首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose : In refractory mesial temporal lobe epilepsy (MTLE) extrahippocampal and neocortical abnormalities have been described in patients with or without mesial temporal sclerosis (MTS). Recently we observed gray matter reductions in regions outside the hippocampus in benign MTLE with or without MTS. Cortical thickness has been proposed as a viable methodologic alternative for assessment of neuropathologic changes in extratemporal regions. Herein, we aimed to use this technique to describe cortical abnormalities in patients with benign TLE. Methods : Whole‐brain cortical thickness analysis (FreeSurfer) was performed in 32 unrelated patients with benign TLE [16 patients with signs of MTS on magnetic resonance imaging (MRI), pMTLE; 16 without, nMTLE] and 44 healthy controls. Key Findings : In the pMTLE group, the most significant thinning was found in the sensorimotor cortex bilaterally but was more extensive in the left hemisphere (false discovery rate, p < 0.05). Other areas were localized in the occipital cortex, left supramarginal gyrus, left superior parietal gyrus, left paracentral sulcus, left inferior/middle/superior frontal gyrus, left inferior frontal sulcus, right cingulate cortex, right superior frontal gyrus, right inferior parietal gyrus, right fusiform gyrus, and cuneus/precuneus. In the nMTLE, a similar neurodegenerative pattern was detected, although not surviving correction for multiple comparisons. Direct comparison between pMTLE and nMTLE did not reveal significant changes. Significance : Patients with either benign pMTLE or nMTLE showed comparable cortical thinning, mainly confined to the sensorimotor cortex. This finding that is not appreciated on routine MRI supports the hypothesis that similar to refractory MTLE, even in benign MTLE, pathology in neocortical regions maybe implicated in the pathophysiology of this syndrome.  相似文献   

2.
Purpose: To date, magnetic resonance imaging (MRI)–based studies of the cerebral cortex in mesial temporal lobe epilepsy (MTLE) have focused primarily on investigating cortical volume and thickness. However, volume is a composite of surface area and thickness, each reflecting distinct neurobiologic and genetic processes. The goal of this study was to investigate cerebral cortex (1) surface area, (2) surface geometric distortion, and (3) thickness in MTLE with hippocampal sclerosis (HS). Methods: Seventy patients with “sporadic” unilateral MTLE + HS and 40 healthy controls underwent T1‐weighted MRI. Processing MR images using an automated cortical surface reconstruction method (FreeSurfer), we quantified cortical surface area, surface geometric distortion (metric distortion), and thickness at each vertex across the entire cortex. Differences between patients and controls were determined using generalized linear models. Separate linear regression models were employed to assess the relationship between cortical surface area and hippocampal volume as well as a series of important clinical features of the condition. Key Findings: We detected an asymmetric reduction in cortical surface area, predominantly in ipsilateral mesial and anterior temporal lobe subregions, of patients with MTLE + HS. Changes in surface geometric features were also evident and closely mirrored surface area patterns. In contrast, cortical thinning appeared dispersed across the cortex bilaterally. The regression models revealed that ipsilateral hippocampal volume was a significant predictor of temporal lobe surface area changes. Significance: Our findings indicate that contraction in surface area, rather than cortical thinning, explains ipsilateral mesial and anterior temporal lobe atrophy in patients with MTLE with HS. Furthermore, the alterations in surface geometry indicate folding abnormality involving the same regions. Cortical surface changes may represent sequelae of the disease or deviant cortical development.  相似文献   

3.
The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post-TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post-injury in 20 children aged 8.2-17.5 years who had sustained moderate-to-severe closed head injury and 21 children aged 7.4-16.7 years who had sustained OI. At approximately 3 months post-injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI-induced change. At 18 months post-injury, some of the regions previously evident at 3 months post-injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post-injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable "sparing" of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months-3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe. Longitudinal analyses of cortical thickness highlight an important deviation from the expected pattern of developmental change in children and adolescents with TBI, particularly in the medial frontal lobes, where typical patterns of thinning fail to occur over time. Regions which fail to undergo expected cortical thinning in the medial aspects of the frontal lobes correlate with difficulties in emotional control and behavioral regulation, common problems for youth with TBI. Examination of post-TBI brain development in children may be critical to identification of children that may be at risk for persistent problems with executive functioning deficits and the development of interventions to address these issues.  相似文献   

