首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IntroductionMesenchymal stem cells (MSCs) have been used for clinical application in tissue engineering and regenerative medicine (TERM). To date, the most common source of MSCs has been bone marrow. However, the bone marrow aspirate is an invasive and painful procedure for the donor. Thus, the identification and characterization of alternative sources of MSCs are of great importance. This study focused on the characterization of stem cells from human exfoliated deciduous teeth (SHED) compared with dental pulp stem cells (DPSCs) and bone marrow–derived mesenchymal stem cells (BMMSCs).MethodsWe have compared “stemness” such as the proliferation rate and the expression of stem cell marker of DPSCs, SHED, and BMMSCs. In addition, gene expression profile of DPSCs and SHED were analyzed by using DNA microarray.ResultsAll cells isolated from the three sources exhibited MSC characteristics including a fibroblastic morphology, and the expression of mesenchymal stem-cell markers. The proliferation rate of SHED was significantly higher than that of DPSCs and BMMSCs (P < 0.05). The comparison of the gene expression profiles indicated 4386 genes with a changed expression between DPSCs and SHED by 2.0-fold or more. Higher expression in SHED was observed for genes that participate in pathways related to cell proliferation and extracellular matrix, including several cytokines such as fibroblast growth factor and tumor growth factor beta.ConclusionsBecause of its advantages of a higher proliferation capability, abundant cell supply, and painless stem cell collection with minimal invasion, SHED could be a desirable option as a cell source for potential therapeutic applications.  相似文献   

2.
近年来,成体干细胞不断地从不同的组织中被分离出来,该类细胞具有多向分化潜能、较强的增殖能力和持久的自我更新能力,具备充当组织工程种子细胞的天然优势。2000年和2003年,研究者先后从成人牙髓组织和人乳牙牙髓组织中分离出具有干细胞特征的细胞,这两种细胞的发现对牙组织工程将产生重要的意义。现就这两种成体干细胞的研究进展做一综述,并展望其应用前景。  相似文献   

3.

Objective

Dental pulp stem cells (DPSCs) can differentiate into tissue specific lineages to support dental pulp regeneration after injuries. Triethylene glycol dimethacrylate (TEGDMA) is a widely used co-monomer in restorative dentistry with adverse effects on cellular metabolism. Aim of this study was to analyze the impact of TEGDMA on the angiogenic differentiation potential of DPSCs.

Methods

DPSCs were characterized by flow cytometry. Short-term (max. 72 h) cytotoxicity of TEGDMA was assessed by MTT assay. To evaluate TEGDMA effects on angiogenic differentiation, DPSCs were cultivated in angiogenic differentiation medium (ADM) in the presence or absence of short-term non-toxic TEGDMA concentrations (0.1 mM and 0.25 mM). Subsequently, angiogenic differentiation was analyzed by qRT-PCR analysis of mRNA markers and in vitro spheroid sprouting assays.

Results

DPSCs treated with 0.25 mM TEGDMA revealed downregulation of angiogenesis-related marker genes PECAM1 (max. 3.8-fold), VEGF-A (max. 2.4-fold) and FLT1 (max. 2.9-fold) compared to respective untreated control. In addition, a reduction of the sprouting potential of DPSCs cultured in the presence of 0.25 mM TEGDMA was detectable. Larger spheroidal structures were detectable in the untreated control in comparison to cells treated with 0.25 mM TEGDMA. In contrast, TEGDMA at 0.1 mM was not affecting angiogenic potential in the investigated time period (up to 28 days).

