首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated hepatocytes from fed rats were exposed for 120 min to D-[1-(13)C]fructose, D-[2-(13)C]fructose, or D-[6-(13)C]fructose in the presence of H(2)O or D(2)O. The identification and quantification of (13)C-enriched metabolites (D-glucose, L-lactate) in the incubation medium and the measurement of their deuterated isotopomers indicated that the ketohexose was phosphorylated predominantly at the intervention of fructokinase and that the majority of the D-glyceraldehyde molecules generated from d-fructose 1-phosphate were further metabolized, e.g., after phosphorylation to D-glyceraldehyde 3-phosphate. It is proposed that the present procedure may help to further characterize the regulation of D-fructose metabolism in both hepatocytes and other cell types.  相似文献   

2.
The gluconeogenic contribution to glucose production in livers isolated from rats fasted for 24 h was determined by 13C-NMR isotopomer distribution analysis of secreted glucose enriched from 99% [13C]bicarbonate (n = 4) and 99% [1-13C]lactate (n = 4). Experiments with 3% 2H2O were also performed, allowing the gluconeogenic contribution to be measured by the relative 2H enrichments at positions 5 and 2 of glucose. From 13C-NMR analyses, the contribution of gluconeogenesis to glucose output was estimated to be 93 +/- 3% for [13C]bicarbonate perfusion and 91 +/- 3% for [1-13C]lactate perfusion, in good agreement with the 2H-NMR analysis of the gluconeogenic contribution to glucose production (100 +/- 1% and 99 +/- 1%, respectively) and consistent with the expected negligible contribution from glycogenolysis. These results indicate that 13C-NMR analysis of glucose 13C-isotopomer distribution from either [13C]bicarbonate or [1-13C]lactate precursor provides realistic estimates of the gluconeogenic contribution to hepatic glucose output.  相似文献   

3.
Tumoral pancreatic islet cells of the RINm5F line were incubated, in groups of 25x106 cells each, for 120 min at 37 degrees C in media (5. 0 ml) containing either alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM) or both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM). In both cases, the amounts of 13C-enriched metabolites (D-glucose, L-lactate and acetate) and non-enriched metabolites (acetate) recovered in the incubation medium after incubation were close to the initial amount of esterified or non-esterified D-[1, 2-13C]glucose and acetate, respectively. The 13C-enriched metabolites corresponded mainly to double-labelled D-[1, 2-13C]glucose, L-[2,3-13C]lactate and [1,2-13C]acetate. The output of L-[2,3-13C]lactate and [1,2-13C]acetate was about 3-4 times lower in the cells exposed to alpha-D-[1,2-13C]glucose pentaacetate than in those incubated with unesterified D-[1,2-13C]glucose. These findings indicate that, despite extensive hydrolysis of alpha-D-[1, 2-13C]glucose pentaacetate in the RINm5F cells, the hexose moiety of the ester is less efficiently metabolized than unesterified D-[1, 2-13C]glucose tested at the same molar concentration (1.7 mM) in the presence of 8.5 mM acetate. Thus, a higher utilization of the hexose moiety of alpha-D-glucose pentaacetate than that of unesterified D-glucose, as previously documented in isolated pancreatic islets, represents a far-from-universal situation.  相似文献   

4.
The nutritional value of glycerol-1,2,3-tris(methylsuccinate), a novel ester of succinic acid with high insulinotropic efficiency both in vitro and in vivo, was assessed in both fed and starved rats. The infusion of the ester, given in a daily amount (1.2 micromol. g body wt-1) well in excess of what could result from its repeated intravenous administration as an insulinotropic agent in non-insulin-dependent diabetes (0.07 micromol. g body wt-1 for each administration), failed to prevent the fall in body weight, liver and muscle glycogen contents, and plasma d-glucose or insulin concentration, as well as the increase in plasma free fatty acid and beta-hydroxybutyrate concentrations caused by starvation. The sole indications that the ester may serve, to a limited extent, as an alternative nutrient in starved rats consisted in a somewhat higher weight of both liver and paraovarian adipose tissue and somewhat higher activity of liver glucokinase in rats receiving the ester than in animals infused with saline. The low nutritional value of this ester thus answers the objection of its possible role as an extrapancreatic nutrient or gluconeogenic precursor in the perspective of its use as an insulinotropic tool in type 2 diabetes.  相似文献   

