首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to identify the functional corticalfields involved in reaching for targets in extrapersonal space,and to identify the specific fields representing visual targetinformation in long-term memory. Ten healthy subjects were askedto learn the positions of seven circular targets that were repeatedlyprojected on a screen. The regional cerebral blood flow wasmeasured with positron emission tomography during a rest state,at an early learning stage, at a later learning stage, and finallyat 30 min after the course of learning had been completed. MeanrCBF change images for each task minus rest were calculatedand fields of significant rCBF changes were identified. In all three task states, cortical fields were consistentlyactivated in the left motor and premotor areas, the posteriorpart of the superior parietal lobule, and the right angulargyrus. When learning of the target positions had been achieved,additional fields appeared bilaterally in the posterior partof the superior parietal lobule, the right superior occipitalgyrus, the left motor and premotor areas, the medial aspectof the superior frontal gyrus, the postcentral gyrus, the superiorpart of the cuneus, the inferior part of the angular gyrus,and the anterior part of the insula. The results indicate thatthere are at least two different types of functional fieldsin the posterior part of the superior parietal lobule; one isactive during reaching for the targets when guided by internalrepresentations of target positions; the other likely representsthe storage sites of visual target information that is addressedin long-term memory.  相似文献   

2.
Brain imaging studies have shown that episodic encoding into long-term memory preferentially activates the left prefrontal cortex and retrieval activates the right prefrontal cortex. However, it is unclear to what degree verbal analysis contributes to the left prefrontal activation during encoding. The present study was designed to avoid verbal analysis during encoding by using abstract pictures and computer- generated sounds which were difficult to code verbally. Sounds and pictures were grouped into six stimulus-stimulus pairs. When the sound from a pair was presented, the subjects were instructed to recall and visualize the associated picture. After 2.0 s the associated picture and another picture appeared on the screen and the subjects were required to identify the associated picture. Feedback about the choice was then given. Regional cerebral blood flow (rCBF) was measured with [15O]butanol and positron emission tomography (PET) in 10 subjects during initial training on the paired-associates task (encoding scan) and after 35 min of training (retrieval scan). Performance during the encoding scan was 59% correct and during the retrieval scan 98% correct, with a mean reaction time of 709 ms during retrieval. The rCBF was also measured during a control condition without any instruction to encode or retrieve. Compared with retrieval, encoding showed significant activation of the posterior part of the right middle frontal gyrus, the right inferior parietal cortex, the cingulate cortex, the left inferior parietal cortex and the left inferior and middle temporal gyri. The rCBF increase during encoding was strongly correlated with the rate of encoding. Retrieval was compared with both encoding and control. In none of these comparisons was there any prefrontal activation. The lack of prefrontal activation during near- perfect performance of the retrieval task suggests that the prefrontal cortex is not necessarily active when retrieval is fast and accurate, or what might be called automatic. Encoding was not associated with more activation of the left than the right prefrontal cortex. This result presents a limitation to the generality of left prefrontal activation during episodic encoding, which has been found in several previous brain imaging studies. Differences between studies in the relative activation of left and right prefrontal cortex during encoding and retrieval might be due to differences in paradigms, the type of stimulus used, and the demand for working memory and verbal analysis.   相似文献   

3.
We applied structural equation modeling to positron emission tomography data in humans to examine functional interactions between the right medial temporal lobe (MTL) and selected right neocortical regions in relation to visual recognition memory. Using a priori knowledge about anatomical connections between these regions as a guiding constraint, we modeled the pattern of interactions [i.e. covariances in regional cerebral blood flow (rCBF)] associated with episodic memory retrieval of spatial location and compared it with the pattern for retrieval of object identity. We also compared these patterns with those associated with perceptual matching of spatial location and object identity. Although displaying no difference in average rCBF across tasks, the right MTL showed domain-specific qualitative differences in interactions with posterior dorsal (parieto-occipital sulcus, supramarginal gyrus) and ventral regions (fusiform gyrus, superior temporal sulcus) but not with a prefrontal region. MTL interactions involving dorsal regions were positive in the spatial retrieval task but negative for object retrieval. Interactions involving ventral regions showed the reverse pattern. No comparable changes were observed during perceptual matching. Using control models, we demonstrated the neuroanatomical specificity of these results. Our results provide support for the notion that the nature of interactions between the MTL and posterior neocortex depends on the domain of information to-be- recovered.   相似文献   