Significance

The results of the present study show that TEGDMA concentration dependently impair the angiogenic differentiation potential of DPSCs and may affect wound healing and the formation of granulation tissue.  相似文献   

4.
《Dental materials》2014,30(12):e405-e418
ObjectivesAim of this study was to investigate the effects of dental pulp stem cells’ (DPSCs) secretome, expressed through their culture conditioned medium (CM), on biological endpoints related to pulp repair and on TEGDMA-induced cytotoxicity.MethodsDPSCs cultures were established and characterized for stem cell markers with flow cytometry. CM was collected from DPSCs under serum deprivation conditions (SDC) and normal serum conditions (NSC) at various time-points. CM effects on DPSCs viability, migration and mineralization potential were evaluated by MTT assay, transwell insert and in vitro scratch assay and Alizarin Red staining/quantification respectively. TEGDMA (0.25–2.0 mM) cytotoxicity regarding the same biological endpoints was tested in the presence/absence of CM. TGF-β1 and FGF-2 secretion in CM was measured by ELISA.ResultsCM collected under SDC (4 d) was able to increase cell viability by 20–25% and to reduce TEGDMA cytotoxicity by 20% (p < 0.05). CM positive effects were not obvious when collected under NSC. Transwell assay showed significant increase (26%, p < 0.05) of DPSCs’ migration after CM exposure, whereas both migration assays could not support a migration rate improvement in TEGDMA-treated cultures exposed to CM compared to TEGDMA alone. CM significantly (p < 0.01) increased DPSCs mineralization potential and completely counteracted TEGDMA cytotoxicity on this process. ELISA analysis showed a time-dependent increase of TGF-β1 and a TEGDMA concentration-dependent increase of both TGF-β1 and FGF-2 in CM.SignificanceThese findings suggest that DPSCs secretome increases their viability, migration and mineralization potential and counteracts TEGDMA-induced cytotoxicy, revealing a novel mechanism of DPSCs autocrine signaling on pulp repair processes.  相似文献   

5.
ObjectiveThis study aimed to compare the proteomic profiling of human dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) under in vitro osteogenic induction, which imitates the microenvironment during osteo-/odontogenesis of DPSCs and PDLSCs.DesignThe proteomic profiles of osteoinduced DPSCs and PDLSCs from a single donor were compared using the isobaric tag for relative and absolute quantitation (iTRAQ) technique and subsequent bioinformatics analysis.ResultsA total of 159 differentially expressed proteins in PDLSCs and DPSCs were identified, 82 of which had a higher expression level in PDLSCs, while 77 were more highly expressed in DPSCs. Among these enriched proteins, certain members from the collagen, heat shock protein and protein S100 families may distinguish osteoinduced PDLSCs and DPSCs. Gene ontology (GO) classification revealed that a large number of the enriched terms distinguishing PDLSCs and DPSCs are involved in catalytic activity, protein binding, regulation of protein metabolic processes and response to stimulus. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated several involved pathways, including the fatty acid biosynthesis pathway, pantothenate and CoA biosynthesis pathway, arachidonic acid metabolism pathway and PPAR signaling pathway. Further verification showed that the mineralization and migration capacities of PDLSCs were greater than those of DPSCs, in which heat shock protein beta-1, Protein S100-A10 and S100-A11 may play a part.ConclusionsLess than 5% of the differentially expressed proteins make up the comparative proteomic profile between osteoinduced PDLSCs and DPSCs. This study helps to characterize the differences between osteoinduced PDLSCs and DPSCs in vitro.  相似文献   

6.
《Saudi Dental Journal》2020,32(1):43-51
IntroductionStem cells have unmatched capacity and potential for regeneration and when used alone or in combination with scaffolds to replace or repair damaged cells, can differentiate into any mature cell.AimTo evaluate the functional differentiation potential of EMD (Enamel Matrix Derivative), MTA (Mineral Trioxide Aggregate) and Biodentine on Stem Cells from Human Exfoliated Deciduous teeth (SHED).ObjectiveTo determine functional differentiation potential (osteogenic/odontogenic) of various biomaterials on SHED.Material and methodSHED derived from 5th linear passage after sub-culturing were treated with EMD, MTA and Biodentine individually and their effect on cell viability was compared and evaluated by MTT (3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay for 7 days. Alizarin red S staining was used to assess mineralization potential of these materials by the staining calcium deposits for 14 days. The results were analyzed using One-way ANOVA, Post hoc Tukey’s test for multiple comparisons.ResultsIt was observed that EMD imparted the highest cell viability at the end of 7 days (p < 0.001) followed by Biodentine and MTA. Likewise EMD showed highest potential to enhanced mineralization and expression of dentine sialoprotein (p < 0.001) followed by Biodentine and MTA at the end of 14 days (p<0.001).ConclusionIt can be concluded that all the tested materials are bioinductive to SHED. EMD can be used for various vital pulp therapies as that of Biodentine and MTA with predictable as well as enhanced success rate.  相似文献   

