首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Insulin resistance is commonly observed both in overt diabetes and in individuals prone to, but not yet manifesting, diabetes. Hence the maintenance or restoration of insulin sensitivity may prevent the onset of this disease. We previously showed that homozygous disruption of insulin receptor substrate-1 (IRS-1) in mice resulted in insulin resistance but not diabetes. Here, we have explored the mechanism of systemic insulin resistance in these mice and used adenovirus-mediated gene therapy to restore their insulin sensitivity. Mice expressing the IRS-1transgene showed almost normal insulin sensitivity. Expression of an IRS-1 mutant (IRS-1Deltap85) lacking the binding site for the p85 subunit of phosphatidylinositol 3-kinase (PI3K) also restored insulin sensitivity, although PI3K is known to play a crucial role in insulin's metabolic responses. Protein kinase B (PKB) activity in liver was decreased in null mice compared with the wild-type and the null mice expressing IRS-1 or IRS-1Deltap85. In primary hepatocytes isolated from null mice, expression of IRS-1 enhanced both PI3K and PKB activities, but expression of IRS-1Deltap85 enhanced only PKB. These data suggest that PKB in liver plays a pivotal role in systemic glucose homeostasis and that PKB activation might be sufficient for reducing insulin resistance even without full activation of PI3K.  相似文献   

2.
To investigate potential interactions between angiotensin II (AII) and the insulin signaling system in the vasculature, insulin and AII regulation of insulin receptor substrate-1 (IRS-1) phosphorylation and phosphatidylinositol (PI) 3-kinase activation were examined in rat aortic smooth muscle cells. Pretreatment of cells with AII inhibited insulin-stimulated PI 3-kinase activity associated with IRS-1 by 60%. While AII did not impair insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) beta-subunit, it decreased insulin-stimulated tyrosine phosphorylation of IRS-1 by 50%. AII inhibited the insulin-stimulated association between IRS-1 and the p85 subunit of PI 3-kinase by 30-50% in a dose-dependent manner. This inhibitory effect of AII on IRS-1/PI 3-kinase association was blocked by the AII receptor antagonist saralasin, but not by AT1 antagonist losartan or AT2 antagonist PD123319. AII increased the serine phosphorylation of both the IR beta-subunit and IRS-1. In vitro binding experiments showed that autophosphorylation increased IR binding to IRS-1 from control cells by 2.5-fold versus 1.2-fold for IRS-1 from AII-stimulated cells, suggesting that AII stimulation reduces IRS-1's ability to associate with activated IR. In addition, AII increased p85 serine phosphorylation, inhibited the total pool of p85 associated PI 3-kinase activity, and decreased levels of the p50/p55 regulatory subunit of PI 3-kinase. These results suggest that activation of the renin-angiotensin system may lead to insulin resistance in the vasculature.  相似文献   

3.
Phosphoinositide 3-kinase (PI3K) is thought to contribute to the pathogenesis of asthma by effecting the recruitment, activation, and apoptosis of inflammatory cells. We examined the role of class IA PI3K in antigen-induced airway inflammation and hyperresponsiveness by i.p. administration into mice of Deltap85 protein, a dominant negative form of the class IA PI3K regulatory subunit, p85alpha, which was fused to HIV-TAT (TAT-Deltap85). Intraperitoneal administration of TAT-Deltap85 caused time-dependent transduction into blood leukocytes, and inhibited activated phosphorylation of protein kinase B (PKB), a downstream target of PI3K, in lung tissues in mice receiving intranasal FMLP. Antigen challenge elicited pulmonary infiltration of lymphocytes, eosinophils and neutrophils, increase in mucus-containing epithelial cells, and airway hyperresponsiveness to methacholine. Except for modest airway neutrophilia, these effects all were blocked by treatment with 3-10 mg/kg of TAT-Deltap85. There was also significant reduction in IL-5 and IL-4 secretion into the BAL. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by systemic pretreatment with TAT-Deltap85. We conclude that PI3K has a regulatory role in Th2-cell cytokine secretion, airway inflammation, and airway hyperresponsiveness in mice.  相似文献   

