首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的 探讨3D超短回波时间(UTE)舣回波脉冲序列成像的相关成像参数及后处理技术对图像质量的影响.方法 对主要含短T2成分的人于燥股骨标本及一组健康志愿者的胫骨、膝关节、踝部肌腱行MR 3D UTE舣回波脉冲序列成像.通过计算、比较图像的信噪比(SNR)或对比噪声比(CNR)及对图像伪影的分析,探讨系统内部不同轨道延迟时间(-6、-3、-2、-1、0、1、2、3 s)、不同反转角(4°、8°、12°、16°、20°、24°)、不同TE1(0.08、0.16、0.24、0.35 ms)及不同后处理技术(超短回波减影差异图、容积超短回波减影差异图)对图像质量的影响.结果 骨皮质、骨膜、半月板、肌腱、韧带等在UTE图像上表现为高信号.所设的不同轨道延迟时间中,获得最佳SNR的轨道延迟时阳间为2 s.活体人UTE成像的最佳反转角为8°~12°.不同TE1时间的图像质量不同,TE1为0.08 ms时,图像的CNR最佳.随TE1时阳延长,图像伪影逐渐增多.将原始双回波图经多平面重组后再相减(容积超短回波减影差异图),图像SNR明显增加.结论 短T2成分在3D UTE双回波脉冲序列成像上表现为高信号.通过改变反转角和将2次回波图像经MPR后再相减可增加图像SNR.缩短TE1时间可增加图像质量.
Abstract:
Objective To investigate the effect of imaging parameters and postprocessing methods on the quality of MR imaging of short T2 components with 3D ultrashort TE (UTE) double echo pulse sequence. Methods 3D UTE double echo pulse sequence was performed on dry human femoral specimen and the tibial diaphyses, knee joints, and tendons of ankles of a group of healthy volunteers. To investigate the effect of different trajectory delays of the imaging system(-6, -3, -2, - 1,0, 1,2, 3 s), different flip angles(4°, 8°, 12°, 16°, 20°, 24°), different TEs (0. 08, 0. 16, 0. 24, 0. 35 ms)and different postprocessing methods(difference imaging of subtracted volume and non-volume UTE)on the 3D UTE MR imaging quality, the SNR and CNR were calculated and compared, and the artifacts of the images were analysed. Results The cortical bone, periosteum, tendon and meniscus showed high signal intensity on the images of UTE pulse sequence. The best SNR was acquired with 2 s trajectory delay. The best flip angle was 8° to 12° for the human UTE imaging in vivo. The highest CNR was obtained from the TE of 0. 08 ms. The longer the TE was, the more artifacts appeared. The SNR of difference imagewas improved when image subtraction was performed afer multiplanar reconstruction (MPR) of the primary double echo images.Conclusions The short T2 components show high signal intensity on the MRI of 3D UTE double echo pulse sequence. The imaging quality can be improved by shortening TE, using appropriate flip angle and performing subtraction for difference image after MPR of the primary double echo images.  相似文献   

2.
An interleaved echo-planar imaging (EPI) technique is described that provides images from 20 sections of the brain at two echo times (27 and 84 ms) in 1:05. Six echoes per image per repetition are collected in 24 repetitions of the pulse sequence. MR images of the brain obtained from five volunteers using the dual-echo EPI sequence, fast spin-echo (FSE), and conventional dual-echo spin-echo were evaluated qualitatively for diagnostic use and quantitatively for relative signal-to-noise ratio (SNR), contrast, and contrast-to-noise ratios (CNR).  相似文献   

3.
PURPOSE: To investigate the parallel acquisition technique sensitivity encoding incorporating temporal filtering (TSENSE) with three saturation-recovery (SR) prepared pulse sequences (SR turbo fast low-angle shot [SR-TurboFLASH], SR true fast imaging with steady precession [SR-TrueFISP], and SR-prepared segmented echo-planar-imaging [SR-segEPI]) for semiquantitative first-pass myocardial perfusion imaging. MATERIALS AND METHODS: In blood- and tissue-equivalent phantoms the relationship between signal intensity (SI) and contrast-medium concentration was evaluated for the three pulse sequences. In volunteers, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and normalized upslopes (NUS) were calculated from signal-time curves (STC). Moreover, artifacts, image noise, and overall image quality were qualitatively evaluated. RESULTS: Phantom data showed a 40% increased linear range of the relation between SI and contrast-medium concentration with TSENSE. In volunteers, TSENSE introduced significantly residual artifacts and loss in SNR and CNR. No differences were found for NUS values with TSENSE. SR-TrueFISP yielded highest SNR, CNR, and quality scores. However, in SR-True-FISP images, dark-banding artifacts were most pronounced. NUS values obtained with SR-TrueFISP were significantly higher and with SR-segEPI significantly lower than with SR-TurboFLASH. CONCLUSION: Semiquantitative myocardial perfusion imaging can significantly benefit from TSENSE due to shorter acquisition times and increased linearity of the pulse sequences. Among the three pulse sequences tested, SR-TrueFISP yielded best image quality. SR-segEPI proved to be an interesting alternative due to shorter acquisition times, higher linearity and fewer dark-banding artifacts.  相似文献   