4.
OBJECTIVE: The goals of the work described here were to determine if hippocampal and extrahippocampal atrophy in children with temporal lobe epilepsy (TLE) follows a pattern similar to that in adult patients, and to assess the clinical and neuropsychological relevance of regional brain atrophy in pediatric TLE. METHODS: Children with symptomatic TLE (n=14: 9 with mesial TLE due to hippocampal atrophy and 5 with TLE due to neocortical lesions), healthy children (n=14), and 9 adults with mesial temporal lobe epilepsy (MTLE) were compared using voxel-based morphometry (VBM) of brain magnetic resonance imaging (MRI). The children underwent a comprehensive neuropsychological battery. RESULTS: Children with MTLE with unilateral hippocampal atrophy (n=9) exhibited a significant reduction in gray matter in the hippocampus ipsilateral to the seizure origin and significant atrophy in the ipsilateral cingulate gyrus and contralateral middle frontal lobe. Children with TLE (n=14) exhibited a significant reduction in the gray matter of the ipsilateral hippocampus and parahippocampal gyrus. There was a correlation between gray matter volume in children with TLE and scores on several neuropsychological tests. Atrophy in pediatric patients with MTLE was less extensive than that in adults, and involved the hippocampi and the frontal cortex. CONCLUSIONS: Similar to adult MTLE, pediatric MTLE is associated with hippocampal and extrahippocampal cell loss. However, children display less intense quantifiable gray matter atrophy, which affects predominantly frontal lobe areas. There was a significant association between volume of gray matter in medial temporal and frontal regions and scores on neuropsychological tests. In childhood, TLE and the concomitant cognitive/behavior disturbances are the result of a damaged neural network.  相似文献   

5.
ObjectiveThe goals of the work described here were to determine if hippocampal and extrahippocampal atrophy in children with temporal lobe epilepsy (TLE) follows a pattern similar to that in adult patients, and to assess the clinical and neuropsychological relevance of regional brain atrophy in pediatric TLE.MethodsChildren with symptomatic TLE (n = 14: 9 with mesial TLE due to hippocampal atrophy and 5 with TLE due to neocortical lesions), healthy children (n = 14), and 9 adults with mesial temporal lobe epilepsy (MTLE) were compared using voxel-based morphometry (VBM) of brain magnetic resonance imaging (MRI). The children underwent a comprehensive neuropsychological battery.ResultsChildren with MTLE with unilateral hippocampal atrophy (n = 9) exhibited a significant reduction in gray matter in the hippocampus ipsilateral to the seizure origin and significant atrophy in the ipsilateral cingulate gyrus and contralateral middle frontal lobe. Children with TLE (n = 14) exhibited a significant reduction in the gray matter of the ipsilateral hippocampus and parahippocampal gyrus. There was a correlation between gray matter volume in children with TLE and scores on several neuropsychological tests. Atrophy in pediatric patients with MTLE was less extensive than that in adults, and involved the hippocampi and the frontal cortex.ConclusionsSimilar to adult MTLE, pediatric MTLE is associated with hippocampal and extrahippocampal cell loss. However, children display less intense quantifiable gray matter atrophy, which affects predominantly frontal lobe areas. There was a significant association between volume of gray matter in medial temporal and frontal regions and scores on neuropsychological tests. In childhood, TLE and the concomitant cognitive/behavior disturbances are the result of a damaged neural network.  相似文献   