4.
A critical component of insulin action is the enzyme phosphoinositide (PI) 3-kinase. The major regulatory subunits of PI 3-kinase, p85alpha and its splice variants, are encoded by the Pik3r1 gene. Heterozygous disruption of Pik3r1 improves insulin signaling and glucose homeostasis in normal mice and mice made insulin-resistant by heterozygous deletion of the Insulin receptor and/or insulin receptor substrate-1 (IRS1) genes. Reduced expression of p85 modulates the molecular balance between this protein, the p110 catalytic subunit of PI 3-kinase, and the IRS proteins. Thus, despite the decrease in p85alpha, PI 3-kinase activation is normal, insulin-stimulated Akt activity is increased, and glucose tolerance and insulin sensitivity are improved. Furthermore, Pik3r1 heterozygosity protects mice with genetic insulin resistance from developing diabetes. These data suggest that regulation of p85alpha levels may provide a novel therapeutic target for the treatment of type 2 diabetes.  相似文献   

5.
Intracellular insulin signaling involves a series of alternative and complementary pathways created by the multiple substrates of the insulin receptor (IRS) and the various isoforms of SH2 domain signaling molecules that can interact with these substrates. In this study, we have evaluated the roles of IRS-1 and IRS-2 in signaling to the phosphatidylinositol (PI) 3-kinase pathway in the ob/ob mouse, a model of the insulin resistance of obesity and non-insulin-dependent diabetes mellitus. We find that the levels of expression of both IRS-1 and IRS-2 are decreased approximately 50% in muscle, whereas in liver the decrease is significantly greater for IRS-2 (72%) than for IRS-1 (29%). This results in differential decreases in IRS-1 and IRS-2 phosphorylation, docking of the p85alpha regulatory subunit of PI 3-kinase, and activation of this enzyme in these two insulin target tissues. In ob/ob liver there is also a change in expression of the alternatively spliced isoforms of the regulatory subunits for PI 3-kinase that was detected at the protein and mRNA level. This resulted in a 45% decrease in the p85alpha form of PI 3-kinase, a ninefold increase in the AS53/p55alpha, and a twofold increase in p50alpha isoforms. Thus, there are multiple alterations in the early steps of insulin signaling in the ob/ob mouse, with differential regulation of IRS-1 and IRS-2, various PI 3-kinase regulatory isoforms, and a lack of compensation for the decrease in insulin signaling by any of the known alternative pathways at these levels.  相似文献   

6.
The proliferation of antigen-activated T cells is mediated by the T cell-derived growth factor, interleukin 2 (IL-2). The biochemical signaling cascades initiating IL-2-induced growth are dependent upon protein tyrosine kinase (PTK) activity. One IL-2-regulated PTK implicated in this cascade is the Src-family kinase, Fyn. Previous studies have described a physical association between Fyn and a potential downstream substrate, phosphatidylinositol 3-kinase (PI3- kinase) as well as the IL-2-dependent activation of PI3-kinase in T cells; however, the role of Fyn in IL-2-induced PI3-kinase activation remains unclear. In this report, we demonstrate that IL-2 stimulation triggers tyrosine phosphorylation of the p85 subunit of PI3-kinase in the murine T cell line, CTLL-2. Lysates prepared from growth factor- deprived and IL-2-stimulated T cells reconstituted both the binding of CTLL-2 cell-derived Fyn to and the IL-2-inducible tyrosine phosphorylation of exogenously added recombinant p85. Furthermore, overexpression of wild-type Fyn in these cells enhanced both the basal and IL-2-mediated activation of PI3-kinase. Additional studies of the Fyn-PI3-kinase interaction demonstrated that the Src homology 3 (SH3) domain of Fyn constitutes a direct binding site for the p85 subunit of PI3-kinase. These results support the notion that Fyn may be directly involved in the activation of the downstream signaling enzyme, PI3- kinase, in IL-2-stimulated T cells.  相似文献   

7.
Phospatidylinositol 3-kinase (PI 3-kinase) expression was analysed by Western blotting with monoclonal antibodies to the p85 subunit in a series of tumour and adjacent mammary gland samples collected at surgery from 33 breast cancer patients. Seventy-nine percent of the investigated pairs of the samples were characterised by an increased level of PI 3-kinase in the tumour in comparison with the adjacent mammary gland. PI 3-kinase activation was not associated with tumour steroid receptor status, histologic grade and other clinico-morphological characteristics. Furthermore, immunoblotting of epidermal growth factor receptor (EGFR) in the tumours with increased PI 3-kinase and corresponding adjacent tissues revealed no association between EGFR and PI 3-kinase activation. Thus, increased PI 3-kinase expression appears to be a widespread feature of breast cancer not associated with the main biological markers of its prognosis and hormone sensitivity.  相似文献   