4.
Fast spin echo (FSE) imaging has recently experienced a renewed enthusiasm in the clinical setting for its ability to provide high contrast T2-weighted images in short imaging times. This article evaluates the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) properties of the FSE sequence, inversion recovery (IR) FSE sequence, and conventional SE imaging. The results indicate that FSE imaging displays similar contrast properties to SE imaging, but that the SNR and CNR are improved secondary to the longer TRs and longer effective TEs that may be used. The SNR per unit time of the FSE sequence, and hence its efficiency, is at least a factor of 8 better than the SE sequence when 16 echoes are acquired for each excitation. The addition of a slice selective inversion pulse in IR-FSE allows rapid generation of IR images with image contrast similar to that of conventional IR sequences. When used with a multicoil array for abdominal, pelvic, and spine imaging, the IR-FSE sequence produces images that are virtually free of motion artifact from the subcutaneous fat immediately adjacent to the coils. Both FSE and IR-FSE, when compared with SE imaging, provide superior image contrast and SNR in reduced imaging time.  相似文献   

5.
In this study, a turbo spin-echo (TSE) based motion-sensitized driven-equilibrium (MSDE) sequence was used as an alternative black-blood (BB) carotid MRI imaging scheme. The MSDE sequence was first optimized for more efficient residual blood signal suppression in the carotid bulb of healthy volunteers. Effective contrast-to-noise ratio (CNReff) and residual signal-to-noise ratio (SNR) in the lumen measured from MSDE images were then compared to those measured from inflow saturation (IS) and double inversion-recovery (DIR) images. Statistically significant higher CNReff and lower lumen SNR were obtained from MSDE images. To assess MSDE sequence in a clinical carotid protocol, 42 locations from six subjects with 50% to 79% carotid stenosis by duplex ultrasound were scanned with both MSDE and multislice DIR. The comparison showed that MSDE images present significantly higher CNR and lower lumen SNR compared to corresponding multislice DIR images. The vessel wall area and mean wall thickness measurements in MSDE images were slightly but significantly lower than those obtained with other blood suppression techniques. In conclusion, in vivo comparisons demonstrated that MSDE sequence can achieve better blood suppression and provide a more accurate depiction of the lumen boundaries by eliminating plaque mimicking artifacts in carotid artery (CA) imaging. Magn Reson Med 58:973–981, 2007. © 2007 Wiley-Liss, Inc.  相似文献   

6.
BACKGROUND AND PURPOSE: Change in signal intensity due to acute ischemic stroke can be detected on diffusion-weighted (DW) images soon after symptom onset. Fluid-attenuated inversion recovery (FLAIR) DW imaging suppresses signal intensity from water and has been suggested to be better than conventional DW imaging as a diagnostic imaging technique in acute stroke. We compared the signal intensity-to-noise ratio (SNR) and contrast-to-noise-ratio (CNR) between ischemic and normal tissues by using these two sequences. METHODS: Twenty stroke patients underwent imaging less than 6 hours after stroke onset by using both acquisition methods. The SNR of six regions of interest in normal brain and one region in ischemic brain were compared on both DW imaging and FLAIR DW imaging. We also compared CNR in normal and ischemic tissues. The calculated apparent diffusion coefficient (ADC) maps from each acquisition technique were similarly assessed. RESULTS: The SNR was significantly lower for FLAIR DW imaging than for DW imaging (P < .05). The CNR between normal and ischemic tissue was also lower on FLAIR DW imaging (P < .05). SNR and CNR of the ADC maps were significantly different (P < .05) for all tissues except the putamen and white matter (for SNR and CNR) and globus pallidus (for CNR only). CONCLUSION: Ischemic tissue on FLAIR DW imaging was significantly less conspicuous than on DW imaging and potentially limits the clinical utility of this sequence.  相似文献   

