首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Three related MAGUK proteins, ZO-1, ZO-2 and ZO-3, are concentrated at the cytoplasmic surface of tight junctions. However, in contrast to ZO-1/ZO-2, our knowledge of the expression and distribution of ZO-3 is still fragmentary, partly due to a lack of antibodies that specifically distinguish ZO-3 from ZO-1 and ZO-2. RESULTS: We generated one pAb and one mAb that specifically recognized ZO-3 on Western blotting. The immunofluorescence signals obtained with these antibodies completely disappeared from ZO-1/ZO-2-positive tight junctions in the liver of ZO-3-deficient mice, indicating that the antibodies can be used to localize ZO-3 in various tissues by immunofluorescence microscopy. Immunofluorescence microscopy with these antibodies revealed that ZO-3 was concentrated at tight junctions in various types of epithelium, but not in endothelium or at cadherin-based cell-cell adhesion sites (spot adherens junctions of fibroblasts and intercalated discs of cardiac muscle cells), where ZO-1 and ZO-2 are concentrated. CONCLUSIONS: We conclude that ZO-3 is expressed in a more epithelium-specific manner than ZO-1 and ZO-2. These observations provide for a better understanding of the functions of tight junction-associated MAGUKs.  相似文献   

2.
Nectins, Ca(2+)-independent immunoglobulin-like cell adhesion molecules (CAMs), first form cell-cell adhesion where cadherins are recruited, forming adherens junctions (AJs) in epithelial cells and fibroblasts. In addition, nectins recruit claudins, occludin, and junctional adhesion molecules (JAMs) to the apical side of AJs, forming tight junctions (TJs) in epithelial cells. Nectins are associated with these CAMs through peripheral membrane proteins (PMPs), many of which are actin filament-binding proteins. We examined here the roles of the actin cytoskeleton in the association of nectins with other CAMs in MDCK cells stably expressing exogenous nectin-1. The nectin-1-based cell-cell adhesion was formed and maintained irrespective of the presence and absence of the actin filament-disrupting agents, such as cytochalasin D and latrunculin A. In the presence of these agents, only afadin remained at the nectin-1-based cell-cell adhesion sites, whereas E-cadherin and other PMPs at AJs, alpha-catenin, beta-catenin, vinculin, alpha-actinin, ADIP, and LMO7, were not concentrated there. The CAMs at TJs, claudin-1, occludin and JAM-1, or the PMPs at TJs, ZO-1 and MAGI-1, were not concentrated there, either. These results indicate that the actin cytoskeleton is required for the association of the nectin-afadin unit with other CAMs and PMPs at AJs and TJs.  相似文献   

3.
The aim of the current study was to examine the influence of transforming growth factor (TGF)-beta 1 on proximal tubular epithelial cell-cell interaction, with particular emphasis on the regulation of adherens junction complex formation. Stimulation of the proximal tubular cell line HK-2 cells by TGF-beta 1 led to loss of cell-cell contact and disassembly of both adherens and tight junctional complexes. Adherens junction disassembly was associated with reduction of both Triton-soluble and Triton-insoluble E-cadherin, and an increase in detergent-soluble beta-catenin. Under these conditions, immunoprecipitation and Western analysis demonstrated decreased association of beta-catenin, both with E-cadherin, alpha-catenin, and the cell cytoskeleton. Confocal microscopy after immunostaining, showed decreased intensity of peripheral E-cadherin staining, and redistribution of beta-catenin expression to a perinuclear location. Tight junction disassembly was manifest by a reduction in the expression of Triton-soluble occludin and ZO-1 by Western analysis and their disassociation manifested by immunostaining and confocal microscopy. Loss of cell-cell contact and disassembly of adherens junctions were seen after addition of TGF-beta 1 to the basolateral aspect of the cells. Immunoprecipitation experiments demonstrated co-localization of E-cadherin, beta-catenin, and TGF-beta 1 RII in unstimulated cells. After TGF-beta 1 stimulation, the TGF-beta 1 RII no longer associated with either E-cadherin or beta-catenin. Dissociation of the adherens junction protein from the TGF-beta 1 receptor was associated with increased beta-catenin tyrosine phosphorylation and decreased threonine phosphorylation. Furthermore after receptor ligand binding, beta-catenin became associated with the TGF-beta 1-signaling molecules Smad3 and Smad4.  相似文献   

