首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 采用蛋白质组学方法研究人乳牙牙髓干细胞(SHED)和恒牙牙髓干细胞(DPSC)中的蛋白表达差异.方法 应用双向凝胶电泳技术分离SHED和DPSC的细胞总蛋白.通过比较两种细胞的蛋白组学图谱,确定差异表达的蛋白点,而后对差异点进行基质辅助激光解析电离飞行时间质谱分析和蛋白数据库信息检索,对差异蛋白进行功能分类.结果 建立了SHED和DPSC的蛋白质组图谱,经软件分析出45个差异蛋白点,其中26个表达上调,19个表达下调,再经质谱鉴定出48种蛋白,其生物学功能涉及细胞周期、代谢等.结论 SHED与DPSC中蛋白的差异表达体现了两种细胞在结构和功能上的异同性,为进一步研究SHED和DPSC在增殖、分化中的差异,以及牙齿相关干细胞在组织工程和再生医学研究中的应用提供参考.  相似文献   

2.
近年来,成体干细胞不断地从不同的组织中被分离出来,该类细胞具有多向分化潜能、较强的增殖能力和持久的自我更新能力,具备充当组织工程种子细胞的天然优势。2000年和2003年,研究者先后从成人牙髓组织和人乳牙牙髓组织中分离出具有干细胞特征的细胞,这两种细胞的发现对牙组织工程将产生重要的意义。现就这两种成体干细胞的研究进展做一综述,并展望其应用前景。  相似文献   

3.
Stem cells from human exfoliated deciduous teeth (SHED) have been isolated and characterized as multipotent cells. However, it is not known whether SHED can generate a dental pulp-like tissue in vivo. The purpose of this study was to evaluate morphologic characteristics of the tissue formed when SHED seeded in biodegradable scaffolds prepared within human tooth slices are transplanted into immunodeficient mice. We observed that the resulting tissue presented architecture and cellularity that closely resemble those of a physiologic dental pulp. Ultrastructural analysis with transmission electron microscopy and immunohistochemistry for dentin sialoprotein suggested that SHED differentiated into odontoblast-like cells in vivo. Notably, SHED also differentiated into endothelial-like cells, as demonstrated by B-galactosidase staining of cells lining the walls of blood-containing vessels in tissues engineered with SHED stably transduced with LacZ. This work suggests that exfoliated deciduous teeth constitute a viable source of stem cells for dental pulp tissue engineering.  相似文献   

4.
干细胞库是指以人体干细胞移植为目的,具有采集、处理、保存和提供多向分化干细胞能力的储存库,曾被人称为"生命银行".从个体牙髓中获取干细胞并储存入库备用是一个可行的、相对微创且能取代从其他组织来源获取干细胞的途径.乳恒牙替换是一个正常的生理现象,从脱落的乳牙牙髓中分离培养出干细胞用于储存是建立干细胞库的简单、较易被接受的...  相似文献   

5.
乳牙牙髓干细胞(SHED)是牙源性干细胞的一种,属外胚间充质干细胞。作为一种理想的干细胞来源,SHED在干细胞治疗中有良好的应用前景。本文阐述了SHED的生物学特征及其在干细胞治疗中的优势,探讨了SHED在组织再生和修复中发挥的多向分化潜能、细胞分泌功能和免疫调节功能等方面的功能作用。此外,本文还介绍了SHED在各系统、器官疾病治疗中的临床应用,重点阐述了用SHED进行干细胞移植在牙髓—牙本质再生、颌骨再生、神经系统疾病治疗和免疫系统疾病治疗方面的研究进展。  相似文献   