7.
BackgroundRegenerative medicine has emerged as a multidisciplinary field with the promising potential of renewing tissues and organs. The main types of adult stem cells used in clinical trials are hematopoietic and mesenchymal stem cells (MSCs). Stem cells are defined as self-renewing clonogenic progenitor cells that can generate one or more types of specialized cells.HighlightMSCs form adipose, cartilage, and bone tissue. Their protective and regenerative effects, such as mitogenic, anti-apoptotic, anti-inflammatory, and angiogenic effects, are mediated through paracrine and endocrine mechanisms. Dental pulp is a valuable source of stem cells because the collection of dental pulp for stem cell isolation is non-invasive, in contrast to conventional sources, such as bone marrow and adipose tissue. Teeth are an excellent source of dental pulp stem cells (DPSCs) for therapeutic procedures and they can be easily obtained after tooth extraction or the shedding of deciduous teeth. Thus, there is increased interest in optimizing and establishing standard procedures for obtaining DPSCs; preserving well-defined DPSC cultures for specific applications; and increasing the efficiency, reproducibility, and safety of the clinical use of DPSCs.ConclusionThis review comprehensively describes the biological characteristics and origins of DPSCs, their identification and harvesting, key aspects related to their characterization, their multilineage differentiation potential, current clinical applications, and their potential use in regenerative medicine for future dental and medical applications.  相似文献   

8.
Dental pulp‐derived stem cells (DPSCs) are considered to be of great promise for use in tissue repair and regenerative medicine. DPSCs can easily be collected from discarded teeth with little ethical concerns and harvested in a minimally invasive and safe manner. However, unfractionated clonogenic DPSCs are heterogenous and have variations in their phenotype. In this review paper, we summarize further isolation methods of DPSC subpopulations including immunoselection methods and a granulocyte colony‐stimulating factor (G‐CSF) gradient mobilization method for therapeutic clinical applications. The fractionated DPSC subpopulations exhibit stem cell properties in vitro: (i) high expression of pluripotency markers, Oct3/4, Nanog, and Sox2; (ii) high stability in long‐term expansion; (iii) multi‐lineage differentiation capacity; (iv) high migratory activity; and (v) high expression of trophic factors to enhance proliferation, migration, and anti‐apoptotic and immunomodulatory effects as well as angiogenesis and neurite extension. DPSC subpopulations have higher angiogenic, neurogenic, and regenerative potential compared with bone marrow stem cells and adipose stem cells, presenting an alternate versatile stem cell source for cellular therapies. Preclinical efficacy of DPSC subpopulations has also been investigated in various tissue/organ disease models including pulpitis, and currently a few clinical trials are underway to determine their safety and efficacy. Therefore, the major aim of this review is to highlight the recent progress in DPSC biology, trends in preclinical regenerative studies, and future perspectives.  相似文献   

9.
Dental pulp stem cells (DPSCs) are thought to contribute to reparative dentin formation, and that they may correspond to heterogenous populations of precursor cells or represent distinct differentiation stages along the odontoblastic lineage. DPSCs share many similarities with mesenchymal stem cells of the bone marrow (BMSCs). It appears that the distribution of tissue stem cells is not random and, within the dental pulp, there are potentially several distinct niches of stem/progenitor cells. In addition to DPSCs, other dental stem cell populations have been isolated. As for DPSCs, further studies are still needed to evaluate their potential of differentiation and their regenerative activity. Up today, (1) the formal demonstration that pulpal resident stem cells are actually the reparative dentin-forming cells recruited in response to injury is still lacking; and (2) the origin, localization and precise identity of odontogenic stem cells remain largely unknown. Dental clonal cell lines may represent valuable tool to answer some fontamental questions concerning the dental stem cell biology. Altogether, the presence of dental cell populations displaying stem cell properties has opened new paths for considering regenerative therapies. This might be a prerequisite to design alternative strategies for capping and endodontic treatment, using stem cells.  相似文献   