4.
Working memory (WM) is known to activate the prefrontal cortex. In the present study we hypothesized that when additional contingencies are added to the instruction of a WM task, this would increase the WM load and result in the activation of additional prefrontal areas. With positron emission tomography we measured regional cerebral blood flow in nine subjects performing a control task and two delayed matching to sample tasks, in which the subjects were matching colours and patterns to a reference picture. The second of the two delayed matching tasks had a more complex instruction than the first, with additional contingencies of how to alternate between the matching of colours and patterns. This task thus required the subjects not only to remember a stimulus to match but also to perform this matching according to a specified plan. Both delayed matching tasks activated cortical fields in the middle frontal gyrus, the frontal operculum, upper cingulate gyrus, inferior parietal cortex and cortex lining the intraparietal sulcus, all in the left hemisphere. When alternated delayed matching was compared to simple delayed matching, increases were located in the right superior and middle frontal gyrus and the right anterior inferior parietal cortex. The increased demand during alternated matching thus resulted in bilateral activation of both dorsolateral prefrontal and inferior parietal cortex. The area in the inferior parietal cortex has previously been coactivated with the dorsolateral prefrontal cortex in several WM tasks, irrespective of the sensory modality of the stimuli, and during tasks involving planning.   相似文献   

5.
We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging (fMRI). Participants pressed a button when a memory was accessed, maintained and elaborated the memory, and then gave subjective ratings of emotion and reliving. A novel fMRI approach based on timing differences capitalized on the protracted reconstructive process of autobiographical memory to segregate brain areas contributing to initial access and later elaboration and maintenance of episodic memories. The initial period engaged hippocampal, retrosplenial, and medial and right prefrontal activity, whereas the later period recruited visual, precuneus, and left prefrontal activity. Emotional intensity ratings were correlated with activity in several regions, including the amygdala and the hippocampus during the initial period. Reliving ratings were correlated with activity in visual cortex and ventromedial and inferior prefrontal regions during the later period. Frontopolar cortex was the only brain region sensitive to emotional intensity across both periods. Results were confirmed by time-locked averages of the fMRI signal. The findings indicate dynamic recruitment of emotion-, memory-, and sensory-related brain regions during remembering and their dissociable contributions to phenomenological features of the memories.  相似文献   

6.
To define the cortical areas that subserve spatial working memory in a nonhuman primate, we measured regional cerebral blood flow (rCBF) with [(15)O]H(2)O and positron emission tomography while monkeys performed a visually guided saccade (VGS) task and an oculomotor delayed-response (ODR) task. Both Statistical Parametric Mapping and regions of interest-based analyses revealed an increase of rCBF in the area surrounding the principal sulcus (PS), the superior convexity, the anterior bank of the arcuate sulcus (AS), the lateral orbitofrontal cortex (lOFC), the frontal pole (FP), the anterior cingulate cortex (ACC), the lateral bank of the intraparietal sulcus (lIPS) and the prestriate cortex. In the prefrontal cortex (PS, superior convexity, AS, lOFC and FP), rCBF values correlated positively with ODR task performance scores. From the hippocampus, rCBF values correlated negatively with ODR task performance. From the AS, superior convexity, lOFC, FP, ACC and lIPS, rCBF values of the PS correlated positively with rCBF values and negatively with hippocampus rCBF values. These results suggest that neural circuitry in the prefrontal cortex directly contributes the spatial working memory processes and that, in spatial working memory processes, the posterior parietal cortex and hippocampus have a different role to the prefrontal cortex.  相似文献   

7.
The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.  相似文献   

8.
The purpose of this study was to identify the functional anatomy of the mechanisms involved in visually guided prehension and in object recognition in humans. The cerebral blood flow of seven subjects was investigated by positron emission tomography. Three conditions were performed using the same set of stimuli. In the 'grasping' condition, subjects were instructed to accurately grasp the objects. In the 'matching' condition, subjects were requested to compare the shape of the presented object with that of the previous one. In the 'pointing' condition (control), subjects pointed towards the objects. The comparison between grasping and pointing showed a regional cerebral blood flow (rCBF) increase in the anterior part of the inferior parietal cortex and part of the posterior parietal cortex. The comparison between grasping and matching showed an rCBF increase in the cerebellum, the left frontal cortex around the central sulcus, the mesial frontal cortex and the left inferior parietal cortex. Finally, the comparison between matching and pointing showed an rCBF increase in the right temporal cortex and the right posterior parietal cortex. Thus object-oriented action and object recognition activate a common posterior parietal area, suggesting that some kind of within-object spatial analysis was processed by this area whatever the goal of the task.   相似文献   