4.
Tight junctions are regarded as the primary anatomical structure responsible for the blood-brain barrier (BBB). The molecular components that have been defined include ZO-1, a peripheral membrane protein associated with the cytoplasmic surface of the tight junction in epithelial and endothelial cells. It has been localized to the points of membrane contact with the fibrils seen by freeze-fracture. Examination of passaged endothelial cells with freeze-fracture failed to locate the intramembrane specializations associated with tight junctions. For this reason, immunocytochemistry and freeze-fracture were used to study the correlation of ZO-1 expression with the presence of tight junctions in bovine brain and aorta endothelial cells. Indirect immunofluorescence analysis showed ZO-1 to be localized at sites of cell-cell contact. Images of freeze-fractured sites of endothelial cell-cell contacts in identical passage numbers did not display characteristic tight junctions. When bovine aorta endothelial cells were cultured in astrocyte-conditioned medium on a complete extracellular matrix, platinum replicas displayed profiles of tight junctions. The elements of tight junctions were arranged as parallel ridges which displayed free ends. The immunofluorescence staining of ZO-1 was identical to that obtained on the endothelial cells that displayed no tight junction profiles. These results suggest that ZO-1 may be present at putative junction-containing sites before the junctional structures appear in the surface membrane. Therefore, ZO-1 expression does not a priori reflect assembly of the tight junctions identified by freeze-fracture.  相似文献   

5.
Ewing sarcoma/primitive neuroectodermal tumor (ES/PNET) has recently been shown to frequently express cytokeratins, suggesting partial epithelial differentiation. Older ultrastructural studies have documented primitive cell-cell junctions in ES/PNET, reportedly resembling poorly formed desmosomes. Recently, paraffin-reactive antibodies have become available to proteins found in a variety of intercellular junctions indicative of epithelial differentiation, including tight junctions, desmosomes and adherens junctions. We examined intercellular junction protein expression in a large number of genetically confirmed ES/PNET. Formalin-fixed, paraffin-embedded sections from 23 primary and seven recurrent or metastatic cases of genetically confirmed ES/PNET were immunostained for claudin-1 and occludin (tight junction structural proteins), zonula occludens-1 (ZO-1, tight junction linker protein), desmoglein 1/2 (desmosomal adherens protein), desmoplakin (desmosomal structural protein) and E-cadherin (epithelial adherens junction protein), using steam heat-induced epitope retrieval and the Dako Envision system. Cases with >5% positive cells were scored as 'positive'. Normal colonic epithelium and skin served as external positive controls. Claudin-1 was expressed by 19 of 30 specimens (63%), ZO-1 was expressed by 15 of 29 specimens (51%), and occludin was expressed by three of 28 specimens (11%). In 28 specimens all three tight junction markers were evaluable. In all, 15 samples (54%) expressed only one tight junction marker, and 10 samples (36%) expressed two tight junction markers. No case expressed all three tight junction markers. Desmoglein was expressed in one of 30 (3%) samples. Desmoplakin was expressed in two of 28 (7%) samples. E-cadherin was negative in all cases. Our data suggest that many of the previously described cell-cell junctions in ES/PNET are poorly formed tight junctions, given the high frequency of claudin-1 and ZO-1 expression. This may underestimate the true frequency of tight junction protein expression in ES/PNET, as there are at least 20 different claudins and other ZO proteins. These tight junctions are almost certainly abnormal, given the absence of occludin expression in most cases. Desmosomal and adherens junction protein expression was rare to absent. Our findings provide additional evidence that ES/PNET frequently show partial epithelial differentiation.  相似文献   

