associated with an infiltrate of both CD4+ and CD8+ T cells and a T2-type cytokine response (IL-4) rather than the conventional T1-type cytokine response observed during islet allograft rejection. Self-antigen upregulation in response to IFN-gamma stimulation did not appear to be a factor in rejection of the islet allografts. CONCLUSIONS: These results demonstrate that expression of SOCS-1 in islets delays islet allograft rejection but cannot circumvent destruction of the islets by the recurrence of the tissue-specific autoimmune process of spontaneous diabetes.  相似文献   

8.
BACKGROUND: Xenograft rejection is a complex response in which macrophages and other effector cells are activated by CD4+ T cells. Initiation and regulation of this response is in part mediated by cytokines. In this study we test the hypothesis that xenograft destruction is an interleukin- (IL) 10 responsive, macrophage-mediated event. METHODS: To study the effect of the systemic administration of IL-10 on pancreatic islet xenograft rejection, a fusion protein of IL-10/Fc was used. This immunoligand possesses the bioavailability of IL-10 and the long circulating t1/2 in vivo, characteristic of Ig. Wistar rat islets were transplanted into C57BL6 mice. IL-10/Fc was administered either immediately before transplantation or in the posttransplant period. RESULTS: Both therapeutic protocols prolonged xenograft survival. Macrophage effector function was reduced in IL-10/Fc-treated mice, with a reduced macrophage infiltrate, reduced IL-12 and tumor necrosis factor-alpha gene expression and reduced serum NO2- levels. Although the number of T cells infiltrating islet grafts was not reduced, T cell effector function was inhibited in IL-10/Fc-treated animals with reduced interferon-gamma and IL-4 gene expression, reduced anti-donor cytotoxicity by recipient splenocytes and reduced anti-donor IgG1 antibody production. Ultimate rejection of the xenografts appears to be mediated by a CD4+ T cell dependent mechanism probably as a result of inadequate inhibition of IL-12 production by macrophages. CONCLUSION: IL-10/Fc prolonged rat pancreatic islet xenograft survival by inhibiting macrophage mediated immune responses. The effectiveness of this agent when administered pretransplant suggests it may have a role as an induction agent with potential clinical application.  相似文献   

9.
BACKGROUND: The role of the cytokine, interleukin (IL)-4, in allograft rejection and protection is not clear. We have previously shown that IL-4 transgenically expressed in a pancreas allograft does not protect the allograft from rejection. Here, we analyze the effect of the transgenically expressed IL-4 on the cytokine profile of the allograft-specific immune response. METHODS: C57BL/6SCID mice were infused with small numbers of spleen cells from C57BL/6 donors. The former received pancreas grafts from 1- to 2-day-old BALB/c donors which did or did not transgenically express IL-4 in the graft. Three weeks after the cell infusion, the spleens were removed and the splenocytes were restimulated in vitro with BALB/c APC, and third party BALB.K APC. IL-2 and IL-4 levels in the culture supernatants were measured. RESULTS: The presence of a pancreatic allograft induced an increase in the levels of both IL-2 and IL-4 in culture supernatants from splenocytes of mice receiving grafts compared with mice not receiving grafts. The presence of IL-4 transgenically expressed in the pancreas allograft had no effect on the in vitro cytokine profile. CONCLUSIONS: from these results we conclude that the failure of transgenically expressed IL-4 to protect the allograft was not associated with up-regulation of a graft antigen-specific IL-4 response.  相似文献   

10.
BACKGROUND: Because guinea pig corneal xenografts are rejected acutely (within 16 days) in mouse eyes by a T-cell-dependent mechanism, the authors wished to determine the functional phenotype of CD4+ effector T cells. METHODS: Orthotopic corneal xenotransplantation was performed from strain 13 guinea pigs to BALB/c mice. Grafted eyes were removed at specified times and examined histologically or subjected to cytokine and chemokine mRNA analysis using a multi-probe ribonuclease protection assay. Draining cervical lymph node cells were harvested at specified times and stimulated in vitro with x-irradiated strain 13 guinea pig spleen cells. Supernatants were assayed by enzyme-linked immunosorbent assay for content of interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, and IL-10 and cells were used for mRNA analysis. RESULTS: Rejected corneal xenografts were heavily infiltrated with polymorphonuclear leukocytes, the majority of which were eosinophils. These eyes contained mRNA for IL-4, IL-6, IL-10, IL-13, IL-15, and IFN-gamma. When stimulated with guinea pig spleen cells, T cells from draining cervical lymph nodes secreted primarily IL-4, IL-5, IL-10, and IFN-gamma. Eotaxin was overexpressed in eyes with rejected corneal xenografts. CONCLUSIONS: Acute rejection of corneal xenografts in mice is mediated by T cells that display a mixed T-helper (Th) type 2/Th1 phenotype and secrete eotaxin, an eosinophil chemoattractant. Eosinophil-dependent xenograft rejection bears similarities to immune elimination of parasites.  相似文献   