7.
AIM: The aim of this study was to compare the performance of three fluid attenuated inversion recovery (FLAIR) pulse sequences for control of cerebrospinal fluid (CSF) and blood flow artifacts in imaging of the brain. The first of these sequences had an initial sinc inversion pulse which was followed by conventional k-space mapping. The second had an initial sinc inversion pulse followed by k-space re-ordered by inversion time at each slice position (KRISP) and the third had an adiabatic initial inversion pulse followed by KRISP. MATERIALS AND METHODS: Ten patients with established disease were studied with all three pulse sequences. Seven were also studied with the adiabatic KRISP sequence after contrast enhancement. Their images were evaluated for patient motion artifact, CSF and blood flow artifact as well as conspicuity of the cortex, meninges, ventricular system, brainstem and cerebellum. The conspicuity of lesions and the degree of enhancement were also evaluated. RESULTS: Both the sinc and adiabatic KRISP FLAIR sequences showed better control of CSF and blood flow artifacts than the conventional FLAIR sequence. In addition the adiabatic KRISP FLAIR sequence showed better control of CSF artifact at the inferior aspect of the posterior fossa. The lesion conspicuity was similar for each of the FLAIR sequences as was the degree of contrast enhancement to that shown with a T(1)weighted spin echo sequence. CONCLUSION: The KRISP FLAIR sequence controls high signal artifacts from CSF flow and blood flow and the adiabatic pulse controls high signal artifacts due to inadequate inversion of the CSF magnetization at the periphery of the head transmitter coil. The KRISP FLAIR sequence also improves cortical and meningeal definition as a result of an edge enhancement effect. The effects are synergistic and can be usefully combined in a single pulse sequence. Curati, W. L.et al. (2001)Clinical Radiology56, 375-384 Copyright 2001 The Royal College of Radiologists.  相似文献   

8.
BACKGROUND AND PURPOSE: Single-shot, fast spin-echo, fluid attenuated inversion recovery (SS-FSE-FLAIR) images are frequently used to detect disease in the brain and subarachnoid space in confused or uncooperative patients who may move during the examination. In some of these patients, high signal intensity areas are seen on good-quality images in the subarachnoid space and ventricular system in locations not associated with high CSF flow. These artifacts may simulate hemorrhage or leptomeningeal disease. The purpose of this article was to determine the cause of these artifacts, describe ways to recognize them, and find methods to reduce or eliminate them. METHODS: Healthy volunteers were studied on 6 occasions with conventional multisection FSE-FLAIR images and SS-FSE-FLAIR images while at rest and while nodding and rotating their heads at different speeds. In addition, SS-FSE-FLAIR images with different section widths of the initial inverting pulse and a non-section-selective initial inversion pulse were performed with the subjects moving their heads in the same way. The scans of 30 successive patients with acute neurologic syndromes who had been studied with SS-FSE-FLAIR sequences were reviewed for evidence of high signal intensity in the CSF in regions not associated with high CSF flow. RESULTS: Each of the volunteers showed areas of increased signal intensity in CSF at sites apart from those associated with rapid pulsatile CSF flow on SS-FSE-FLAIR images acquired during head motion. The images were otherwise virtually free of motion artifact. The use of a wider initial inversion pulse section and a non-section-selected initial inversion pulse reduced the extent of these artifacts. Nineteen of the 30 patients showed areas of high signal intensity in the CSF in regions not associated with highly pulsatile CSF flow. Six of these patients had negative lumbar punctures for blood and xanthochromia and normal CSF protein levels. CONCLUSION: High signal intensity artifacts may be seen in CSF as a result of head movement on otherwise artifact-free images when imaging uncooperative patients with SS-FSE-FLAIR sequences. These artifacts have a different mechanism and distribution from those caused by CSF pulsation and may simulate subarachnoid and intraventricular hemorrhage. Artifact recognition is aided by signs of patient motion during the examination. The artifacts can be reduced by use of increased section width and non-section-selective initial inversion pulses. Recognition of these artifacts is important, because the circumstances in which the SS-FSE-FLAIR sequence is used and the particular properties of the sequence may conspire to produce a trap for the unwary.  相似文献   