10.
11.
Objective: This study aimed to compare the behavior of dental pulp stem cells (DPSCs) after isolation using solutions containing either collagenase/dispase or collagenase alone.Design: DPSCs were isolated by two digestion methods (collagenase/dispase or collagenase alone) from human third molars. Immunophenotypic features were confirmed by flow cytometry for cell markers STRO-1, cluster of differentiation (CD) 146, CD45, and collagen type-I. The proliferation potential of cells was evaluated by 5-bromo-2′-deoxyuridine (brdU) incorporation assay, and finally they were assessed for multi-lineage differentiation potential. Data were analyzed using one-way analysis of variance and independent t-tests.Results: DPSCs isolated by either method showed similar levels of STRO-1, CD45, and collagen type-I and similar incorporation of brdU (P > 0.05). However, DPSCs obtained by collagenase I/dispase treatment had significantly higher numbers of CD146+ cells and osteogenic and chondrogenic capacities compared to those obtained by treatment with collagenase I alone (P < 0.05). On the other hand, more STRO-1+/CD164-DPSCs were found in the collagenase alone group with higher adipogenic potential.Conclusions: Different enzyme solutions gave rise to different populations of DPSCs. Dispase enhanced isolation of CD146+ DPSCs probably by disrupting the basement membranes of blood vessels and releasing DPCSs embedded in the perivascular niche. Furthermore, the differentiation potential of DPSCs was influenced by the change in enzyme solution.  相似文献   

12.

Objectives

The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED).

Materials and methods

SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated.

Results

TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein).

Conclusions

ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1.

Clinical relevance

The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
  相似文献   

13.
《Journal of endodontics》2023,49(4):395-401.e6
IntroductionThe aim of this study was to assess whether the biological characteristics of dental pulp stem cells (DPSCs), such as viability, adhesion to dentin, mineralization, and release of immunomodulatory cytokines, are affected by the inflammatory status of the donor tissue and/or the sustained inflammatory environment.MethodsDPSCs were isolated from pulps from 3 caries-free teeth (healthy or hDPSCs), and from 3 teeth with irreversible pulpitis or deep caries (unhealthy DPSCs or uDPSCs). The cells were cultured in odontogenic and osteogenic media with or without lipopolysaccharides. Viability was analyzed by MTT assay at days 1, 3, 5, and 7; adhesion to dentin was evaluated through an environmental scanning electron microscope after 48 hours and through MTT assay; mineralization was analyzed with alizarin red staining after 21 days; and the release of proinflammatory (interleukin 6) and immunosuppressive cytokines (interleukin 10) was measured with the enzyme-linked immunosorbent assay after 24 hours and 7 days.ResultsThe inflammatory status of the pulp significantly reduced the viability and mineralization capacity of the DPSCs, although it did not affect the adhesion capacity to dentin or the secretion of the proinflammatory interleukin. The inflammatory microenvironment (lipopolysaccharide) only had a significant impact on the secretion of interleukin 6, which was augmented after 7 days.ConclusionsThe inflammatory status of the dental pulp should be taken into account when the use of DPSCs is intended either for research and/or for application in reparative or regenerative therapies.  相似文献   