6.
BACKGROUND: Clinical features that may help to differentiate medial temporal lobe epilepsy (MTLE) from neocortical temporal lobe epilepsy (NTLE) are lacking. OBJECTIVE: To investigate the localizing and lateralizing value of the association of ipsilateral motor automatisms and contralateral dystonic posturing in patients with medically refractory temporal lobe epilepsy. PATIENTS AND METHODS: Videotapes of 60 patients with well-defined MTLE, NTLE, or both were reviewed to assess the presence and the localizing value of unilateral dystonic posturing associated with motor automatisms. RESULTS: Twenty-eight of the 60 patients exhibited unilateral dystonic posturing. This sign was observed in patients with MTLE and NTLE. It was mostly contralateral to the seizure focus in patients with MTLE and exclusively ipsilateral in patients with NTLE. Unilateral motor automatisms occurred in 26 of the 60 patients with MTLE or NTLE. It was predominantly ipsilateral to the seizure focus in patients with MTLE and exclusively contralateral in patients with NTLE. The association of ipsilateral motor automatisms and contralateral dystonic posturing was found in 14 patients with MTLE but in none of the patients with NTLE. Two patients who had medial and neocortical seizure onset also exhibited this clinical feature. This association was not significantly correlated with the postoperative outcome in patients with MTLE. CONCLUSIONS: The association of ipsilateral motor automatisms and contralateral dystonic posturing may help to differentiate MTLE from NTLE with a reliable lateralizing value. This clinical association may reflect a specific pattern in the spread of the ictal discharge.  相似文献   

7.
Purpose: Atypical morphology of the surface of the cerebral cortex may be related to abnormal cortical folding (gyrification) and therefore may indicate underlying malformations of cortical development (MCDs). Using magnetic resonance imaging (MRI)–based analysis, we examined cortical morphology in patients with juvenile myoclonic epilepsy (JME). Methods: MRI data was collected for 24 patients with JME and 40 demographically matched healthy controls. FreeSurfer, an automated cortical surface reconstruction method, was applied to compare cortical morphology between patients and controls. Areas of anomalous cortical morphology were defined as regions of interest (ROIs) to contrast regional cortical parameters, such as surface area, average thickness, and mean curvature between patients and controls. Key Findings: In patients with JME, changes to cortical morphology were detected in several regions. In the left hemisphere, these were in insular and cingulate cortices, occipital pole, and middle temporal and fusiform gyri. In the right hemisphere, changes were detected in insular cortex, inferior temporal gyrus, and precuneus. Further analysis of ROIs revealed that these changes are related to differences in surface area rather than average cortical thickness. In addition, mean curvature abnormalities were detected in the insula bilaterally, the left cingulate cortex, and right inferior temporal gyrus. Significance: The morphologic findings in this study suggest that structural abnormalities in JME extend beyond mesial frontal lobe regions of the brain. These may be indicative of areas of subtle cortical folding abnormality related to early disruption of cortical development.  相似文献   

8.
Purpose: It is unclear whether extrahippocampal brain damage in patients with medial temporal lobe epilepsy (MTLE) is a homogeneous phenomenon, as most data relates to the average volume reduction in groups of patients. This study aimed to evaluate where and how much atrophy is to be expected in an individual patient with MTLE. Methods: High‐resolution T1 magnetic resonance imaging (MRI) was obtained from 23 consecutive patients with unilateral MTLE and from a matched control group. Parametric tests of voxel‐based gray matter volume evaluated mean regional atrophy in MTLE compared with controls. Gray matter images were then submitted to a voxel by voxel calculation of the fitted receiver operating characteristic (ROC) curve area, plotting the sensitivity versus 1specificity for a binary classifier (MTLE vs. controls). The area under the curve (AUC) was calculated for each voxel and a resulting three‐dimensional map of gray matter voxel‐wise AUCs was obtained. Results: On average, patients with MTLE showed atrophy in the ipsilateral hippocampus and on a limbic network. Elevated AUC was demonstrated in the ipsilateral hippocampus and medial temporal lobe, the ipsilateral thalamus and occipitotemporal cortex, the ipsilateral cerebellum, the cingulate, the contralateral insula, and the occipitoparietal and dorsolateral prefrontal cortex. Conclusion: This study suggests that the medial temporal lobe, occipitotemporal areas, the cerebellum, the cingulate cortex, the ipsilateral insula, and thalamus are more likely to be atrophied in randomly selected patients with MTLE. Structures such as the orbitofrontal cortex, the contralateral medial temporal areas and insula, the putamen, and the caudate may be atrophied, but not as consistently.  相似文献   