5.
We report a validated method for the determination of extra- and intracellular [1-(13)C]-alpha-ketoisovalerate ([1-(13)C]-KIV) enrichments by gas chromatography-mass spectrometry. Standardization curves were prepared by enzymatic oxidation of [1-(13)C]-valine enriched standards of known composition. Slopes of [1-(13)C]-valine standardization curves (mean+/-SD: 0.99+/-0.02, n=5) and [1-(13)C]-KIV standardization curves (mean+/-SD: 0.98+/-0.01, n=7) were not significantly different. The method was applied for the determination of [1-(13)C]-KIV enrichments in plasma and tissues during [1-(13)C]-valine infusion in a piglet. [1-(13)C]-KIV enrichment could be determined+/-0.1 MPE (C.V. 1%), and extracellular [1-(13)C]-KIV enrichment was a reliable estimate of intracellular (skeletal muscle, bone growth plate) [1-(13)C]-KIV enrichment.  相似文献   

6.
We describe a reliable method for the simultaneous determination of isotopic enrichments of [1-13C]homocysteine, [1-13C]methionine and [2H3-methyl-1-13C]methionine in human plasma. Accurate [1-13C]homocysteine calibration standards were prepared by chemical conversion via thiolactonisation of [1-13C]methionine standards. Based upon anion-exchange chromatography, (di)acetyl-3,5-bis-trifluoromethylbenzyl derivatives, preparation of accurate calibration curves and gas chromatography-negative chemical ionization mass spectrometry, isotopic enrichments in human plasma could be determined with TTR (%) <+/-0.2% (N=3) for [1-13C]homocysteine (enrichment range 0-8%), [1-13C]methionine (enrichment range 0-3%) and [2H3-methyl-1-13C]methionine (enrichment range 0-12%). The method was applied in a [2H3-methyl-1-13C]methionine tracer infusion study in a biological model.  相似文献   

7.
The metabolism of [1-13C]glucose in the rat brain during hypoxia was investigated by 13C NMR spectroscopy. Male Wistar rats, weighing 100-120g, were anesthetized with ketamine (50 approximately 75 mg/kg i.p.) and ventilated mechanically with a mixture of 30% oxygen, 69.5% nitrogen and 0.5% halothane. [1-13C]glucose (250 mg/kg) was infused twice, at 10 minute intervals, through the femoral vein. For the control group (n = 4), the oxygen concentration of the inspiratory gas was maintained at 30% by vol throughout the experiments. For the hypoxia group (n = 6), the oxygen concentration in the inspiratory gas was reduced to 6-7% (93-94% nitrogen) and maintained for 30 min following [1-13C]glucose infusion. 13C NMR spectra were measured by a gated proton-decoupling method without a nuclear Overhauser effect. The [1-13C]glucose infusion gave apparent signals of the C1 carbon in the alpha- and beta-anomers of [1-13C]glucose at 92.7 and 96.7 ppm, respectively. Signals of the C2, C3 and C4 carbon atoms in glutamate and/or glutamine (glx) also appeared at 55, 27 and 34 ppm, respectively. The intensity of glx-C2 and glx-C3 signals increased later than that of glx-C4. The time lag between the different glx signals may reflect the turnover rate of the TCA cycle. Under the hypoxic condition, the signal of C3 carbon in lactate appeared at 21 ppm and increased. The alpha-glucose signal diminished during hypoxia, whereas the beta-glucose signal kept its intensity. The difference in changes of the signal intensity between alpha- and beta-glucose suggests that alpha-glucose is consumed more than beta-glucose in the hypoxic brain.  相似文献   