8.
1alpha,25-dihydroxyvitamin D(3) (D(3)) promotes the maturation of myeloid cells and surface expressions of CD14 and CD11b, markers of cell differentiation in response to D(3). To examine how these responses are regulated, THP-1 cells were grown in serum-free medium and incubated with D(3). This was associated with rapid and transient increases in phosphatidylinositol 3-kinase (PI 3-kinase) activity. Furthermore, induction of CD14 expression in response to D(3) was abrogated by (a) the PI 3-kinase inhibitors LY294002 and wortmannin; (b) antisense oligonucleotides to mRNA for the p110 catalytic subunit of PI 3-kinase; and (c) a dominant negative mutant of PI 3-kinase. In THP-1 cells, induction of CD11b expression by D(3) was also abrogated by LY294002 and wortmannin. Similarly, LY294002 and wortmannin inhibited D(3)-induced expression of both CD14 and CD11b in peripheral blood monocytes. In contrast to CD14 and CD11b, hormone-induced expression of the Cdk inhibitor p21 in THP-1 cells was unaffected by either wortmannin or LY294002. These findings suggest that PI 3-kinase selectively regulates D(3)-induced monocyte differentiation, independent of any effects on p21.  相似文献   

9.
Neutral endopeptidase 24.11 (NEP, CD10) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). NEP substrates such as bombesin and endothelin-1 induce cell migration. We investigated the mechanisms of NEP regulation of cell migration in PC cells, including regulation of phosphorylation on tyrosine of focal adhesion kinase (FAK). Western analyses and cell migration assays revealed an inverse correlation between NEP expression and the levels of FAK phosphorylation and cell migration in PC cell lines. Constitutively expressed NEP, recombinant NEP, and induced NEP expression using a tetracycline-repressive expression system inhibited bombesin- and endothelin-1-stimulated FAK phosphorylation and cell migration. This results from NEP-induced inhibition of neuropeptide-stimulated association of FAK with cSrc protein. Expression of a mutated catalytically inactive NEP protein also resulted in partial inhibition of FAK phosphorylation and cell migration. Coimmunoprecipitation experiments show that NEP associates with tyrosine-phosphorylated Lyn kinase, which then binds the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in an NEP-Lyn-PI3-K protein complex. This complex competitively blocks FAK-PI3-K interaction, suggesting that NEP protein inhibits cell migration via a protein-protein interaction independent of its catalytic function. These experiments demonstrate that NEP can inhibit FAK phosphorylation on tyrosine and PC cell migration through multiple pathways and suggest that cell migration which contributes to invasion and metastases in PC cells can be regulated by NEP.  相似文献   

10.
Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.  相似文献   

11.
12.
Insulin stimulates tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), which in turn binds to and activates phosphatidylinositol 3-kinase (PI 3-kinase). In the present study, we have examined these processes in animal models of insulin-resistant and insulin-deficient diabetes mellitus. After in vivo insulin stimulation, there was a 60-80% decrease in IRS-1 phosphorylation in liver and muscle of the ob/ob mouse. There was no insulin stimulation of PI 3-kinase (85 kD subunit) association with IRS-1, and IRS-1-associated PI 3-kinase activity was reduced 90%. Insulin-stimulated total PI 3-kinase activity was also absent in both tissues of the ob/ob mouse. By contrast, in the streptozotocin diabetic rat, IRS-1 phosphorylation increased 50% in muscle, IRS-1-associated PI 3-kinase activity was increased two- to threefold in liver and muscle, and there was a 50% increase in the p85 associated with IRS-1 after insulin stimulation in muscle. In conclusion, (a) IRS-1-associated PI 3-kinase activity is differentially regulated in hyperinsulinemic and hypoinsulinemic diabetic states; (b) PI 3-kinase activation closely correlates with IRS-1 phosphorylation; and (c) reduced PI 3-kinase activity may play a role in the pathophysiology of insulin resistant diabetic states, such as that seen in the ob/ob mouse.  相似文献   