9.
BACKGROUND AND PURPOSE: High-intensity CSF artifacts at the basal cisterns on MR images are often seen when a fast fluid-attenuated inversion recovery (FLAIR) technique is used. We investigated the influences of four optional fast-FLAIR sequence parameters on the high-intensity CSF artifacts. METHODS: A total of 377 patients (age range, 1 week to 91 years; mean 40.6 years; 186 female, 191 male) were examined with axial fast-FLAIR images obtained (TR/TE(eff)/TI, 8800/133/2200) with a 1.5-T system during 6 months. The effects of the optional addition of inferior inflow saturation (thickness, 80 mm), section flow compensation, and tailored radiofrequency (TRF) pulses, plus the choice of interleaving acquisition factors of 2 or 3, were evaluated for the presence of high-intensity CSF artifacts on the fast-FLAIR images. Two radiologists independently reviewed the fast-FLAIR images in 76 patients; afterward, a single observer reviewed the remainder of the images. RESULTS: The interobserver agreement rate in 76 cases was more than 90%. The use of TRF and/or three interleaving acquisitions resulted in a substantial reduction in the incidence of high-intensity CSF artifacts from about 80% to 40% (P <.05, two-sample two-sided Z test). Inferior inflow saturation and section flow compensation did not significantly improve image quality (P >.05). The results were consistent with the image quality ranking obtained in five healthy volunteers. CONCLUSION: The appropriate choice of sequence parameters in fast-FLAIR imaging reduces the incidence of high-intensity CSF artifacts that are frequently encountered in the presence of rapid CSF flow.  相似文献   

10.
OBJECTIVE: To implement parallel imaging algorithms in fast gradient recalled echo sequences for myocardial perfusion imaging and evaluate image quality, signal-to-noise ratio (SNR), contrast-enhancement ratio (CER), and semiquantitative perfusion parameters. MATERIALS AND METHODS: In 20 volunteers, myocardial perfusion imaging with gadobutrol was performed at rest using an accelerated TurboFLASH sequence (TR 2.3 milliseconds, TE 0.93 milliseconds, flip angle [FA] 15 degrees) with GRAPPA, R=2. A nonaccelerated TurboFLASH sequence with similar scan parameters served as standard of reference. Artifacts were assessed qualitatively. SNR, CER, and CNR were calculated and semiquantitative perfusion parameters were determined from fitted SI-time curves. RESULTS: Phantom measurements yielded significant higher SNR for nonaccelerated images (P<0.001). CER was equal; differences in CNR were statistically nonsignificant. The evaluation of semiquantitative perfusion parameters yielded significantly higher peak signal intensities in nonaccelerated images (P<0.001). Differences in maximum upslope were statistically nonsignificant. A qualitative examination of all images for artifacts by 2 board-certified radiologists yielded a significant reduction in dark rim artifacts with GRAPPA, R=2 (P<0.001). CONCLUSIONS: The application of GRAPPA with an acceleration factor of R=2 leads to a significant reduction of dark rim artifacts in fast gradient recalled echo sequences.  相似文献   

11.

Purpose

To propose a new black‐blood (BB) pulse sequence that provides BB cine cardiac images with high blood‐myocardium contrast. The proposed technique is based on the conventional steady‐state free precession (SSFP) sequence.

Materials and Methods

Numerical simulations of the Bloch equation were conducted to compare the resulting signal‐to‐noise ratio (SNR) to that of conventional BB imaging, including the effects of changing the imaging flip angle and heart rates. Simulation results were verified using a gel phantom experiment and five normal volunteers were scanned using the proposed technique.

Results

The new sequence showed higher SNR and contrast‐to‐noise ratio (CNR) (≈100%) compared to the conventional BB imaging. Also, the borders of the left ventricle (LV) and right ventricle (RV) appear more distinguishable than the conventional SSFP. We were also able to cover about 80% of the cardiac cycle with short breath‐hold time (≈10 cardiac cycles) and with reasonable SNR and CNR.