6.
Cadherin-mediated adhesion plays an important role in maintaining cell-cell contacts and reducing tumor metastasis. However, neo-expression of E-cadherin in ovarian carcinoma does not prevent the release and spread of cells from the primary tumor. Because caveolin-1 is down-regulated concomitantly with E-cad expression, we investigated whether the stability of adherens junctions in ovarian carcinoma was affected by caveolin-1 expression. We used IGROV1 cells transfected with caveolin-1 (IGtC3), mock-transfected control cells (IGtM87), and SKOV3 cells that endogenously express caveolin-1. Simultaneous expression of caveolin-1 and E-cadherin favored membrane distribution of E-cadherin and its associated catenin (p120ctn), even when caveolin-1 was only focally associated with adherens junctions. Silencing of caveolin-1 induced intracellular E-cadherin redistribution in IGtC3 and SKOV3 cells. Treatment with the specific src kinase inhibitor PP1 increased E-cadherin expression in IGtM87 and SKOV3 cells and enhanced membrane localization of both E-cadherin and p120ctn. However, PP1 could not completely reverse the detrimental effects on cell-cell adhesion induced by Ca2+ depletion in IGtM87 cells. Together, our data suggest that caveolin-1 expression indirectly promotes cell-cell adhesion in ovarian carcinoma cells by a mechanism involving inhibition of src-related kinases. Thus, down-regulation or loss of caveolin-1 might contribute significantly to the spread of tumor cells from the primary tumor.  相似文献   

7.
In the present study, we evaluated whether motility of Kaposi's sarcoma (KS) cells induced by platelet-activating factor (PAF) is dependent on the regulation of adherens junctions components. The results obtained indicate that PAF dose and time dependently reduced the endogenous expression of the main components of the adherens junctions: VE-cadherin, alpha-catenin, and beta-catenin. In addition, PAF initiated events that directly or indirectly up-regulated both the tyrosine and serine/threonine phosphorylation pathways, and both types of phosphorylation of beta-catenin were involved in the motility of KS cells. This motility was abrogated by addition of the tyrosine kinase inhibitor genistein, suggesting that this phosphorylation is an important signal responsible for breaking down the adherens junctions and diminishing the ability of neighboring cells to interact. Furthermore, immunofluorescence analysis showed that beta-catenin and VE-cadherin staining changed from a uniform distribution along the membrane of controls to a diffuse pattern with gap formation in PAF-treated KS cells. In conclusion, the data presented here indicate that PAF induces tumor cell motility by altering cell-cell adhesion through beta-catenin phosphorylation.  相似文献   

8.
The identification of the cell junction-forming proteins connexin-43,a gap junction protein and E-cadherin, which is a componentof adherent junctions, in the corpus luteum of both humans andbaboons suggests that cell-cell interactions and metabolic cooperationmust occur in this tissue. Occluding junctions are a third typeof junction which form a physical barrier between cells. Thus,our aims in this study were firstly to examine the presenceof the tight junction-associated protein zonula occludens-1(ZO-1) by immunohistochemistry, and secondly to determine theconcentrations of this protein in the early, mid- and late lutealphase baboon corpora lutea of the menstrual cycle by a Westernanalysis. ZO-1 was localized mainly at the periphery of theluteal cells, and the intensity of immunoreactivity varied throughthe luteal phase, with comparatively stronger immunoreactivityin the mid-luteal phase than the early and late luteal phases.Atretic corpora lutea were devoid of activity. By Western analysis,bands of immunoreactivity were observed at 225 kDa, furtherconfirming the presence of the protein. Maximum activity, asdetermined by densitometry, was observed in the mid-luteal phase.These data infer the presence of tight junctions in the corpusluteum and suggest that expression of the ZO-1 protein formingthese junctions may be hormonally regulated within this tissue.  相似文献   