6.
ObjectiveObtaining high number of stem cells is of interest for cell based therapies. N-Acetyl-l-cysteine (NAC) acts as a source of sulfhydryl groups and an anti-oxidative agent. The aim of this study was to test different NAC concentration on proliferation and differentiation of deciduous teeth dental pulp stem cells (DTSCs) in vitro as well as to define the possible underlining mechanism of its effect.DesignNumber of viable, apoptotic and senescent DTSCs was determined after addition of NAC (0.1 mM, 1.0 mM, 2.0 mM). Also, cell cycle analysis, HIF1-α expression, LDH isoenzymes, superoxide-dismutase (SOD) and catalase (CAT) activity, sulfhydryl groups content, the level of lipids’ and proteins’ oxidative damage and differentiation capacity of NAC treated DTSCs was determined.ResultsDTSCs expressed HIF-1α in all conditions. The lowest NAC dose (0.1 mM) increased the number of DTSCs by one fifth comparing to the control, most likely stimulating entry of cells into S phase of cell cycle and enhancing the activity of LDH5 isoenzyme. The highest NAC dose (2 mM) inhibited DTSCs proliferation. Also, DTSCs had the lowest level of oxidative damage with 0.1 mM NAC. All tested NAC concentrations enhanced DTSCs osteo-chondrogenesis.ConclusionThe lowest NAC dose exerted significant positive effect on DTSCs proliferation as well as antioxidative protection creating beneficial environment for stem cells in vitro cultivation especially when their clinical use is important for stimulation of osteo-chondrogenesis.  相似文献   

7.
小型猪乳牙牙髓干细胞体外分离培养及鉴定   总被引:2,自引:1,他引:1  
目的体外分离培养小型猪乳牙牙髓干细胞,并对其进行生物学鉴定。方法采用滤纸片法挑取单克隆小型猪乳牙牙髓细胞,免疫组织化学染色检测,体外比较单克隆牙髓干细胞及混合牙髓干细胞向矿化组织、脂肪细胞、及神经细胞诱导分化能力。结果分离培养的小型猪乳牙牙髓干细胞呈集落状生长,克隆形成率2.74%。波形丝蛋白、间充质于细胞表面标志STRO-1染色阳性,神经干细胞特异性标志nestin染色阳性。矿化诱导结果显示单克隆牙髓干细胞及混合牙髓干细胞,均为Von-kossa染色阳性,ATJP表达明显,两者无明著差异。单克隆牙髓干细胞及混合牙髓干细胞经IBMX、胰岛素、消炎痛和氢化可的松诱导3周后,可分化为脂肪细胞,两者成脂率均较低。单克隆乳牙牙髓干细胞向神经细胞诱导分化后免疫荧光鉴定β-tubulin III表达阳性,STRO-1表达阴性。混合牙髓干细胞无明显神经元样细胞分化。结论单克隆分离培养的小型猪乳牙牙髓干细胞具有很强的克隆形成能力及多向分化潜能,其矿化能力与混合的乳牙牙髓干细胞无明显差异。  相似文献   

8.
9.
目的 探讨中药丹参对人脱落乳牙牙髓干细胞(SHED)神经分化功能的影响.方法 利用不同浓度的丹参注射液和神经诱导培养基诱导SHED分化为神经元样细胞.通过观察SHED经诱导后细胞的形态变化和采用Real-Time PCR方法检测神经元标记蛋白Nestin、早期神经元标记蛋白Ⅲ-Tubulin、神经细胞粘附因子NCAM、神经分化因子NeuroD、辅助T淋巴细胞因子TH、NEF等的表达,来鉴定神经元样细胞.结果 丹参注射液诱导后SHED胞体收缩,突起伸出,形似神经元;Real-TimePCR结果显示丹参注射液促进神经元标记蛋白Nestin、早期神经元标记蛋白Ⅲ-Tubulin、神经细胞粘附因子NCAM、神经分化因子NeuroD、NEF的表达.丹参注射液联合神经培养基诱导SHED神经分化的最佳丹参注射液浓度为50mg/ml.结论 中药丹参在一定浓度范围内可促进SHED向神经元样细胞分化.  相似文献   

10.
《Saudi Dental Journal》2022,34(7):565-571
PurposeThis study aimed to evaluate the neuroprotective ability of the conditioned medium of stem cells from human exfoliated deciduous teeth (CM-SHED) to prevent glutamate-induced apoptosis of neural progenitors.Materials and methodsNeural progenitors were isolated from two-day-old rat brains, and the conditioned medium was obtained from a mesenchymal stem cell SHED. Four groups were examined: neural progenitor cells cultured in neurobasal medium with (N + ) and without (N-) glutamate and glycine, and neural progenitor cells cultured in CM-SHED with (K + ) and without (K-) glutamate and glycine.ResultsThe expression of GABA A1 receptor (GABAAR1) messenger RNA (mRNA) in neural progenitor measured by real-time quantitative PCR. GABA contents were measured by enzyme-linked immunosorbent assay, whereas the apoptosis markers caspase-3 and 7-aminoactinomycin D were analysed with a Muse® cell analyzer. The viability of neural progenitor cells in the K + group (78.05 %) was higher than the control group N- (73.22 %) and lower in the N + group (68.90 %) than in the control group. The K + group showed the highest GABA content, which significantly differed from that in the other groups, whereas the lowest content was observed in the N + group. The expression level of GABAAR1 mRNA in the K + group was the highest compared to that in the other groups. CM-SHED potently protected the neural progenitors from apoptosis.ConclusionsCM-SHED may effectively prevent glutamate-induced apoptosis of neural progenitors.  相似文献   