14.
15.
ObjectiveTo investigate the role of the EphrinB2 signaling pathway in the osteogenesis/odontogenesis of human dental pulp stem cells (DPSCs).DesignThe endogenous expression levels of EphrinB2 and its cognate receptors EphB2 and EphB4 in DPSCs were analyzed by qRT-PCR and Western blotting after 7, 14 and 21 days of osteogenic/odontogenic induction culture. Additionally, the phosphorylation of EphrinB2, EphB4 and ERK1/2 proteins at early time-points following osteogenic induction, were also investigated by Western blots. Subsequently, we investigated whether supplementation of recombinant EphrinB2-Fc within the induction milieu can enhance the osteogenic/odontogenic differentiation of DPSCs.ResultsEndogenous gene and protein expression levels of EphrinB2, EphB2 and EphB4 were upregulated in induced versus non-induced DPSCs, over 21 days of osteogenic/odontogenic induction. Western blots showed increase in phosphorylated EphrinB2, EphB4 and ERK1/2 proteins at early time-points following osteogenic induction. Preliminary investigation of a concentration range (0, 0.5, 1 and 2 μg/ml) of recombinant EphrinB2-Fc within osteogenic induction media, showed that 0.5 μg/ml was optimal for enhancing the osteogenic/odontogenic differentiation of DPSCs over a culture duration of 14 days. Subsequently, more comprehensive qRT-PCR analysis with 0.5 μg/ml EphrinB2-Fc revealed significant upregulation of several key osteogenic marker genes in treated versus untreated DPSCs after 21 days of osteogenic/odontogenic induction. By 7 days of osteogenic induction, DPSCs treated with 0.5 μg/ml EphrinB2-Fc exhibited significantly more calcium mineralization (Alizarin red S staining) and alkaline phosphatase activity than the untreated control.ConclusionsEphrinB2 signaling plays a key role in the osteogenic/odontogenic differentiation of DPSCs.  相似文献   

16.

Objective

Dental pulp stem cells (DPSCs) have been receiving more attentions recently as an important biomaterial for tissue engineering. Notch signalling plays a key role in regulating self-renewal and differentiation of a variety of cells. The objective of this study is to investigate the effects of Notch-Delta1 RNA interference (RNAi) on the proliferation and differentiation of human dental pulp stem cells in vitro.

Design

In the present study, we performed gene knockdown of Notch ligand Delta1 in DPSCs using lentivirus-mediated Delta1-RNAi. Changes of proliferation in DPSCs/Delta1-RNAi were examined by cell cycle analysis, Cell viability assay (CCK-8) and Western blot analysis of proliferating cell nuclear antigen (PCNA). Cells were cultured in odontoblast differentiation-inducing medium, and the differentiation of cells was detected with Alkaline phosphatase ALP activity assay, Alizarin red S staining, calcium concentration measurement, and Western blot analysis of Dentine sialophosphoprotein (DSPP).

Results

Lentivirus-mediated Delta1-RNAi stably knocked-down the expression of Delta1 and Notch signalling, and some of DPSCs/Delta1-RNAi displayed changes in morphology or DSPP expression. The growth rate of Delta1-deficient DPSCs was significantly suppressed as compared with wild type DPSCs and control lentivirus vector transfected DPSCs. Furthermore, the differentiating capability of DPSCs/Delta1-RNAi into odontoblasts is much higher than the two control groups.

Conclusions

Notch signalling plays a crucial role in regulating self-renewal and differentiation in DPSCs. The deficient Notch signalling inhibits the self-renewal capacity of DPSCs and tends to induce DPSCs differentiation under odontoblast differentiation-inducing conditions. These findings suggested that DPSCs/Delta1-RNAi might be applicable to stem cell therapies and tooth tissue engineering.  相似文献   

17.
Periodontitis progresses due to increased levels of active metalloproteinases (MMPs) and the imbalance between MMPs and their tissue inhibitors (TIMPs). Natural curcumin limits the lytic activity of MMPs but has low cellular uptake. Use of synthetic curcumin analogs could be a means of overcoming this limitation of treatment efficiency. Human periodontal stem cells were isolated from gingival tissue, gingival ligament fibers, periodontal ligament, and alveolar bone. The effect of five synthetic curcumin analogs was compared with that of natural curcumin by assessing cytotoxicity [by 3‐(4,5‐dimethylthiazol‐2yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay], the cellular uptake (by fluorometry), the proteolytic activities of MMP‐2 and ‐9 (by zymography), and the levels of TIMP‐1 (by ELISA). Our results indicated increased cytotoxicity of synthetic curcumins for doses between 100 and 250 μM. At a concentration of 10 μM, cellular uptake of synthetic curcumins varied depending on their chemical structure. The curcumin compounds modulated pro‐MMP‐2 levels and increased TIMP‐1 production. There was no detectable synthesis of pro‐MMP‐9 and no activation of MMPs 2 and 9. Gingival tissue and gingival ligament fiber stem cells were most responsive to treatment, showing inverse correlations between pro‐MMP‐2 and TIMP‐1 levels. In conclusion, synthetic curcumins influenced the balance between pro‐MMP‐2 and TIMP‐1 in human periodontal stem cells in vitro, and this could open perspectives for their application as adjuvants in periodontal therapy.  相似文献   