9.
Role of nephrin in cell junction formation in human nephrogenesis   总被引:21,自引:0,他引:21       下载免费PDF全文
Nephrin is a cell adhesion protein located at the slit diaphragm area of glomerular podocytes. Mutations in nephrin-coding gene (NPHS1) cause congenital nephrotic syndrome (NPHS1). We studied the developmental expression of nephrin, ZO-1 and P-cadherin in normal fetal kidneys and in NPHS1 kidneys. We used in situ hybridization and immunohistochemistry at light and electron microscopic levels. Nephrin and zonula occludens-1 (ZO-1) were first expressed in late S-shaped bodies. During capillary loop stage, nephrin and ZO-1 localized at the basal margin and in the cell-cell adhesion sites between developing podocytes, especially in junctions with ladder-like structures. In mature glomeruli, nephrin and ZO-1 concentrated at the slit diaphragm area. P-cadherin was first detected in ureteric buds, tubules, and vesicle stage glomeruli. Later, P-cadherin was seen at the basal margin of developing podocytes. Fetal NPHS1 kidneys with Fin-major/Fin-major genotype did not express nephrin, whereas the expression of ZO-1 and P-cadherin was comparable to that of control kidneys. Although early junctional complexes proved structurally normal, junctions with ladder-like structures and slit diaphragms were completely missing. The results indicate that nephrin is dispensable for early development of podocyte junctional complexes. However, nephrin appears to be essential for formation of junctions with ladder-like structures and slit diaphragms.  相似文献   

10.
11.
BACKGROUND: We have recently identified a novel cell-cell adhesion system, named NAP system, which is localized at cadherin-based cell-cell adherens junctions (AJs). The NAP system is composed of at least nectin, afadin and ponsin. Nectin is an immunoglobulin-like cell adhesion molecule. Afadin is an actin filament-binding protein which associates nectin with the actin cytoskeleton. Ponsin is an afadin-binding protein which furthermore binds to vinculin and provides a possible linkage of nectin-afadin to cadherin-catenin through vinculin. We compared here the behaviour of the NAP and cadherin-catenin systems during the formation and disruption of the polarized junctional alignment in epithelial cells. RESULTS: At the early stage of the formation of the polarized junctional alignment in MTD-1 A cells, primordial spot-like junctions were formed at the tips of thin cellular protrusions radiating from adjacent cells. Nectin, afadin, ponsin, cadherin and catenin were simultaneously recruited to these junctions. As the cell polarization proceeded, the spot-like junctions were gradually fused to form belt-like AJs where all these proteins were concentrated. The disruption of cell-cell AJs in MDCK cells by culturing at a low Ca2+ concentration caused rapid endocytosis of cadherin, but not that of nectin or afadin. Addition of 12-O-tetradecanoylphorbol-13-acetate to the cells formed a tight junction-like structure where nectin and afadin, but not cadherin, accumulated. CONCLUSION: These results indicate that the NAP and cadherin-catenin systems show similar and differential behaviour during the formation and disruption of the polarized junctional alignment in epithelial cells.  相似文献   

12.
Growth cones have been regarded to play central roles in forming complex neural network through target tract selection and target cell recognition. We have found that the vesicle fusion molecular system in growth cones is similar to that in synapses. The cleavage of SNAP25, a protein involved in neurotransmitter release in synapse, resulted in inhibition of neurite elongation. Inversely the overexpression of VAMP2/synaptobrevin, another protein involved in neurotransmitter release in synapse, in PC12 cells resulted in promotion of neurite elongation. We have recently isolated a novel components at cadherin-based cell-cell adherens junctions, named neurabin I, neurabin II, and afadin. Neurabin I is specifically expressed in nervous tissues and localized at synapses. Afadin is uviquitously expressed in various tissues and highly concentrated at cell-cell adherens junctions of small intestine epithelial cells, cardiac muscles, synapses. We have identified the transmembrane protein binding to afadin, and named it nectin, which belongs to immunoglobulin superfamily. Nectin, afadin, neurabin I, and neurabin II may be key molecules to find out various unknown guidance cues which can induce regenerating growth cones to repair the functional neuronal connections in central nervous system after injury.  相似文献   