9.
We studied the incidence of cerebral dysgenetic lesions(CD) in 39 operated patients with medial temporal lobe epilepsy(MTLE) who had hippocampal sclerosis. Four patients had CD, such as menigocele at the ipsilateral temporal fossa, schizencephaly in the ipsilateral peri-Rolandic area, focal cortical dysplasia in the ipsilateral inferior temporal gyrus and periventricular nodular heterotopia at the bilateral inferior horns of the lateral ventricle. Histological examinations of the resected lateral temporal lobes from 29 MTLE patients revealed the presence of microdysgenesis (microscopic cerebral dysgenesis) in 28 patients, including heterotopic white matter neuron(24 cases), molecular layer neuron(14), oligodendroglial cell cluster(11), dilated perivascular space(10). These findings suggest that the congenital factors, as well as hippocampal sclerosis, may be involved in the development of MTLE.  相似文献   

10.

Aims

Differentiating mesial temporal lobe epilepsy (MTLE) and neocortical temporal lobe epilepsy (NTLE) remains challenging. Our study characterized the metabolic profiles between MTLE and NTLE and their correlation with surgical prognosis using 18F-FDG-PET.

Methods

A total of 137 patients with intractable temporal lobe epilepsy (TLE) and 40 age-matched healthy controls were recruited. Patients were divided into the MTLE group (N = 91) and the NTLE group (N = 46). 18F-FDG-PET was used to measure the metabolism of regional cerebra, which was analyzed using statistical parametric mapping. The volume of abnormal metabolism in cerebral regions and their relationship with surgical prognosis were calculated for each surgical patient.

Results

The cerebral hypometabolism of MTLE was limited to the ipsilateral temporal and insular lobes (p < 0.001, uncorrected). The NTLE patients showed hypometabolism in the ipsilateral temporal, frontal, and parietal lobes (p < 0.001, uncorrected). The MTLE patients showed extensive hypermetabolism in cerebral regions (p < 0.001, uncorrected). Hypermetabolism in NTLE was limited to the contralateral temporal lobe and cerebellum, ipsilateral frontal lobe, occipital lobe, and bilateral thalamus (p < 0.001, uncorrected). Among patients who underwent resection of epileptic lesions, 51 (67.1%) patients in the MTLE group and 10 (43.5%) in the NTLE group achieved Engel class IA outcome (p = 0.041). The volumes of metabolic increase for the frontal lobe or thalamus in the MTLE group were larger in non-Engel class IA patients than Engel class IA patients (p < 0.05).

Conclusions

The spatial metabolic profile discriminated NTLE from MTLE. Hypermetabolism of the thalamus and frontal lobe in MTLE may facilitate preoperative counseling and surgical planning.  相似文献   

11.
OBJECTIVE: The objective of this study was to assess the volumes of medial temporal lobe structures using high resolution magnetic resonance images from patients with chronic refractory medial temporal lobe epilepsy (MTLE). METHODS: We studied 30 healthy subjects, and 25 patients with drug refractory MTLE and unilateral hippocampal atrophy (HA). We used T1 magnetic resonance images with 1 mm isotropic voxels, and applied a field non-homogeneity correction and a linear stereotaxic transformation into a standard space. The structures of interest are the entorhinal cortex, perirhinal cortex, parahippocampal cortex, temporopolar cortex, hippocampus, and amygdala. Structures were identified by visual examination of the coronal, sagittal, and axial planes. The threshold of statistical significance was set to p<0.05. RESULTS: Patients with right and left MTLE showed a reduction in volume of the entorhinal (p<0.001) and perirhinal (p<0.01) cortices ipsilateral to the HA, compared with normal controls. Patients with right MTLE exhibited a significant asymmetry of all studied structures; the right hemisphere structures had smaller volume than their left side counterparts. We did not observe linear correlations between the volumes of different structures of the medial temporal lobe in patients with MTLE. CONCLUSION: Patients with refractory MTLE have damage in the temporal lobe that extends beyond the hippocampus, and affects the regions with close anatomical and functional connections to the hippocampus.  相似文献   