8.
Xiang Y  Shen J 《NMR in biomedicine》2011,24(9):1054-1062
In this study, in vivo 13C MRS was used to investigate the labeling of brain metabolites after intravenous administration of [1‐13C]ethanol. After [1‐13C]ethanol had been administered systemically to rats, 13C labels were detected in glutamate, glutamine and aspartate in the carboxylic and amide carbon spectral region. 13C‐labeled bicarbonate HCO (161.0 ppm) was also detected. Saturating acetaldehyde C1 at 207.0 ppm was found to have no effect on the ethanol C1 (57.7 ppm) signal intensity after extensive signal averaging, providing direct in vivo evidence that direct metabolism of alcohol by brain tissue is minimal. To compare the labeling of brain metabolites by ethanol with labeling by glucose, in vivo time course data were acquired during intravenous co‐infusion of [1‐13C]ethanol and [13C6]‐D ‐glucose. In contrast with labeling by [13C6]‐D ‐glucose, which produced doublets of carboxylic/amide carbons with a J coupling constant of 51 Hz, the simultaneously detected glutamate and glutamine singlets were labeled by [1‐13C]ethanol. As 13C labels originating from ethanol enter the brain after being converted into [1‐13C]acetate in the liver, and the direct metabolism of ethanol by brain tissue is negligible, it is suggested that orally or intragastrically administered 13C‐labeled ethanol may be used to study brain metabolism and glutamatergic neurotransmission in investigations involving alcohol administration. In vivo 13C MRS of rat brain following intragastric administration of 13C‐labeled ethanol is demonstrated. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

9.
Glucose metabolism in five healthy subjects fasted for 16 h was measured with a combination of [U-13C]glucose and 2H2O tracers. Phenylbutyric acid was also provided to sample hepatic glutamine for the presence of 13C-isotopomers derived from the incorporation of [U-13C]glucose products into the hepatic Krebs cycle. Glucose production (GP) was quantified by 13C NMR analysis of the monoacetone derivative of plasma glucose following a primed infusion of [U-13C]glucose and provided reasonable estimates (1.90 +/- 0.19 mg/kg/min with a range of 1.60-2.15 mg/kg/min). The same derivative yielded measurements of plasma glucose 2H-enrichment from 2H2O by 2H NMR from which the contribution of glycogenolytic and gluconeogenic fluxes to GP was obtained (0.87 +/- 0.14 and 1.03 +/- 0.10 mg/kg/min, respectively). Hepatic glutamine 13C-isotopomers representing multiply-enriched oxaloacetate and [U-13C]acetyl-CoA were identified as multiplets in the 13C NMR signals of the glutamine moiety of urinary phenylacetylglutamine, demonstrating entry of the [U-13C]glucose tracer into both oxidative and anaplerotic pathways of the hepatic Krebs cycle. These isotopomers contributed 0.1-0.2% excess enrichment to carbons 2 and 3 and approximately 0.05% to carbon 4 of glutamine.  相似文献   

10.
The pentose phosphate pathway (PPP) is essential for reductive biosynthesis, antioxidant processes and nucleotide production. Common tracers such as [1,2‐13C2]glucose rely on detection of 13C in lactate and require assumptions to correct natural 13C abundance. Here, we introduce a novel and specific tracer of the PPP, [2,3‐13C2]glucose. 13C NMR analysis of the resulting isotopomers is informative because [1,2‐13C2]lactate arises from glycolysis and [2,3‐13C2]lactate arises exclusively through the PPP. A correction for natural abundance is unnecessary. In rats receiving [2,3‐13C2]glucose, the PPP was more active in the fed versus fasted state in the liver and the heart, consistent with increased expression of key enzymes in the PPP. Both the PPP and glycolysis were substantially increased in hepatoma compared with liver. In summary, [2,3‐13C2]glucose and 13C NMR simplify assessment of the PPP.  相似文献   