13.
BACKGROUND: Nectin is a Ca2+-independent immunoglobulin-like cell-cell adhesion molecule at the E-cadherin-based cell-cell adherens junctions (AJs), and comprises a family consisting of four members, nectin-1, -2, -3, and -4. Nectin and E-cadherin are associated with afadin and alpha-catenin, actin filament (F-actin)-binding proteins connecting respective adhesion molecules to the actin cytoskeleton, but the role of nectin in the formation of the E-cadherin-based cell-cell AJs has not yet been fully understood. To obtain evidence for this role of nectin, we attempted to develop an antagonist and/or agonist of nectin. RESULTS: We made a recombinant extracellular fragment of nectin-3 (Nef-3). Nef-3 trans-interacted with cellular nectin-1 and thereby diminished the formation of the nectin-1-based cell-cell adhesion. This resulted in a reduction of the formation of the E-cadherin-based cell-cell adhesion in L fibroblasts stably expressing both exogenous nectin-1alpha and E-cadherin (nectin-1-EL cells) and MDCK cells stably expressing exogenous nectin-1alpha (nectin-1-MDCK cells). This antagonistic effect of Nef-3 was also observed in L cells stably expressing exogenous E-cadherin alone (EL cells) and wild-type MDCK cells. Conversely, Nef-3 coated on microbeads first recruited the nectin-afadin complex and then the E-cadherin-catenin complex to the bead-cell contact sites in nectin-1-EL and nectin-1-MDCK cells. CONCLUSION: These results suggest that nectin is necessary and sufficient for the recruitment of E-cadherin to the nectin-based cell-cell adhesion sites and involved in the formation of E-cadherin-based cell-cell AJs.  相似文献   

14.
Lymph nodes are strategically localized at the interfaces between the blood and lymphatic vascular system, delivering immune cells and antigens to the lymph node. As cellular junctions of endothelial cells actively regulate vascular permeability and cell traffic, we have investigated their molecular composition by performing an extensive immunofluorescence study for adherens and tight junction molecules, including vascular endothelium (VE)-cadherin, the vascular claudins 1, 3, 5 and 12, occludin, members of the junctional adhesion molecule family plus endothelial cell-selective adhesion molecule (ESAM)-1, platelet endothelial cell adhesion molecule-1, ZO-1 and ZO-2. We found that junctions of high endothelial venules (HEV), which serve as entry site for naive lymphocytes, are unique due to their lack of the endothelial cell-specific claudin-5. LYVE-1(+) sinus-lining endothelial cells form a diffusion barrier for soluble molecules that arrive at the afferent lymph and use claudin-5 and ESAM-1 to establish characteristic tight junctions. Analysis of the spatial relationship between the different vascular compartments revealed that HEV extend beyond the paracortex into the medullary sinuses, where they are protected from direct contact with the lymph by sinus-lining endothelial cells. The specific molecular architecture of cellular junctions present in blood and lymphatic vessel endothelium in peripheral lymph nodes establishes distinct barriers controlling the distribution of antigens and immune cells within this tissue.  相似文献   

15.
Nectins, Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules and cadherins, Ca(2+)-dependent cell-cell adhesion molecules, are associated through their respective cytoplasmic tail-binding proteins, afadin and catenins and play roles in formation of adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-like molecule-5 (Necl-5) is a Ca(2+)-independent Ig-like molecule which does not homophilically trans-interact, but heterophilically trans-interacts with nectin-3, one member of the nectin family. Necl-5 does not directly bind afadin and therefore is not associated with cadherins. Necl-5 regulates cell motility and proliferation in cooperation with integrins and growth factor receptors, when it does not interact with nectin-3. We studied here a role of the heterophilic trans-interaction of Necl-5 with nectin-3 in cell-cell adhesion using L cells stably expressing Necl-5, nectin-3 and E-cadherin (Necl-5-nectin-3-EL cells). Afadin, E-cadherin and catenins were recruited to the nectin-3 side, but not to the Necl-5 side, of the contact sites formed by the heterophilic trans-interaction between Necl-5 and nectin-3. The anti-Necl-5 monoclonal antibody, which specifically inhibited the heterophilic trans-interaction of Necl-5 with nectin-3, inhibited the formation of the E-cadherin-based AJs in Necl-5-nectin-3-EL cells. These results indicate that Necl-5 plays roles not only in cell motility and proliferation but also in cell-cell adhesion in cooperation with nectin-3.  相似文献   