11.
We examined the role of perforin and FasL in corneal allograft rejection mediated by CD8+ and CD8 T cells. BALB/c corneas were transplanted orthotopically into vascularized, 'high-risk' graft beds in C57BL/6 mice, perforin knockout mice and FasL-defective gld/gld mice. CD8+ and CD8 T cells were collected following graft rejection and adoptively transferred to SCID mice, which were then challenged with BALB/c corneal allografts. In every case, CD8 T cells could mediate graft rejection when adoptively transferred to SCID mice that received BALB/c corneal allografts. Although CD8+ T cells also mediated graft rejection, the tempo was slower. Moreover, CD8+ T cells collected FasL-defective donors that had rejected corneal allografts, mediated corneal allograft rejection in only 50% of the SCID mice that received the adoptively transferred cells. In some cases, CD8+ T-cell-mediated rejection occurred in the absence of delayed-type hypersensitivity and cytotoxic T-lymphocyte activity, but was associated with CD8+ T-cell-mediated apoptosis of BALB/c corneal cells in vitro. The results demonstrate the redundancy in immune mechanisms of corneal allograft rejection. Either CD8+ or CD8 T cells can produce corneal allograft rejection, however functional FasL is necessary for optimal rejection, even in a high-risk setting.  相似文献   

12.
BACKGROUND: Production of nitric oxide (NO) by graft infiltrating macrophages has been proposed as an important effector mechanism of allograft rejection. Although high levels of NO are generated during allograft rejection, undetectable or only limited amounts of NO were found in rejected skin xenografts. METHODS: BALB/c mice were grafted with skin transplants from syngeneic, allogeneic or xenogeneic (rat) donors. The production of NO, cytokines and arginase in the grafts was determined by spectrophotometry, enzyme-linked immunosorbent assay, or polymerase chain reaction. Effects of depletion of CD4+ cells, neutralization of interleukin (IL)-4 or application of arginase inhibitors N(omega)-hydroxy-L-arginine (L-NOHA) and L-valine on production of NO in rejected xenografts were evaluated. RESULTS: Rejection of rat skin xenografts, on the contrary to rejection of allografts, was associated with a local high production of Th2 cytokines IL-4 and IL-10, overexpression of arginase genes, strongly enhanced arginase activity and attenuated NO generation in the graft. The supernatants obtained after cultivation of skin xenograft (but not allograft or syngeneic graft) explants contained a high arginase activity and strongly suppressed NO production by activated macrophages. This suppression was completely inhibited by L-NOHA or was overcome by an excess of exogenous L-arginine, a substrate for NO synthesis. Cocultivation of xenograft explants that did not produce NO with arginase inhibitors L-NOHA or L-valine restored NO generation in the graft. CONCLUSION: The results suggest that upregulation of arginase activity by Th2 cytokines during xenograft rejection limits the bioavailability of L-arginine for the inducible NO synthase and thus attenuates generation of NO by the graft-infiltrating macrophages.  相似文献   

13.
The role of B7 family members CD80 and CD86 in providing costimulatory signals to T cells is well established. Interestingly, previous studies show that host CD80/CD86 expression is required for cardiac allograft rejection. However, the role for host costimulation by CD80/CD86 molecules for the rejection of neovascularized islet allografts and xenografts is unknown. The purpose of this study was to determine whether islet allografts and/or rat islet xenografts required host CD80/CD86 molecules for acute rejection. Streptozotocin-induced diabetic C57Bl/6 (B6, H-2(b)) or B6 CD80/CD86 double-deficient mice were grafted with allogeneic BALB/c (H-2(d)) islet allografts or with WF (RT1(u)) islet xenografts. Nondiabetic B6 mice were grafted with BALB/c heterotopic cardiac allografts. Consistent with previous reports, BALB/c islet allografts were acutely rejected in wild-type B6 mice could survive long-term (>100 days) in B6 CD80/CD86-deficient animals. In stark contrast, both islet allografts and WF rat islet xenografts demonstrated acute rejection in both control B6 and in B6 CD80/CD86 deficient hosts. In conclusion, varied studies imply that the inherent pathways for rejecting primarily vascularized versus cellular allografts or xenografts may be distinct. The present study illustrates this concept by showing a marked difference in the role of host-derived CD80/CD86 costimulatory molecules for cardiac allograft versus islet allograft/xenograft rejection in vivo. Although such costimulation is rate limiting for cardiac allograft rejection, these same molecules are not necessary for acute rejection of either islet allografts or xenografts.  相似文献   