11.
The uptake of [2-(14)C]alloxan by the pancreatic gland was investigated in control and streptozotocin-induced diabetic (STZ) rats, using both in vitro and in vivo techniques. Whether after 10 to 60 min incubation of pieces of pancreas in the presence of [2-(14)C]alloxan or 60 min to 24 h after intravenous injection of [2-(14)C]alloxan to control and insulin-treated STZ rats, the radioactive content of the pancreas (dpm/mg wet weight) only represented, in the STZ rats, about two thirds of the reference value found in control animals. These findings indicate that insulin-producing islet B-cells participate to a sizeable extent to the overall uptake of [2-(14)C]- alloxan by the whole pancreatic gland, despite the fact that they account for no more than about one percent of the total pancreas mass. Hence, it should be possible to preferentially label the endocrine moiety of the pancreas, in the perspective of its imaging and quantification by a non-invasive procedure, by use of a suitable radiolabelled molecule selectively taken up by islet, as distinct from acinar, pancreatic cells.  相似文献   

12.
This study aims at exploring specific aspects of D-glucose metabolism, so far not yet investigated, in pancreatic islets from adult control rats and animals (STZ rats) injected with streptozotocin during the neonatal period. The latter animals, which represent a current model of type-2 diabetes, displayed a lower body weight, higher plasma D-glucose concentration and lower insulinogenic index than control rats. The protein, DNA and insulin content were all also lower in islets prepared from STZ, rather than control rats. In the presence of 10.0 mM D-glucose, the paired ratio between D-[U-14C]glucose oxidation and D-[5-3H]glucose utilization was also decreased in the islets from STZ rats. No significant difference between control and STZ rats was observed, however, in terms of the ratios between D-[3-3H]glucose and D-[5-3H]glucose utilization, between the generation of radioactive lactate from 14C-labelled D-glucose and tritiated D-glucose utilization and between D-[1-14C]glucose and D-[6-14C]glucose oxidation. These findings reinforce the view that the previously documented preferential impairment of the oxidative modality of glycolysis in islets from STZ rats contrasts with the absence of any major anomaly in other variables of D-glucose catabolism.  相似文献   

13.
A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized 13C‐labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β‐oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1‐13C]pyruvate. No [13C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [13C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [13C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [13C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The source of hyperpolarized (HP) [13C]bicarbonate in the liver during metabolism of HP [1‐13C]pyruvate is uncertain and likely changes with physiology. Multiple processes including decarboxylation through pyruvate dehydrogenase or pyruvate carboxylase followed by subsequent decarboxylation via phosphoenolpyruvate carboxykinase (gluconeogenesis) could play a role. Here we tested which metabolic fate of pyruvate contributed to the appearance of HP [13C]bicarbonate during metabolism of HP [1‐13C]pyruvate by the liver in rats after 21 h of fasting compared to rats with free access to food. The 13C NMR of HP [13C]bicarbonate was observed in the liver of fed rats, but not in fasted rats where pyruvate carboxylation and gluconeogenesis was active. To further explore the relative fluxes through pyruvate carboxylase versus pyruvate dehydrogenase in the liver under typical conditions of hyperpolarization studies, separate parallel experiments were performed with rats given non‐hyperpolarized [2,3‐13C]pyruvate. 13C NMR analysis of glutamate isolated from the liver of rats revealed that flux from injected pyruvate through pyruvate dehydrogenase was dominant under fed conditions whereas flux through pyruvate carboxylase dominated under fasted conditions. The NMR signal of HP [13C]bicarbonate does not parallel pyruvate carboxylase activity followed by subsequent decarboxylation reaction leading to glucose production. In the liver of healthy well‐fed rats, the appearance of HP [13C]bicarbonate exclusively reflects decarboxylation of HP [1‐13C]pyruvate via pyruvate dehydrogenase. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