16.
The tight junctions of bile duct epithelium form a barrier between the toxic bile and liver parenchyma. Disruption of tight junctions appears to have a crucial role in the pathogenesis of various liver diseases. In this study, we investigated the disruptive effect of hydrogen peroxide and the protective effect of epidermal growth factor (EGF) on the tight junctions and adherens junctions in the bile duct epithelium. Oxidative stress in NRC-1 and Mz-ChA-1 cell monolayers was induced by administration of hydrogen peroxide. Barrier function was evaluated by measuring electrical resistance and inulin permeability. Integrity of tight junctions, adherens junctions and the actin cytoskeleton was determined by imunofluorescence microscopy. Role of signaling molecules was determined by evaluating the effect of specific inhibitors. Hydrogen peroxide caused a rapid disruption of tight junctions and adherens junctions leading to barrier dysfunction without altering the cell viability. Hydrogen peroxide rapidly increased the levels of p-MLC (myosin light chain) and c-Src(pY418). ML-7 and PP2 (MLCK and Src kinase inhibitors) attenuated hydrogen peroxide-induced barrier dysfunction, tight junction disruption and reorganization of actin cytoskeleton. Pretreatment of cell monolayers with EGF ameliorated hydrogen peroxide-induced tight junction disruption and barrier dysfunction. The protective effect of EGF was abrogated by ET-18-OCH(3) and the Ro-32-0432 (PLCγ and PKC inhibitors). Hydrogen peroxide increased tyrosine phosphorylation of ZO-1, claudin-3, E-cadherin and β-catenin, and pretreatment of cells with EGF attenuated tyrosine phosphorylation of these proteins. These results demonstrate that hydrogen peroxide disrupts tight junctions, adherens junctions and the actin cytoskeleton by an MLCK and Src kinase-dependent mechanism in the bile duct epithelium. EGF prevents hydrogen peroxide-induced tight junction disruption by a PLCγ and PKC-dependent mechanism.  相似文献   

17.
BACKGROUND: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules which associate with cadherins to form adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-1 and -3 are members of the nectin family which most strongly trans-interact, causing cell-cell adhesion. The trans-interaction between nectin-1 and -3 induces the activation of both Cdc42 and Rac small G proteins in epithelial cells. We studied the roles of Cdc42 and Rac activated in this way in L fibroblasts stably expressing both nectin-1 and E-cadherin (nectin-1-EL cells). RESULTS: The trans-interaction between nectin-1 and -3 induced the activation of Cdc42 and Rac in nectin-1-EL cells. Cdc42, and presumably Rac, activated in this way, induced the activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK). Cdc42 or Rac was not essential for the association of nectin-1 and E-cadherin to form AJs. Reorganization of the actin cytoskeleton was not required for the association of nectin-1 and E-cadherin. CONCLUSION: These results indicate that Cdc42 and Rac activated by the trans-interaction of nectins selectively induce the activation of JNK, but are not essential for the association of nectins and cadherin to form AJs in fibroblasts.  相似文献   