Conclusion

Based on an SSFP conventional sequence, the new sequence provides BB cines that cover most of the cardiac cycle and with higher SNR and CNR than the conventional BB sequences. J. Magn. Reson. Imaging 2009;30:94–103. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
We describe a new sequence, flow artifact-insensitive fluid-attenuated inversion recovery (FAIS-FLAIR), that capitalizes on the advantages of fluid-attenuated inversion recovery (FLAIR) while minimizing FLAIR-related artifacts such as those often encountered in the posterior fossa. Twenty-eight patients with posterior fossa disease underwent FAIS-FLAIR, conventional FLAIR, and spin-echo MR studies, and the findings yielded by the three techniques were compared. In this patient population, postcontrast FAIS-FLAIR imaging was obtained in 20 patients and compared with postcontrast T1-weighted images. The images were assessed for lesion conspicuity by three radiologists. FAIS-FLAIR markedly reduces the inflow artifacts from noninverted CSF on FLAIR images. It does so with and without contrast agent administration, and produces higher lesion conspicuity compared with T1- and T2-weighted spin-echo sequences and conventional FLAIR images of the posterior fossa.  相似文献   

13.
Fluid-attenuated inversion recovery (FLAIR) is a pulse sequence used for acquiring T2-weighted images of the brain and spine in which the normally high signal intensity of CSF is greatly attenuated. The CSF-sup pressed T2-weighted contrast of this technique may be more sensitive to a variety of disorders than that of conventional Tz-weighted imaging. The primary disadvantage associated with conventional spin-echo implementations of FLAIR is the relatively limited anatomic coverage that can be achieved in a reasonable imaging time. We developed and optimized a three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) pulse sequence that combines CSF-suppressed T2-weighted contrast similar to exleting FLAIR techniques with anatomic coverage characteristic of 3D imaging. A preliminary evaluation of the new sequence was performed by imaging healthy volunteers and patients with multiple sclerosis.  相似文献   

14.
Real-time cardiac and coronary MRI at 1.5T is relatively "signal starved" and the 3T platform is attractive for its immediate factor of two increase in magnetization. Cardiac imaging at 3T, however, is both subtly and significantly different from imaging at 1.5T because of increased susceptibility artifacts, differences in tissue relaxation, and RF homogeneity issues. New RF excitation and pulse sequence designs are presented which deal with the fat-suppression requirements and off-resonance issues at 3T. Real-time cardiac imaging at 3T is demonstrated with high blood SNR, blood-myocardium CNR, resolution, and image quality, using new spectral-spatial RF pulses and fast spiral gradient echo pulse sequences. The proposed sequence achieves 1.5 mm in-plane resolution over a 20 cm FOV, with a 5.52 mm measured slice thickness and 32 dB of lipid suppression. Complete images are acquired every 120 ms and are reconstructed and displayed at 24 frames/sec using a sliding window. Results from healthy volunteers show improved image quality, a 53% improvement in blood SNR efficiency, and a 232% improvement in blood-myocardium CNR efficiency compared to 1.5T.  相似文献   

15.
Sodium imaging with soft inversion recovery fluid attenuation, which may be advantageous for intracellular weighting, was demonstrated with cerebrospinal fluid (CSF) suppression in five healthy volunteers at 4.7 T. Long rectangular inversion pulses reduce the average power deposition in an inversion recovery sequence, allowing repetition time to be shortened and more averages acquired for a given scan length. Longer pulses also significantly reduce the "depth" of Mz inversion in environments with rapid T1 and T2 relaxation (i.e., brain relative to CSF). Phantom experiments and simulation show a marked SNR increase when using a 10-ms, rather than a 1-ms, rectangular inversion pulse. Images were acquired in 11.1 min with a voxel size of 0.25 cm3 and the SNR in CSF, which is typically approximately 3 times larger than in brain, was reduced to 23% of that in the brain tissue, which had an average SNR of 17.  相似文献   

16.
The purpose of this study was to decrease vascular artifacts caused by the in-flow effect in three-dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady state (3D IR FSPGR) at 3.0 Tesla. We developed 3D double IR FSPGR and investigated the signal characteristics of the new sequence. The 3D double IR FSPGR sequence uses two inversion pulses, the first for obtaining tissue contrast and the second for nulling vascular signal, which is applied at the time of the first IR period at the neck region. We have optimized scan parameters based on both phantom and in-vivo study. As a result, optimized parameters (1st TI=700 ms, 2nd TI=400 ms) successfully have produced much less vessel signal at reduction than conventional 3D IR FSPGR over a wide imaging range, while preserving the signal-to-noise ratio (SNR) and gray/white matter contrast. Moreover, the decreased artifact was also confirmed by visual inspection of the images obtained in vivo using those parameters. Thus, 3D double IR FSPGR was a useful sequence for the acquisition of T1-weighted images at 3.0 Tesla.  相似文献   