15.
Surface coil 13C nuclear magnetic resonance (NMR) spectroscopy was used to investigate the in vivo carbohydrate metabolism of rat C6 gliomas during and after infusion with [1-13C] glucose. In vivo 1H-decoupled 13C NMR spectra of the glioma following infusion with [1-13C]glucose revealed the direct production of [3-13C]lactic acid, [1-13C]glycogen, and [4-13C], [3-13C], and [2-13C]glutamate/glutamine. Lactate levels of in vivo gliomas increased and reached steady state levels during [1-13C]glucose infusion, and decreased following termination of infusion. Complementary in vitro studies using supernatant media collected from C6 glioma cells incubated with media containing [1-13C] or [6-13C]glucose and glutamine were examined by 1H NMR spectroscopy. The [3-(13C/12C)]lactate ratios obtained from 1H spectra of supernatant media containing [1-13C]glucose revealed the percentage of glucose metabolized through the hexose monophosphate shunt to be 10.01 +/- 0.85% (n = 3), while similar measurements of media containing [6-13C]glucose and glutamine showed that glutaminolysis contributed 9.0 +/- 1.0% of total lactate production under these conditions. Enzymatic analysis of media determined lactate production to be 139 +/- 9 nmol per 10(6) cells per h (n = 4). These measurements demonstrate the ability of NMR to monitor brain tumor carbohydrate metabolism both in vitro and in vivo.  相似文献   

16.
The uptake and retention of radioactivity was measured in discrete areas of rat brain at different times after i.v. injection of [14C]2-deoxyglucose or [6(-14)C]glucose, in unrestrained rats. In most brain regions, the accumulation of radioactivity from the two compounds was similar when a 30-min survival period for [6(-14)C]glucose was compared to a 45-min survival period for [14C]2-deoxyglucose. However, at those times, autoradiographic images of the hippocampus and piriform cortex appeared distinctly different for [14C]2-deoxyglucose and [6(-14)C]glucose. Relatively more radioactivity accumulated from [14C]2-deoxyglucose, compared to [14C]glucose, in the stratum lacunosum-moleculare of the hippocampus and in layer 4 of the isocortex. In contrast, relatively more radioactivity accumulated from [6(-14)C]glucose, compared to [14C]2-deoxyglucose, in the molecular and granule cell layers of the dentate gyrus, the CA1 pyramidal cell layer of the hippocampus, and in layer 2 of the piriform cortex. When rats were killed 5 min after injection of [6(-14)C]glucose, the relative neuroanatomical distribution of radioactivity was similar to the 30-min survival period, except in layer 4 of the isocortex, where relatively more radioactivity was present at the early time. When rats were killed 5 min after injection of [14C]2-deoxyglucose, in 20 of 24 brain regions examined, the absolute and relative amounts of accumulated radioactivity were similar when compared to that of the 45-min survival period. In contrast, the absolute and relative amounts of radioactivity were significantly greater for the 5-min compared to the 45-min survival period, in the CA1 pyramidal cell field, dentate gyrus, and layer 2 of the piriform cortex. For those regions, the appearance of autoradiograms prepared from rats killed 5 min after administration of [14C]2-deoxyglucose is remarkably similar to the appearance of autoradiograms prepared from rats killed 5 or 30 min after injection of [6(-14)C]glucose. Possible mechanisms are discussed to explain the observed differences in the accumulation of radioactivity in discrete brain regions after injection of [6(-14)C]glucose and [14C]2-deoxyglucose at the different survival times examined.  相似文献   

17.
To examine the extent to which the defect in insulin action in subjects with non-insulin-dependent diabetes mellitus (NIDDM) can be accounted for by impairment of muscle glycogen synthesis, we performed combined hyperglycemic-hyperinsulinemic clamp studies with [13C]glucose in five subjects with NIDDM and in six age- and weight-matched healthy subjects. The rate of incorporation of intravenously infused [1-13C]glucose into muscle glycogen was measured directly in the gastrocnemius muscle by means of a nuclear magnetic resonance (NMR) spectrometer with a 15.5-minute time resolution and a 13C surface coil. The steady-state plasma concentrations of insulin (approximately 400 pmol per liter) and glucose (approximately 10 mmol per liter) were similar in both study groups. The mean (+/- SE) rate of glycogen synthesis, as determined by 13C NMR, was 78 +/- 28 and 183 +/- 39 mumol-glucosyl units per kilogram of muscle tissue (wet weight) per minute in the diabetic and normal subjects, respectively (P less than 0.05). The mean glucose uptake was markedly reduced in the diabetic (30 +/- 4 mumol per kilogram per minute) as compared with the normal subjects (51 +/- 3 mumol per kilogram per minute; P less than 0.005). The mean rate of nonoxidative glucose metabolism was 22 +/- 4 mumol per kilogram per minute in the diabetic subjects and 42 +/- 4 mumol per kilogram per minute in the normal subjects (P less than 0.005). When these rates are extrapolated to apply to the whole body, the synthesis of muscle glycogen would account for most of the total-body glucose uptake and all of the nonoxidative glucose metabolism in both normal and diabetic subjects. We conclude that muscle glycogen synthesis is the principal pathway of glucose disposal in both normal and diabetic subjects and that defects in muscle glycogen synthesis have a dominant role in the insulin resistance that occurs in persons with NIDDM.  相似文献   