18.
ObjectiveStem cells from pulp tissue are a promising cell-based therapy for neurodegenerative patients based on their origin in the neural crest. The aim of this study was to differentiate and evaluate the ability of human dental pulp stem cells from permanent teeth (DPSC) and stem cells from human exfoliated deciduous teeth (SHED) to differentiate into spiral ganglion neurons.DesignAfter isolation and characterization of mesenchymal stem cell properties, DPSC and SHED were treated with the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell-derived neurotrophic factor (GDNF). The differentiation was identified by immunostaining and qRT-PCR analysis of neuronal markers and measuring intracellular calcium activity.ResultsAfter 2 weeks of induction, morphological changes were observed in both DPSC and SHED. The differentiated cells expressed neuron-specific class III beta-tubulin, GATA binding protein 3 (GATA3) and tropomyosin receptor kinase B, protein markers of spiral ganglion neurons. These cells also showed upregulation of the genes encoding these proteins, namely GATA3 and neurotrophic receptor tyrosine kinase 2. Intracellular calcium dynamics that reflect neurotransmitter release were observed in differentiated DPSC and SHED.ConclusionThese results demonstrate that dental pulp stem cells from permanent and deciduous teeth can differentiate into spiral ganglion neuron-like cells.  相似文献   

19.
Objective. The aim of this study was to investigate the chondrogenic potential of stem cells from human exfoliated teeth (SHED). Materials and methods. SHED cultures were isolated from human exfoliated deciduous teeth. Colony-forming capacity, odonto/osteogenic and adipogenic potential were measured. SHED were cultured for 2 weeks in chondrogenic differentiation medium containing dexamethasone, insulin, ascorbate phosphate, TGF-β3 and bFGF. Toluidine blue staining and safranin O staining were used for chondrogenesis analysis. The related markers, type II collagen and aggrecan, were also investigated using immunohistochemistry. SHED were seeded onto the β-TCP scaffolds and transplanted into the subcutaneous space on the back of nude mice. The transplants were recovered at 2, 4 and 8 weeks post-transplantation for analysis. Results. SHED showed colony-forming capacity, odonto/osteogenic and adipogenic differentiation capacity. Chondrogenic differentiation was confirmed by toluidine blue staining, safranin O staining, type II collagen and aggrecan immunostaining. After in vivo transplantation, SHED recombined with β-TCP scaffolds were able to generate new cartilage-like tissues. Conclusions. The ?ndings demonstrate the chondrogenic differentiation capacity of SHED both in vitro and in vivo models, suggesting the potential of SHED in cartilage tissue engineering.  相似文献   

20.
PurposeThe objective of this study was to compare the growth rate, morphology, immunohistology and plasticity of autogenous adult-retained SHEDs (arSHEDs) and adult dental pulp stem cells (DPSCs) obtained from the same donor.MethodsExpression of the mesenchymal stem cell markers CD44, CD90, CD105, caspase-3 and GAPDH were assessed using RT-PCR. Caspase-3 and CD44 were also evaluated at the protein level by western blotting of cell lysates. Plasticity of DPSCs and arSHEDs were tested by culture in adipogenic, chondrogenic, osteogenic and Schwann cells induction media.ResultsDPSCs and arSHEDs were isolated by explant culturing and were similarly positive for growth rate and all tested markers. Furthermore, DPSCs and arSHEDs could be driven to adipocyte, chondrocyte, osteocyte and Schwann cells lineages thus indicating similar plasticity as precursor cells.ConclusionThis study demonstrates the similarities between DPSCs and arSHEDs in a unique situation, where both stem cells (SC) types were obtained from a single patient and thus represent an alternative source of SC’s for tissue engineering and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号