9.
BACKGROUND: We tested the hypothesis that escalating drug concentrations of sevoflurane are associated with a significant decline of cerebral blood flow in regions subserving conscious brain activity, including specifically the thalamus. METHODS: Nine healthy human volunteers received three escalating doses using 0.4%, 0.7% and 2.0% end-tidal sevoflurane inhalation. During baseline and each of the three levels of anaesthesia one PET scan was performed after injection of . Cardiovascular and respiratory parameters were monitored and electroencephalography and bispectral index (BIS) were registered. RESULTS: Sevoflurane decreased the BIS values dose-dependently. No significant change in global cerebral blood flow (CBF) was observed. Increased regional CBF (rCBF) in the anterior cingulate (17-21%) and decreased rCBF in the cerebellum (18-35%) were identified at all three levels of sedation compared to baseline. Comparison between adjacent levels sevoflurane initially (0 vs. 0.2 MAC) decreased rCBF significantly in the inferior temporal cortex and the lingual gyrus. At the next level (0.2 MAC vs. 0.4 MAC) rCBF was increased in the middle temporal cortex and in the lingual gyrus, and decreased in the thalamus. At the last level (0.4 MAC vs. 1 MAC) the rCBF was increased in the insula and decreased in the posterior cingulate, the lingual gyrus, precuneus and in the frontal cortex. CONCLUSION: At sevoflurane concentrations at 0.7% and 2.0% a significant decrease in relative rCBF was detected in the thalamus. Interestingly, some of the most profound changes in rCBF were observed in structures related to pain processing (anterior cingulate and insula).  相似文献   

10.
The aim of this (15)O-labelled H(2)O bolus positron emission tomography (PET) study was to analyse the hemispheric dominance of the vestibular cortical system. Therefore, the differential effects of caloric vestibular stimulation (right or left ear irrigation with warm water at 44 degrees C) on cortical and subcortical activation were studied in 12 right-handed and 12 left-handed healthy volunteers. Caloric irrigation induces a direction-specific sensation of rotation and nystagmus. Significant regional cerebral blood flow increases were found in a network within both hemispheres, including the superior frontal gyrus/sulcus, the precentral gyrus and the inferior parietal lobule with the supramarginal gyrus. These areas correspond best to the cortical ocular motor centres, namely the prefrontal cortex, the frontal eye field and the parietal eye field, known to be involved in the processing of caloric nystagmus. Furthermore, distinct temporo-parietal activations could be separated in the posterior part of the insula with the adjacent superior temporal gyrus, the inferior parietal lobule and precuneus. These areas fit best to the human homologues of multisensory vestibular cortex areas identified in the monkey and correspond to the parieto-insular vestibular cortex (PIVC), the visual temporal sylvian area (VTS) and areas 7 and 6. Further cortical activations were seen in the anterior insula, the inferior frontal gyrus and anterior cingulum. The subcortical activation pattern in the putamen, thalamus and midbrain is consistent with the organization of efferent ocular motor pathways. Cortical and subcortical activation of the described areas was bilateral during monaural stimulation, but predominant in the hemisphere ipsilateral to the stimulated ear and exhibited a significant right hemispheric dominance for vestibular and ocular motor structures in right-handed volunteers. Similarly, a significant left hemispheric dominance was found in the 12 left-handed volunteers. Thus, this PET study showed for the first time that cortical and subcortical activation by vestibular caloric stimulation depends (i) on the handedness of the subjects and (ii) on the side of the stimulated ear. Maximum activation was therefore found when the non-dominant hemisphere was ipsilateral to the stimulated ear, i.e. in the right hemisphere of right-handed subjects during caloric irrigation of the right ear and in the left hemisphere of left-handed subjects during caloric irrigation of the left ear. The localization of handedness and vestibular dominance in opposite hemispheres might conceivably indicate that the vestibular system and its hemispheric dominance, which matures earlier during ontogenesis, determine right- or left-handedness.  相似文献   

11.
We evaluated the neural substrates of cross-modal binding and divided attention during audio-visual speech integration using functional magnetic resonance imaging. The subjects (n = 17) were exposed to phonemically concordant or discordant auditory and visual speech stimuli. Three different matching tasks were performed: auditory-auditory (AA), visual-visual (VV) and auditory-visual (AV). Subjects were asked whether the prompted pair were congruent or not. We defined the neural substrates for the within-modal matching tasks by VV-AA and AA-VV. We defined the cross-modal area as the intersection of the loci defined by AV-AA and AV-VV. The auditory task activated the bilateral anterior superior temporal gyrus and superior temporal sulcus, the left planum temporale and left lingual gyrus. The visual task activated the bilateral middle and inferior frontal gyrus, right occipito-temporal junction, intraparietal sulcus and left cerebellum. The bilateral dorsal premotor cortex, posterior parietal cortex (including the bilateral superior parietal lobule and the left intraparietal sulcus) and right cerebellum showed more prominent activation during AV compared with AA and VV. Within these areas, the posterior parietal cortex showed more activation during concordant than discordant stimuli, and hence was related to cross-modal binding. Our results indicate a close relationship between cross-modal attentional control and cross-modal binding during speech reading.  相似文献   