18.
The pattern of distribution of galactose and its metabolites was determined in tissues of mice deficient in galactose-1-phosphate uridyl transferase (G/G) 4 h after the administration of 1mg/g of [13C]galactose. Labeled galactose was found in all the tissues examined, the highest amounts in liver and kidney. Each of the tissues had its own pattern of labeling of galactose-1-phosphate (gal-1-P), galactitol and galactonate. [13C]gal-1-P and galactonate concentration was highest in liver while [13C]galactitol was higher in kidney and heart than in other tissues. Muscle had the lowest amounts of these compounds. In contrast, no galactose was found in tissues of normal mice (N/N) except for a minute amount in muscle. No [13C]gal-1-P was found in liver, kidney or brain and only minute amounts in heart and muscle of N/N animals. Barely detectible, labeled galactitol was observed in these tissues except liver, where none was found. [13C]Galactonate was formed in liver comparable to G/G mice. Almost all of the accumulating 13C isotope was found in liver and kidney glucose and lactate in the normal animals. [13C]Glucose and lactate was also found in liver of the G/G animals, but to a lesser extent than in normals, indicating the presence of a pathway in G/G animals for circumventing the block at GALT for the normal conversion of galactose to glucose.  相似文献   

19.
Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than 1 year following diagnosis. Most patients with HCC are diagnosed at an advanced stage, and no efficient marker exists for the prediction of prognosis and/or response(s) to therapy. We have reported previously a high level of [1‐13C]alanine in an orthotopic HCC using single‐voxel hyperpolarized [1‐13C]pyruvate MRS. In the present study, we implemented a three‐dimensional MRSI sequence to investigate this potential hallmark of cellular metabolism in rat livers bearing HCC (n = 7 buffalo rats). In addition, quantitative real‐time polymerase chain reaction was used to determine the mRNA levels of lactate dehydrogenase A, nicotinamide adenine (phosphate) dinucleotide dehydrogenase quinone 1 and alanine transaminase. The enzyme levels were significantly higher in tumor than in normal liver tissues within each rat, and were associated with the in vivo MRSI signal of [1‐13C]alanine and [1‐13C]lactate after a bolus intravenous injection of [1‐13C]pyruvate. Histopathological analysis of these tumors confirmed the successful growth of HCC as a nodule in buffalo rat livers, revealing malignancy and hypervascular architecture. More importantly, the results demonstrated that the metabolic fate of [1‐13C]pyruvate conversion to [1‐13C]alanine significantly superseded that of [1‐13C]pyruvate conversion to [1‐13C]lactate, potentially serving as a marker of HCC tumors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Carbon-13 decoupled 1H spin-echo nuclear magnetic resonance (NMR) spectra, with and without 13C population inversion, of extracts of Taenia crassiceps cysticerci incubated in media containing [3-13C]-pyruvate showed 13C enrichment in alanine, lactate, acetate, succinate, and citrate. Labeling in the latter three metabolites provides substantial evidence that the malic enzyme reaction in this cestode also functions in the direction opposite to that in which it is normally portrayed. The direct passage of pyruvate from the cytosol to the mitochondrion is suggested by the greater percentage of 13C detected in acetate relative to succinate. Received: 8 July 1997 / Accepted: 19 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号