12.
Frontal and temporal functional connections of the living human brain   总被引:1,自引:0,他引:1  
Connections between human temporal and frontal cortices were investigated by intracranial electroencephalographic responses to electrical stimulation with 1-ms single pulses in 51 patients assessed for surgery for treatment of epilepsy. The areas studied were medial temporal, entorhinal, lateral temporal, medial frontal, lateral frontal and orbital frontal cortices. Findings were assumed to be representative of human brain as no differences were found between epileptogenic and non-epileptogenic hemispheres. Connections between intralobar temporal and frontal regions were common (43-95%). Connections from temporal to ipsilateral frontal regions were relatively uncommon (seen in 0-25% of hemispheres). Connections from frontal to ipsilateral temporal cortices were more common, particularly from orbital to ipsilateral medial temporal regions (40%). Contralateral temporal connections were rare (< 9%) whereas contralateral frontal connections were frequent and faster, particularly from medial frontal to contralateral medial frontal (61%) and orbital frontal cortices (57%), and between both orbital cortices (67%). Orbital cortex receives profuse connections from the ipsilateral medial (78%) and lateral (88%) frontal cortices, and from the contralateral medial (57%) and orbital (67%) frontal cortices. The high incidence of intralobar temporal connections supports the presence of temporal reverberating circuits. Frontal cortex projects within the lobe and beyond, to ipsilateral and contralateral structures.  相似文献   

13.
Cortical thickness analysis has been proposed as a potential diagnostic measure in memory disorders. In this retrospective study, we compared the cortical thickness values of 24 patients with frontotemporal dementia (FTD) to those of 25 healthy controls, 45 symptomatic subjects with stable mild cognitive impairment (S-MCI), 15 subjects with progressive mild cognitive impairment (P-MCI), and 36 patients with Alzheimer's disease (AD). The patterns of regions of thinning in FTD when compared to controls and also S-MCI patients showed similar trends; thinning of the bilateral frontal poles and bilateral medial temporal lobe structures, especially the anterior part of the gingulum, the uncus, and parahippocampal gyri. Cortical thinning in FTD was also found on the boundary regions of parietal and occipital lobes. In the P-MCI group compared to FTD, the trend of thinning in small distinct areas of the parietal and occipital lobes was observed. The FTD and AD groups did not differ statistically, but we found trends toward thinning in FTD of the left cingulate gyrus, and the left occipitotemporal gyri, and in AD of the inferior parietal, occipitoparietal, and the pericalcarine regions, more in the right hemisphere. In FTD, increased slowness in the executive test (Trail-Making A) correlated with the thinner cortex, whereas the language tests showed the lower scores, the thinner cortex in the left hemisphere. Cortical thickness might be a tool for detecting subtle changes in brain atrophy in screening of dementia prior to the development of diffuse or lobar atrophies.  相似文献   

14.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neuropsychiatric diseases, but rarely in low-grade hepatic encephalopathy (HE), a common neuropsychiatric complication of liver cirrhosis. We conducted a resting-state fMRI in 19 healthy controls, 18 cirrhotic patients without HE, and 22 cirrhotic patients with low-grade HE. The amplitude of low-frequency fluctuations (ALFF) of fMRI signal was computed to measure the spontaneous neuronal activity. Several regions showing significant ALFF differences among three groups were the precuneus, occipital lobe, left frontal lobe and anterior/middle cingulate cortex, and left cerebellum posterior lobe. Compared to controls or patients without HE, patients with low-grade HE showed decreased ALFF in the precuneus and adjacent cuneus, visual cortex, and left cerebellum posterior lobe. Compared to controls, patients with low-grade HE showed higher ALFF in both cortical and subcortical regions, including the right middle cingulate gyrus, and left anterior/middle cingulate gyrus, inferior frontal gyrus, insula lobe, parahippocampal gyrus, middle temporal gyrus and lentiform nucleus; compared to patients without HE, patients with low-grade HE showed higher ALFF in the left medial frontal gyrus and anterior cingulate gyrus, bilateral superior frontal gyrus, and right middle frontal gyrus. Moreover, correlations between ALFF changes and poor neurocognitive performances were found in patients with low-grade HE. These results suggested the existence of aberrant brain activity at the baseline state in low-grade HE, which may be implicated in the neurological pathophysiology underlying HE.  相似文献   