12.
Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).  相似文献   

13.
Repetitive bimanual finger-tapping movements tend toward mirror symmetry: There is a spontaneous transition from less stable asymmetrical movement patterns to more stable symmetrical ones under frequency stress but not vice versa. During this phase transition, the interaction between the signals controlling each hand (cross talk) is expected to be prominent. To depict the regions of the brain in which cortical cross talk occurs during bimanual coordination, we conducted event-related functional magnetic resonance imaging using a bimanual repetitive-tapping task. Transition-related activity was found in the following areas: the bilateral ventral premotor cortex, inferior frontal gyrus, middle frontal gyrus, inferior parietal lobule, insula, and thalamus; the right rostral portion of the dorsal premotor cortex and midbrain; the left cerebellum; and the presupplementary motor area, rostral cingulate zone, and corpus callosum. These regions were discrete from those activated by bimanual movement execution. The phase-transition-related activation was right lateralized in the prefrontal, premotor, and parietal regions. These findings suggest that the cortical neural cross talk occurs in the distributed networks upstream of the primary motor cortex through asymmetric interhemispheric interaction.  相似文献   

14.
When two tasks are performed simultaneously, performance often deteriorates, with concomitant increases in reaction time and error rate. Three potential neurophysiological mechanisms behind this deterioration in performance have been considered here: (i) dual-task performance requires additional cognitive operations and activation of cortical areas in addition to those active during single-task performance; (ii) two tasks interfere if they require activation of the same part of cortex; and (iii) cross-modal inhibition causes interference between two tasks involving stimuli from different sensory modalities. Positron emission tomography was used to measure regional cerebral blood flow (rCBF) during performance of an auditory working memory (WM) task, a visual WM task, both WM tasks (dual task) and a control condition. Compared to the control condition, the auditory and visual WM tasks activated sensory-specific areas in the superior temporal gyrus and occipital pole respectively. Both WM tasks also activated overlapping parts of cortex in the dorsolateral prefrontal, inferior parietal and cingulate cortex. There was no separate cortical area which was activated only in the dual task, and thus no area which could be associated with any dual task specific cognitive process such as task-coordination or divided attention. Decrease in rCBF in one WM task did not overlap with the areas of rCBF increase in the other WM task. However, an inhibitory mechanism could not be ruled out, since the rCBF increase in sensory specific areas was smaller in the dual- task condition than in the single-task conditions. The cortical activity underlying WM was to a large extent organized in a non-sensory specific, or non-parallel, way, and the results are consistent with the hypothesis that concurrent tasks interfere with each other if they demand activation of the same part of cortex.   相似文献   

15.
We used reversible cooling deactivation to compare the functionsof cortices lining the middle suprasylvian (MS) sulcus and formingthe ventral portion of the posterior suprasylvian (vPS) gyrus.A battery of attentional, motion and mnemonic processing taskswere used and performance was examined during deactivation ofeach region. The results show a clear dissociation of functions.Deactivation of MS cortex resulted in profound deficits on avisual orienting task and on the discrimination of directionof motion, whereas deactivation of vPS cortex severely impairedboth retention and learning of novel and overlearned objectdiscriminations. In addition, deactivation of either MS or vPScortex impaired discrimination of learned patterns when componentsof the patterns were in motion, whereas only deactivation ofvPS cortex impaired the discrimination when all components werestatic. Together, these results show that a region of parietalcortex contributes to the processing of visual motion and toattentional processes, whereas a region of temporal cortex contributesto the learning and recognition of three-dimensional objectsand two-dimensional patterns. This functional dissociation islinked to differences in underlying visual pathways, which havemany features in common with the parietal and temporal visualprocessing streams previously identified in monkeys and humans.Furthermore, the broad similarity in neural operations carriedout in parietal and temporal cortices of cats, monkeys and humanssuggests the existence of a common plan for cortical processingmachinery within mammals with well developed cerebral cortices.  相似文献   