11.
12.
Objective. The aim of this study was to investigate the chondrogenic potential of stem cells from human exfoliated teeth (SHED). Materials and methods. SHED cultures were isolated from human exfoliated deciduous teeth. Colony-forming capacity, odonto/osteogenic and adipogenic potential were measured. SHED were cultured for 2 weeks in chondrogenic differentiation medium containing dexamethasone, insulin, ascorbate phosphate, TGF-β3 and bFGF. Toluidine blue staining and safranin O staining were used for chondrogenesis analysis. The related markers, type II collagen and aggrecan, were also investigated using immunohistochemistry. SHED were seeded onto the β-TCP scaffolds and transplanted into the subcutaneous space on the back of nude mice. The transplants were recovered at 2, 4 and 8 weeks post-transplantation for analysis. Results. SHED showed colony-forming capacity, odonto/osteogenic and adipogenic differentiation capacity. Chondrogenic differentiation was confirmed by toluidine blue staining, safranin O staining, type II collagen and aggrecan immunostaining. After in vivo transplantation, SHED recombined with β-TCP scaffolds were able to generate new cartilage-like tissues. Conclusions. The ?ndings demonstrate the chondrogenic differentiation capacity of SHED both in vitro and in vivo models, suggesting the potential of SHED in cartilage tissue engineering.  相似文献   

13.
乳牙牙髓干细胞(SHED)来源于脱落的乳牙牙髓,具有较强的增殖能力、自我更新能力、多向分化潜能,而且乳牙为生物废弃物,符合伦理要求,所以渐渐成为干细胞领域研究的新热点。本文就SHED的生物学特征、培养方法、鉴定方法、多向分化潜能及其在疾病治疗中应用的研究进展作一综述。  相似文献   

14.
乳牙牙髓干细胞体外诱导成骨细胞的实验研究   总被引:1,自引:0,他引:1  
目的:体外分离、培养人乳牙牙髓干细胞,并向成骨细胞诱导.方法:采用酶消化法分离获得人乳牙牙髓干细胞,有限稀释法分离纯化,测定细胞克隆形成率,细胞计数法测定生长曲线,细胞爬片行HE染色,抗波形蛋白(Vimentin)、CD44和STRO-1免疫组化染色,并向成骨细胞诱导,行HE染色、碱性磷酸酶染色、Von Kossa染色、Van Gieson染色和抗骨钙素免疫组化染色进行鉴定.结果:通过有限稀释法获得了人乳牙牙髓干细胞,并诱导成成骨细胞,表现出与典型成骨细胞相似的形态特征和生物学特征.结论:成功从人乳牙牙髓中分离出牙髓干细胞,并诱导为成骨细胞.  相似文献   

15.
Liu  Qiong  Qian  Hong  Yu  Hao  Ren  Fei  Fang  Jingxiao  Liu  Fang  Liu  Hedi  Liang  Jianying 《Clinical oral investigations》2022,26(8):5205-5213
Clinical Oral Investigations - This study was designed to explore the effects of mechanical force on the proliferation, apoptosis, and morphology of stem cells from human exfoliated deciduous tooth...  相似文献   

16.
目的:体外研究改良富血小板血浆(modified platelet-rich plasma,mPRP)促进人乳牙牙髓干细胞成骨分化的作用。方法:以α-MEM作为基础培养基,分别加入1%、2%、5%、10%4种不同浓度 mPRP 或者10%胎牛血清(对照),对第4代SHED 连续培养并诱导矿化,碱性磷酸酶试剂盒检测 ALP 活性的变化,qRT-PCR 方法检测细胞内 RUNX2和骨钙素 mRNA 含量的改变。结果:不同浓度的 mPRP 均可以促进乳牙牙髓干细胞的 ALP 活性,且浓度为2%时 A 值最高;qRT-PCR 检测显示2% mPRP 可以上调乳牙牙髓干细胞内 RUNX2及骨钙素 mRNA 的含量。结论:一定浓度的 mPRP 对乳牙牙髓干细胞的成骨分化具有一定的促进作用。  相似文献   