13.
Insulin receptor substrates-1 (IRS-1) is the major cytoplasmic substrate of the insulin and IGF-1 receptors. Recent studies have identified multiple sequence variants of IRS-1, especially in patients with non-insulin-dependent diabetes mellitus. In the present study, we have examined insulin-stimulated processes in 32D(IR) cells, a myeloid progenitor cell stably overexpressing the insulin receptor, transfected with wild-type human-IRS-1 or the most common human variant of IRS-1 in which glycine 972 is replaced by arginine. As compared to wild-type IRS-1, insulin stimulation of cells transfected with mutant IRS-1 exhibited a 32% decrease in incorporation of [3H]thymidine into DNA (P = 0.002), a 36% decrease in IRS-1 associated phosphatidylinositol (PI) 3-kinase activity (P = 0.004) and a 25% decrease in binding of the p85 regulatory subunit of PI 3-kinase to IRS-1 (P = 0.002). There was also a tendency for a decrease in Grb2 binding to IRS-1 and insulin-stimulated mitogen-activated protein kinase activity, however, these were not statistically significant. The changes occurred with no change in insulin receptor or IRS-1 tyrosine phosphorylation. These data indicate that the mutation in codon 972 in IRS-1 impairs insulin-stimulated signaling, especially along the PI 3-kinase pathway, and may contribute to insulin resistance in normal and diabetic populations.  相似文献   

14.
A promising therapeutic alternative to inhibition of growth factor receptors is the inhibition of downstream signal transduction pathways. Such an approach may be especially important in tumors that can use signals from multiple growth factor receptors for growth and survival. Both stem cell factor (SCF) and insulin-like growth factor (IGF)-I, components of prominent small cell lung cancer (SCLC) autocrine loops, as well as FCS, can potently activate phosphatidylinositol 3-kinase (PI3K)-Akt signaling, albeit with different kinetics. SCF-induced PI3K-Akt activation occurs rapidly but fades within 60 min; IGF-I and FCS-induced activation persists for at least 6 h. SCF and IGF-I-mediated growth was potently inhibited by LY294002 in proportion to its ability to inhibit phosphatidylinositol 3-kinase (PI3K)-Akt signaling. A panel of six SCLC cell lines grown in 10% FCS was also very sensitive to LY294002, with average IC50 and LD50 of 5 and 25 microM, respectively. These drug concentrations suppressed the growth of the MRC-5 pulmonary fibroblast cell line and primary bronchial epithelial cells but did not induce significant cell death. Because LY294002 can also inhibit PI3K-related enzymes, we confirmed the role of the PI3K-Akt pathway in SCLC using doxycycline-regulated expression of a dominant-negative (kinase dead) and a constitutively active (CA; myristolated) Akt allele. Expression of dominant-negative Akt, which could only be achieved at relatively low levels, completely inhibited growth in the absence of exogenous growth factors and inhibited SCF-mediated growth but had no effect on IGF-I-mediated growth at the expression levels attained. Expression of CA Akt markedly augmented growth in the absence of exogenous growth factors but had minimal effect on growth in the presence of saturating concentrations SCF or IGF-I. Because PI3K-Akt signaling is known to promote survival under apoptotic stresses, we determined the effect of this pathway on SCLC sensitivity to etoposide. LY294002 potentiated the effect of low concentrations of etoposide in inhibiting growth and inducing apoptosis. The effect of low concentrations of LY294002 could largely be reversed by expression of CA Akt, suggesting that it was mediated by inhibition of Akt signaling. Expression of CA Akt by itself also induced resistance to etoposide-mediated apoptosis. Taken together, these data demonstrate that PI3K-Akt signaling promotes SCLC growth, survival, and chemotherapy resistance. Therefore, selective inhibitors of PI3K or Akt could potentially be useful as novel therapeutic agents in the treatment of SCLC.  相似文献   

15.
The broad nature of insulin resistant glucose metabolism in skeletal muscle of patients with type 2 diabetes suggests a defect in the proximal part of the insulin signaling network. We sought to identify the pathways compromised in insulin resistance and to test the effect of moderate exercise on whole-body and cellular insulin action. We conducted euglycemic clamps and muscle biopsies on type 2 diabetic patients, obese nondiabetics and lean controls, with and without a single bout of exercise. Insulin stimulation of the phosphatidylinositol 3-kinase (PI 3-kinase) pathway, as measured by phosphorylation of the insulin receptor and IRS-1 and by IRS protein association with p85 and with PI 3-kinase, was dramatically reduced in obese nondiabetics and virtually absent in type 2 diabetic patients. Insulin stimulation of the MAP kinase pathway was normal in obese and diabetic subjects. Insulin stimulation of glucose-disposal correlated with association of p85 with IRS-1. Exercise 24 hours before the euglycemic clamp increased phosphorylation of insulin receptor and IRS-1 in obese and diabetic subjects but did not increase glucose uptake or PI 3-kinase association with IRS-1 upon insulin stimulation. Thus, insulin resistance differentially affects the PI 3-kinase and MAP kinase signaling pathways, and insulin-stimulated IRS-1-association with PI 3-kinase defines a key step in insulin resistance.  相似文献   