18.
BACKGROUND: ERBIN, an ErbB2 receptor-interacting protein, belongs to a recently described family of proteins termed the LAP [leucine-rich repeats and PSD-95/dLg-A/ZO-1 (PDZ) domains] family which has essential roles in establishment of cell polarity. RESULTS: To identify new ERBIN-binding proteins, we screened a yeast two-hybrid library, using the carboxyl-terminal fragment of ERBIN containing PDZ domain as the bait, and we isolated p0071 (also called plakophilin-4) as an ERBIN-interacting protein. p0071 is a member of the p120 catenin family, which are defined as proteins with 10 armadillo repeats, and localizes along the cell-cell border. The ERBIN PDZ domain binds the COOH-terminus of p0071 containing the PDZ domain-binding sequence. Endogenous ERBIN was co-immunoprecipitated with p0071. In fully polarized Madin-Darby canine kidney (MDCK) cells, ERBIN co-localized largely with beta-catenin and partly with desmoplakin along the lateral plasma membrane domain. At these cell-cell contact regions, ERBIN co-localizes with p0071. Over-expression of the dominant active forms of Cdc42, Rac1 or RhoA, Rho family small GTPases, resulted in a marked accumulation of ERBIN at the cell-cell contacts of MDCK and HeLa cells. CONCLUSION: These results show that ERBIN interacts in vivo with p0071 and that it may be involved in the organization of adherens junctions and the desmosomes of epithelia. In addition, we demonstrated that the subcellular localization of ERBIN might be regulated by Rho family small GTPases.  相似文献   

19.
The formation of tight junctions (TJs) is dependent on the formation of adherens junctions (AJs) in MDCK cells. E-Cadherin and nectin are major cell-cell adhesion molecules (CAMs) at AJs, whereas claudin, occludin and junctional adhesion molecule (JAM) are major CAMs at TJs. When MDCK cells precultured at 2 microm Ca(2+) are cultured at 2 mm Ca(2+), nectin first forms cell-cell adhesion and recruits E-cadherin to the nectin-based cell-cell adhesion sites to form AJs. Thereafter, nectin recruits first JAM-A and then claudin-1 and occludin to the apical side of AJs to form TJs. In contrast, when MDCK cells precultured at 2 microm Ca(2+) are cultured at 2 microm Ca(2+) in the presence of a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a TJ-like structure is formed without the formation of the E-cadherin-based AJs. We showed here that GFP-E-cadherin, which did not trans-interact due to 2 microm Ca(2+) but associated with alpha- and beta-catenins and p120(ctn), was recruited to the nectin-based cell-cell adhesion sites by the action of TPA. The nectin inhibitors, which inhibited the trans-interaction of nectin, inhibited the recruitment of GFP-E-cadherin and their associating catenins by the action of TPA. Microbeads coated with the extracellular fragment of nectin recruited not only cellular nectin but also GFP-E-cadherin and their associating catenins by the action of TPA. These results indicate that when the TJ-like structure is formed by the action of TPA, non-trans-interacting E-cadherin and its associating catenins are recruited to the nectin-based cell-cell adhesion sites and that the trans-interaction of E-cadherin is not essential for the formation of TJs.  相似文献   

20.
In epithelial cells, tight junctions (TJs) and adherens junctions (AJs) form junctional complexes. At AJs, cadherins and nectins are the major cell-cell adhesion molecules. Nectins first form cell-cell adhesions and then recruit cadherins to the nectin-based cell-cell adhesion sites to form AJs in coordination with the activation of integrin alpha(v)beta(3), followed by the formation of TJs. We previously demonstrated that when MDCK cells precultured at a low Ca(2+) concentration were treated with the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA), incomplete AJs and a TJ-like structure were achieved. However, it remains unknown how PKC is activated and how it regulates the formation of cell-cell junctions. When MDCK cells precultured at a low Ca(2+) concentration were treated with TPA, incomplete AJs were formed without the activation of integrin alpha(v)beta(3). Treatment of cells with TPA also enhanced the phosphorylation of FAK, which transmits the outside-in signal of integrin and plays a role in the nectin-induced formation of AJs. In addition, inhibition of PKC suppressed the formation of AJs. These results indicate that the activation of PKC functions downstream of integrin alpha(v)beta(3) and upstream of FAK, and is important for the nectin-induced formation of AJs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号