17.
PURPOSE: To describe and evaluate a fast, fluid-suppressed 2D multislice steady-state free precession (SSFP) neuroimaging sequence. MATERIALS AND METHODS: We developed a fast fluid-attenuated inversion-recovery SSFP sequence for use in neuroimaging. The inversion time (TI) was optimized to yield good cerebrospinal fluid (CSF) suppression while conserving white matter (WM)/lesion contrast across a broad range of flip angles. Multiple SSFP acquisitions were combined using the sum-of-squares (SOS) method to maximize SNR efficiency while minimizing SSFP banding artifacts. We compared our fluid-attenuated inversion-recovery (FLAIR) SSFP sequence with FLAIR fast spin-echo (FSE) in both normal subjects and a volunteer with multiple sclerosis. SNR measurements were performed to ascertain the SNR efficiency of each sequence. RESULTS: Our FLAIR SSFP sequence demonstrated excellent CSF suppression and good gray matter (GM)/WM contrast. Coverage of the entire brain (5-mm slices, 24-cm FOV, 256 x 192 matrix) was achieved with FLAIR SSFP in less than half the scan time of a corresponding FLAIR FSE sequence with similar SNR, yielding improvements of more than 50% in SNR efficiency. Axial scans of a volunteer with multiple sclerosis show clearly visible plaques and very good visualization of brain parenchyma. CONCLUSION: We have demonstrated the feasibility of a very fast fluid-suppressed neuroimaging technique using SSFP.  相似文献   

18.
The purpose of this paper was to develop and evaluate a fast inversion recovery (FIR) technique for T1-weighted MR imaging of contrast-enhancing brain pathology. The FIR technique was developed, capable of imaging 24 sections in approximately 7 minutes using two echoes per repetition and an alternating echo phase encoding assignment. Resulting images were compared with conventional T1-weighted spin echo (T1SE) images in 18 consecutive patients. Compared with corresponding T1SE images, FIR images were quantitatively comparable or superior for lesion-to-background contrast and contrast-to-noise ratio (CNR). Gray-to-white matter and cerebrospinal fluid (CSF)-to-white matter contrast and CNR were statistically superior in FIR images. Qualitatively, the FIR technique provided comparable lesion detection, improved lesion conspicuity, and superior image contrast compared with T1SE images. Although FIR images had greater amounts of image artifacts, there was not a statistically increased amount of interpretation-interfering image artifact. FIR provides T1-weighted images that are superior to T1SE images for a number of image quality criteria.  相似文献   

19.
A novel pulse sequence that enables simultaneous acquisition of T1-weighted (T1W) and T2-weighted (T2W) images is presented. In this new technique, the inversion recovery (IR) pulse of conventional fast inversion recovery (Fast IR) is replaced with a pulse train that consists of a fast spin echo (FSE) and 180 (y) +90 (x) for driven inversion (DI). By using a shorter TI and independent k-space ordering, the first part of the sequence provides T2W images and the second part provides T1W images, thereby enabling simultaneous acquisition in a single scan time comparable to that of Fast IR. Signal simulation also was conducted, and this was compared with conventional scanning techniques using normal volunteers. In the human studies, both T1W and T2W images showed the same image quality as conventional images, suggesting the potential for this technique to replace the combination of Fast IR and T2W FSE for scan-time reduction.  相似文献   

20.
The purpose of this study was to compare 3T and 7T signal-to-noise and contrast-to noise ratios of clinical sequences for imaging of the ankles with optimized sequences and dedicated coils. Ten healthy volunteers were examined consecutively on both systems with three clinical sequences: (1) 3D gradient-echo, T(1)-weighted; (2) 2D fast spin-echo, PD-weighted; and (3) 2D spin-echo, T(1)-weighted. SNR was calculated for six regions: cartilage; bone; muscle; synovial fluid; Achilles tendon; and Kager's fat-pad. CNR was obtained for cartilage/bone, cartilage/fluid, cartilage/muscle, and muscle/fat-pad, and compared by a one-way ANOVA test for repeated measures. Mean SNR significantly increased at 7T compared to 3T for 3D GRE, and 2D TSE was 60.9% and 86.7%, respectively. In contrast, an average SNR decrease of almost 25% was observed in the 2D SE sequence. A CNR increase was observed in 2D TSE images, and in most 3D GRE images. There was a substantial benefit from ultra high-field MR imaging of ankles with routine clinical sequences at 7T compared to 3T. Higher SNR and CNR at ultra-high field MR scanners may be useful in clinical practice for ankle imaging. However, carefully optimized protocols and dedicated extremity coils are necessary to obtain optimal results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号