14.
15.
We have previously demonstrated that human T cells responding to porcine islets are primarily CD4+ and recognized porcine major histocompatibility complex class I molecules through the indirect pathway of antigen presentation. To determine whether this mechanism is responsible for rejection of adult porcine islets xenografts, porcine islets from adult pigs were transplanted under the kidney capsule of streptozotocin-treated CD4-knockout (KO), CD8-KO, Ig-KO and normal C57BL/6 mice. Islet xenografts were acutely rejected with similar kinetics when transplanted into normal C57BL/6 (MST=17.6 +/- 3.5 days) and Ig-KO (MST=19.0 +/- 1.7 days) mice. Interestingly, islet xenografts were rejected significantly earlier when transplanted into CD8-KO mice as compared with normal C57BL/6 (MST=7.0 +/- 0.01 days, P=2 x 10-4). Histopathological analysis revealed classical acute cellular rejection with severe diffuse interstitial cellular infiltrates in all rejected islet xenografts. In contrast, islet xenografts were not rejected when transplanted into CD4-KO mice (MST >/= 100 days, P=1 x 10-9). Histopathological analysis revealed no cellular infiltrates and intact islet xenografts. CD4+ T cells from both normal C57BL/6 and CD8-KO xenograft recipients showed detectable proliferative responses to porcine islets in the presence but not in the absence of syngeneic antigen-presenting cells. In addition, the anti-islet proliferative responses observed in normal C57BL/6 mice were significantly lower than those observed in CD8-KO mice. IgG anti-porcine antibodies were readily detected in C57BL/6 and CD8-KO xenograft recipients but not in Ig-KO or CD4-KO recipients. These results indicate that indirectly activated CD4+ T cells mediate acute rejection of adult porcine islet xenografts and that xenoreactive CD8+ T cells and antibodies are not necessary in this process.  相似文献   

16.
Flt3 ligand (FL) administration markedly increases bone marrow (BM) stem cells and immature dendritic cells. We investigated the influence of CD40-CD40Ligand (CD154) pathway blockade on antidonor immunity, cytokine production, microchimerism and heart graft survival in BALB/c (H2d) recipients of fully allogeneic C57BL/10 (H2b) FL-mobilized BM (FL-BM) or normal BM. Anti-CD40L mAb strongly suppressed anti-donor T-cell proliferative responses in recipients of either normal or FL-BM, but was less efficient in inhibiting antidonor cytolytic T-cell (CTL) activity, especially in recipients of FL-BM. Interestingly, CD40L blockade was more effective in recipients of multiple compared with single donor BM infusions. Anti-donor cytokine responses revealed complete impairment of IFN-gamma, IL-4 and IL-10 production in recipients of normal BM and CD40L mAb. By contrast, and in agreement with the CTL data, mice given FL-BM retained ability to produce IFN-gamma CD40-CD40L blockade did not promote microchimerism, as evidenced by immunohistology and real time polymerase chain reaction. Nevertheless, anti-CD40L mAb enhanced heart allograft survival in recipients of FL-BM, but the effect was inferior to that achieved with normal BM. These data provide insight into the influence of growth factor-expanded donor BM and costimulation blockade on antidonor immune reactivity and transplant outcome. The comparatively poor outcome obtained using FL-BM plus anti-CD40L mAb in this model may be ascribed to the failure of effectively interdicting antidonor CTL activity.  相似文献   