15.
Direct cortical projections to the parabrachial nucleus in the cat   总被引:2,自引:0,他引:2  
Direct projections from the cerebral cortex to the parabrachial nucleus in the cat were examined by the horseradish peroxidase (HRP)method. When HRP was injected into the parabrachial nucleus, retrogradely labeled neuronal cell bodies were seen, bilaterally with an ipsilateral predominance, mainly in the orbital gyrus, the lateral bank of the presylvian sulcus, and a restricted region in the infralimbic cortex on the medial surface of the frontal lobe (stereotaxic coordinates; Fr: 22, L: 1, H: -1); all labeled neurons were in deep pyramidal cell layer. After injecting HRP conjugated to wheat germ agglutinin (WGA-HRP) into the cortical regions where retrogradely labeled neurons were found after injecting HRP into the parabrachial nucleus, anterogradely labeled cortical fibers were traced to the parabrachial nucleus. Corticoparabrachial fibers originating from the orbital gyrus and the lateral bank of the presylvian sulcus ran ipsilaterally through the internal capsule and the cerebral peduncle down to the lower brainstem, whereas those from the infralimbic cortex coursed down ipsilaterally through the medial forebrain bundle. These cortical fibers to the parabrachial nucleus were distributed bilaterally with an ipsilateral predominance. Cortical fiber terminals in the parabrachial nucleus were topographically arranged: Corticoparabrachial fibers from the lateral bank of the presylvian sulcus ended most massively in the dorsal part of the lateral parabrachial nucleus. Corticoparabrachial fibers from the orbital gyrus ended most heavily in the medial parabrachial nucleus and less heavily in the lateral parabrachial nucleus. Corticoparabrachial fibers from the infralimbic cortex ended mostly in the parabrachial regions surrounding the brachium conjunctivum.  相似文献   

16.
To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3–15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p < 0.001). The LMN ALS variants demonstrated the highest rates of cortical thinning in the precentral gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.  相似文献   

17.
Purpose: Performance in recognition memory differs among patients with medial temporal lobe epilepsy (MTLE). We aimed to determine if distinct recognition performances (normal vs. impaired) could be related to distinct patterns of brain activation during encoding. Methods: Event‐related functional magnetic resonance imaging (fMRI) activation profiles were obtained during successful encoding of non–material‐specific items, in 14 MTLE patients tested for recognition of stimuli afterward. Findings were compared to those of 25 healthy subjects, and voxel‐based correlations were assessed between brain activation and performance. Key Findings: Patients with left and right MTLE showed similar activations and similar performances. As a whole, the group of patients demonstrated altered recognition scores, but three of the seven patients with left MTLE and three of the seven patients with right MTLE exhibited normal performance relative to controls. In comparison to healthy subjects and patients with impaired recognition, patients with normal recognition showed weaker activations in left opercular cortex, but stronger activations in bilateral parahippocampal region/fusiform gyrus (PH/FG). By contrast, patients with impaired performance showed weaker activations in bilateral PH/FG, but stronger activations in a frontal/cingulate and parietal network. Recognition performance was correlated positively to bilateral PH/FG activations, and negatively correlated to bilateral frontal/cingulate activations, in the whole group of patients, as well as in subgroups of patients with either left or right MTLE. Significance: These results suggest occurrence of effective functional compensation within bilateral PH/FG in MTLE, allowing patients to maintain recognition capability. In contrast, impairment of this perceptive–memory system may lead to alternative activation of an inefficient nonspecific attentional network in patients with altered performance.  相似文献   

18.
Through conceptualizing poor insight in psychotic disorders as a form of anosognosia (neurological deficit), frontal lobe dysfunction is often ascribed a vital role in its pathogenesis. Whether non-frontal brain regions are important for insight remains to be investigated. We used a multi-method approach to examine the neural morphometry of all cortical regions for insight in first-episode psychosis. Insight was rated in 79 people with a first-episode psychosis with the awareness of illness and awareness of treatment need and efficacy items of the Scale for assessment of Unawareness of Mental Disorder. Participants were assessed with magnetic resonance imaging. Cortical thickness analysis and voxel-based morphometry were utilized to identify the possible neuroanatomical basis of insight. Cortical thickness technique revealed that poorer awareness of illness was associated with regional thinning in left middle frontal and inferior temporal gyri. Poorer awareness of treatment need and efficacy was associated with cortical thinning in left medial frontal gyrus, precuneus and temporal gyri. No significant associations emerged between any insight measure and gray matter density using voxel-based morphometry. The results confirm predictions derived from the anosognosia/neuropsychology account and assert that regional thickness in frontal cortex is associated with awareness of illness in the early phase of psychosis. The fact that prominent thickness reductions emerged in non-frontal regions of the brain in parietal and temporal cortices for both awareness of illness and awareness of treatment need and efficacy suggests that the neural signature of insight involves a network of brain structures, and not only the frontal lobes as previously suggested.  相似文献   