17.
目的探讨大豆黄素促进脱落乳牙干细胞(SHED)成骨的作用及其机制。方法对体外培养的第3代SHED分别用100、10和1μmol.L-1的大豆黄素培养基进行培养,以普通培养基作为对照,于3、6、9 d检测其碱性磷酸酶(AKP)活性,于7、14、21 d检测其骨钙蛋白(OC)的质量,以RT-PCR检测其3、6、9 d的核心结合因子(cbf)-α1 mRNA的表达。结果 SHED经大豆黄素干预培养3 d,10μmol.L-1的大豆黄素显著提高了细胞内AKP的质量(与对照组比较,P<0.05);培养6~9 d,3个浓度的大豆黄素均显著提高了AKP的表达量(与对照组比较,P<0.001)。中高浓度(10和100μmol.L-1)的大豆黄素可在成骨分化的中期(14 d)显著提高SHED内OC的质量(与对照组比较,P<0.001),21 d时各浓度的大豆黄素均可促进OC的表达(与对照组比较,P<0.001)。SHED培养3 d,10和100μmol.L-1大豆黄素明显上调其cbf-α1 mRNA的表达,1μmol.L-1的大豆黄素部分上调了cbf-α1mRNA的表达;在第6和9天,1、10和100μmol.L-1的大豆黄素均促进了cbf-α1 mRNA的表达,对照组在各时间点均呈阴性。结论大豆黄素可促进SHED向成骨方向分化,其机制可能与上调cbf-α1基因表达有关。  相似文献   

18.
19.
Objective: The aim of the present study was to evaluate the influence of a cryopreservation protocol on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHEDs).

Materials and methods: Cells from the pulp of three deciduous teeth were isolated and characterized to confirm their stem cell nature. In second passage, part of the cells were submitted to normal conditions of cell culture (Control group), while part of the cells were maintained in 10% DMSO diluted in foetal bovine serum and submitted to the following cryopreservation protocol: 2?h at 4?°C, 18?h at ?20?°C and then at ?80?°C for two intervals (30 days – Cryopreservation I; and 180 days Cryopreservation II). Cell proliferation and cell cycle were evaluated at intervals of 24, 48 and 72?h after plating, and apoptosis-related events were analyzed at 72?h.

Results: All groups exhibited an increase in the number of cells, and no significant differences between the cryopreserved and control groups were observed (p?>?.05). The distribution of cells in the cell cycle phases was consistent with cell proliferation, and the percentage of viable cells was higher than 99% in all groups, indicating that cell viability was not affected by the cryopreservation protocol throughout the experiment.

Conclusion: The proposed cryopreservation protocol is adequate for the storage of SHED, permitting their use in future experimental studies.  相似文献   

20.
Dental stem cells from human exfoliated deciduous teeth (SHED) and dental follicle cells (DFCs) are neural crest-derived stem cells from human dental tissues. Interestingly, SHED and DFCs can successfully differentiate into neuron-like cells. We hypothesized that SHED and DFCs have the same neural cell differentiation potentials. To evaluate neural cell differentiation, we cultivated SHED and DFCs in four different serum-replacement media (SRMs) and analyzed cell morphology, cell proliferation, and gene expression patterns before and after differentiation. In a standard cell culture medium, SHED and DFCs have not only similar cell morphologies, but they also have similar gene expression patterns for known stem cell markers. However, only SHED expressed the neural stem cell marker Pax6. After cultivation in SRMs, cell proliferations of DFCs and SHED were reduced and the cell morphology was spindle-like with long processes. However, differentiated DFCs and SHED had different neural cell marker expression patterns. For example, gene expression of the late neural cell marker microtubule-associated protein 2 was upregulated in DFCs and downregulated in SHED in SRM with the B27 supplement. In contrast, SHED formed neurosphere-like cell clusters in SRM with the B27 supplement, epidermal growth factor, and fibroblast growth factor-2. Moreover, SHED differentially expressed the glial cell marker glial fibrillary acidic protein, which in contrast was weakly or not expressed in DFCs. In conclusion, SHED and DFCs have different neural differentiation potentials under the same cell culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号