17.
18.
BACKGROUND: Acute rejection of mouse tracheal allografts is characterized by infiltration of the lamina propria with CD4+/CD8+ T cells that leads to the destruction of the epithelium and luminal obliteration. The donor epithelium is progressively replaced by recipient-derived epithelium. Once allograft reepithelialization has occurred, immunosuppression can be withdrawn without inciting acute rejection. We hypothesize that reepithelialization will also prevent chronic rejection of the trachea after withdrawal of immunosuppression. METHODS: BALB/c tracheal grafts were transplanted orthotopically into allogeneic C57BL/6 recipients. Allografted mice were nonimmunosuppressed for 10 or 100 days or immunosuppressed with cyclosporine A continuously for 50 days and then withdrawn from immunosuppression for an additional 50 days. In addition, grafts from this group were then heterotopically retransplanted into isogenic C57BL/6 or allogeneic BALB/c recipients to assess their immunogenicity. RESULTS: Cyclosporine A-treated mice showed no signs of chronic rejection or priming of cellular immunity as measured by proliferation and cytokine secretion in a mixed leukocyte reaction. However, there was a notable expansion of memory CD8+ T cells specific for donor major histocompatibility complex. When these tracheal allografts were retransplanted heterotopically into C57BL/6 or BALB/c, they demonstrated reduced responses toward BALB/c and primed responses toward C57BL/6, respectively. These results suggest that the grafts express a chimeric phenotype consisting of both BALB/c and C57BL/6 antigens. CONCLUSION: These observations suggest that long-term withdrawal of immunosuppression does not lead to chronic tracheal rejection even in the presence of alloantigen specific cytotoxic T-lymphocyte responses and that the reepithelialized grafts may contain donor elements that impact the generation of immunity.  相似文献   

19.
Interleukin-22 (IL-22) was recently described as an effector cytokine produced by TH17 CD4(+) T lymphocytes that, cooperatively with IL-17, mediates IL-23-driven inflammation. Because there was experimental evidence for the role of IL-17 in acute rejection of vascularized allografts, we undertook the present study to assess the function of IL-22 in the process. There was an early transient expression of IL-22 in C57BL/6 mouse cardiac allografts (2-4 days posttransplantation) transplanted to BALB/c recipients. The main source of IL-22 among infiltrating leukocytes was cells expressing the macrophage/monocyte markers Mac3 and CD11b. T cells and granulocytes present in the rejected graft did not express IL-22. Surprisingly, the absence of IL-22 accelerated the rejection of fully histoincompatible hearts. Histology of rejected organs revealed the presence of intensive intragraft thrombosis and disseminated hemorrhagic necrosis. Taken together, these results demonstrated that IL-22 was not an effector lymphokine in cardiac allograft rejection, but early intragraft expression of the cytokine protected it from rejection.  相似文献   

20.
BACKGROUND: Induction of antigen-specific unresponsiveness to grafts is the ultimate goal for organ transplantation. It has been shown that anergic T cells generated in vivo can be transferred as suppressor cells. Anergic cells generated in vitro have never been successfully used to prevent allograft rejection in vivo. We examined whether anergic cells generated in vitro by blocking CD28/B7 costimulatory pathway can suppress allograft rejection in vivo. METHODS: Anergic T cells were generated in vitro by the addition of anti-B7-1 and anti-B7-2 monoclonal antibodies (mAbs) to primary mixed lymphocyte reaction (MLR) consisting of C57BL/6 (B6) splenocytes as responder and irradiated BALB/c splenocytes as stimulator. We tested the ability of these cells to respond to various stimuli and to suppress alloreactive T-cell responses in vitro. For in vivo studies, 4x10(7) anergic cells were injected intravenously immediately after transplantation of BALB/c islets under the renal subcapsular space of streptozotocin-induced diabetic and 2.5-Gy X-irradiated B6 mice. RESULTS: Anergic cells treated with both mAbs in the primary MLR did not proliferate in secondary MLR against BALB/c and third-party C3H/He stimulators. The cells also failed to respond to immobilized anti-CD3 mAb, although they proliferated in response to concanavalin A or phorbol myristate acetate + ionomycin. The anergic state was reversed by the addition of exogenous IL-2. Furthermore, these cells suppressed the proliferation of naive B6 T cells against either the same (BALB/c) or third-party (C3H/He) stimulator cells. In in vivo studies, irradiated B6 mice rejected BALB/c islet allografts acutely with a mean survival time of 27.0+/-8.3 days, whereas two of six animals injected with the anergic cells accepted the allografts indefinitely (>100 days) with a mean survival time of 52.0+/-38.2 days. CONCLUSIONS: Anergic cells generated in vitro by blocking CD28/B7 costimulatory pathway suppress islet allograft rejection after adoptive transfer. This procedure might be clinically useful for promoting allograft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号