19.
The aim of this work was to evaluate the relationship between ipsilateral amygdala dysfunction in unilateral mesial temporal lobe epilepsy (MTLE) and remote temporal, frontal, and parietal brain structures and to identify their association with theory of mind (ToM) abilities. Functional magnetic resonance imaging (fMRI) data were acquired from MTLE patients with unilateral hippocampal sclerosis (n?=?28; 16 left-sided) and healthy controls (HC, n?=?18) watching an animated fearful face paradigm. To explore functional connectivity, we used independent component analysis (ICA) of fMRI data to characterize possible amygdala network alterations that may be caused by lateralized amygdala dysfunction. We furthermore investigated the relationship between activation within the amygdala network and ToM task performance. The pattern of amygdalar BOLD activation observed in response to an animated fearful face paradigm was bilateral amygdalar activation in HC and amygdala activation lateralized to the contralateral side in MTLE patients. In HC, a hemispheric asymmetry of the amygdala network was present with amygdala co-activation in predominantly left temporolateral and frontal brain structures. In MTLE patients, the observed asymmetry of amygdala connectivity was modulated by the side of pathology and the extent of amygdalar connectivity to the parahippocampal gyrus and insula was related to ToM test performance. These findings suggest that ipsilateral amygdalar dysfunction in MTLE is associated with alterations in remote temporal and frontal brain areas. The study of psychiatric and neurological disorders via network analysis allows for a shift of focus away from viewing dysfunctions of individual structures to a pathological network that possibly gives rise to a variety of symptoms.  相似文献   

20.
Purpose: Spread of seizure activity outside the frontal lobe due to cortico‐cortical connections can result in alteration in the cortex beyond the frontal lobe in children with intractable frontal lobe epilepsy (FLE). The aim of this study was to identify regions of reduced cortical thickness in children with intractable FLE. Methods: High‐resolution volumetric T1‐weighted imaging was performed on 17 children with FLE, who were being evaluated for epilepsy surgery, and 26 age‐matched healthy controls. The cortical thickness of 12 patients with left FLE and 5 patients with right FLE was compared to controls. The clusters of cortical thinning were regressed against age of seizure onset, duration of epilepsy, seizure frequency, and number of medications. Key Findings: In children with left FLE, cortical thinning was present in the left superior frontal, paracentral, precuneus, cingulate, inferior parietal, supramarginal, postcentral, and superior temporal gyri, as well as in the right superior and middle frontal, medial orbitofrontal, supramarginal, postcentral, banks of superior temporal sulcus, and parahippocampal gyri. In children with right FLE, cortical thinning was present in the right precentral, postcentral, transverse temporal, parahippocampal, lingual, and lateral occipital gyri, as well as in the left superior frontal, inferior parietal, postcentral, superior temporal, posterior cingulate, and lingual gyri. In children with left FLE, following exclusion of one outlier, there was no significant association between age at seizure onset, duration of epilepsy, seizure frequency and number of medications with clusters of cortical thinning. In children with right FLE, age at seizure onset, duration of epilepsy, frequency of seizures, and number of medications were not associated with clusters of cortical thinning within the right and left hemispheres. Significance: Cortical changes were present in the frontal and extrafrontal cortex in children with intractable FLE. These changes may be related to spread of seizure activity, large epileptogenic zones involving both frontal and extrafrontal lobes, and development of secondary epileptogenic zones that over time lead to cortical abnormality. Further studies correlating cortical changes with neurocognitive measures are needed to determine if the cortical changes relate to cognitive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号