16.
Three regions of the macaque inferior parietal lobule and adjacent lateral intraparietal sulcus (IPS) are distinguished by the relative strengths of their connections with the superior colliculus, parahippocampal gyrus, and ventral premotor cortex. It was hypothesized that connectivity information could therefore be used to identify similar areas in the human parietal cortex using diffusion-weighted imaging and probabilistic tractography. Unusually, the subcortical routes of the 3 projections have been reported in the macaque, so it was possible to compare not only the terminations of connections but also their course. The medial IPS had the highest probability of connection with the superior colliculus. The projection pathway resembled that connecting parietal cortex and superior colliculus in the macaque. The posterior angular gyrus and the adjacent superior occipital gyrus had a high probability of connection with the parahippocampal gyrus. The projection pathway resembled the macaque inferior longitudinal fascicle, which connects these areas. The ventral premotor cortex had a high probability of connection with the supramarginal gyrus and anterior IPS. The connection was mediated by the third branch of the superior longitudinal fascicle, which interconnects similar regions in the macaque. Human parietal areas have anatomical connections resembling those of functionally related macaque parietal areas.  相似文献   

17.
We investigated the neural correlates of idiomatic sentence processing using event-related functional magnetic resonance imaging. Twenty-two healthy subjects were presented with 62 literal sentences and 62 idiomatic sentences, each followed by a picture and were required to judge whether the sentence matched the picture or not. A common network of cortical activity was engaged by both conditions, with the nonliteral task eliciting overall greater activation, both in terms of magnitude and spatial extent. The network that was specifically activated by the nonliteral condition involved the left temporal cortex, the left superior medial frontal gyrus (Brodmann area 9), and the left inferior frontal gyrus (IFG). Activations were also present in the right superior and middle temporal gyri and temporal pole and in the right IFG. In contrast, literal sentences selectively activated the left inferior parietal lobule and the right supramarginal gyrus. An analysis of effective connectivity indicated that the medial prefrontal area significantly increased the connection between frontotemporal areas bilaterally during idiomatic processing. Overall, the present findings indicate a crucial role of the prefrontal cortex in idiom comprehension, which could reflect the selection between alternative sentence meanings.  相似文献   

18.
Psychological studies have demonstrated sex differences in performance and tactics for route learning. Route information can be encoded in different ways, such as the survey perspective (as in maps) and the route perspective (as we experience the world). Here we show, using functional magnetic resonance imaging, that men and women use the same brain areas to learn routes from both perspectives, and that the observed sex differences in route learning are not due to differences in the parts of the brain being used. We also show that many of the same brain areas are used in route learning from both perspectives, such as the parahippocampus, precuneus, posterior cingulate gyrus and middle frontal gyrus. However, paired comparisons of route learning from both perspectives shows that the survey perspective activates the superior and middle temporal gyri and the angular gyrus, which are not activated in the route perspective.  相似文献   

19.
Brain aging research relies mostly on cross-sectional studies, which infer true changes from age differences. We present longitudinal measures of five-year change in the regional brain volumes in healthy adults. Average and individual differences in volume changes and the effects of age, sex and hypertension were assessed with latent difference score modeling. The caudate, the cerebellum, the hippocampus and the association cortices shrunk substantially. There was minimal change in the entorhinal and none in the primary visual cortex. Longitudinal measures of shrinkage exceeded cross-sectional estimates. All regions except the inferior parietal lobule showed individual differences in change. Shrinkage of the cerebellum decreased from young to middle adulthood, and increased from middle adulthood to old age. Shrinkage of the hippocampus, the entorhinal cortices, the inferior temporal cortex and the prefrontal white matter increased with age. Moreover, shrinkage in the hippocampus and the cerebellum accelerated with age. In the hippocampus, both linear and quadratic trends in incremental age-related shrinkage were limited to the hypertensive participants. Individual differences in shrinkage correlated across some regions, suggesting common causes. No sex differences in age trends except for the caudate were observed. We found no evidence of neuroprotective effects of larger brain size or educational attainment.  相似文献   

20.
The feeling of familiarity can be triggered by stimuli from all sensory modalities, suggesting a multimodal nature of its neural bases. In the present experiment, we investigated this hypothesis by studying the neural bases of familiarity processing of odors and music. In particular, we focused on familiarity referring to the participants' life experience. Items were classified as familiar or unfamiliar based on participants' individual responses, and activation patterns evoked by familiar items were compared with those evoked by unfamiliar items. For the feeling of familiarity, a bimodal activation pattern was observed in the left hemisphere, specifically the superior and inferior frontal gyri, the precuneus, the angular gyrus, the parahippocampal gyrus, and the hippocampus. Together with previously reported data on verbal items, visual items, and auditory items other than music, this outcome suggests a multimodal neural system of the feeling of familiarity. The feeling of unfamiliarity was related to a smaller bimodal activation pattern mainly located in the right insula and likely related to the detection of novelty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号