16.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer carrier containing the anticancer drug doxorubicin bound either by a proteolytically degradable bond (non-targeted PK1 or targeted with alpha-CD71 mAb) or by a hydrolytically degradable bond were synthesised and tested in vivo for various biological properties. Mouse 38C13 B-cell lympoma was used as a well established and defined cell line for this study. 38C13 cells are sensitive to free doxorubicin and IC50 was very low, about 0.014 microM. PK1 showed a strongly decreased cytostatic effect, IC50 being 12.6 microM. alpha-CD71 targeted conjugate, which can be considered as an antibody-targeted form of PK1, had IC50 0.358 microM. HPMA copolymer with doxorubicin bound via a hydrolytically sensitive bond (HYD conjugate) showed a high cytostatic effect with IC50 about 0.052 microM. We demonstrated that HYD conjugate inhibited DNA synthesis and induced p21(Waf1/Cip1) protein expression (p21(Waf1/Cip1) is cyclin-dependent kinase inhibitor which blocks cell cycle progression) as quickly as free doxorubicin, whereas PK1 acted much more slowly. Similarly, apoptosis induction measured by Annexin V binding and Caspase 3 activity was detected later after incubation of cells with PK1 or alpha-CD71 targeted conjugate. Apoptosis was manifested by elevation of bax and bad mRNA levels, which was much more rapid and intense in the case of free doxorubicin and HYD conjugate. Expression of antiapoptotic genes as well as cyclin-dependent kinases was surprisingly not affected.  相似文献   

17.
BACKGROUND: Previous studies revealed that integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase, is a critical mediator for tubular epithelial to mesenchymal transition (EMT), and likely plays an important role in the pathogenesis of chronic kidney fibrosis. However, the exact signal pathway has not been well understood. In this study, we investigated the role of extracellular regulating kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3-K) in the regulation of ILK expression by connective tissue growth factor (CTGF) in HK-2 cells. METHODS: Experiments were performed on transformed (human kidney cell (HKC)-clone 2) human proximal tubular epithelial cells (PTECs). Induction of ILK in response to CTGF was studied at the mRNA level by real-time PCR and protein by immunoblotting. Chemical inhibitors were used to assess the role of MEK/ERK1/2, PI3-K, and P38 MAPK signaling pathways in induction of ILK by CTGF. RESULTS: CTGF induced ILK protein expression in HK-2 cells in a time- and dose-dependent manner. There was a 5.638-fold (control: 1.000+/-0.290, 50 ng/ml: 5.638+/-1.200; *P<0.05 vs. control) and 5.740-fold (0 h: 1.000+/-0.498, 48 h: 5.740+/-1.465, *P<0.05 vs. control) increase compared to control respectively. CTGF-induced ILK expression was partially reduced by inhibiting ERK1/2 and PI3-K activation. There was no influence of ILK expression by inhibiting P38 MAPK activation when cells treated with CTGF. CONCLUSION: CTGF induces the expression of ILK protein in HK-2 cells. This induction is partially dependent on MEK/ERK1/2 and PI3-K signaling pathways. Inhibiting CTGF-induced ILK by targeting PI3-K and/or MEK/ERK1/2 signaling pathways could be of therapeutic value in renal fibrosis.  相似文献   

18.
The possible participation of phosphatidylinositol (PI) 3-kinase, p44/42 mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in staurosporine-induced prostaglandin E(2) (PGE(2)) production was investigated pharmacologically in rat peritoneal macrophages. When the cells were incubated in the presence of staurosporine (63 nM), phosphorylation of p44/42 MAP kinases and cytosolic phospholipase A(2) (cPLA(2)) was induced at 15 min and increased until 60 min, whereas PGE(2) production and expression of cyclooxygenase-2 (COX-2) protein began to increase at 2 h and increased thereafter. Both PD98059 and U0126, MAP kinase/extracellular signal-regulated kinase (ERK) kinase inhibitors, and LY294002, a PI 3-kinase inhibitor, inhibited staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2) and PGE(2) production. Moreover, U0126 inhibited staurosporine-induced arachidonic acid release at 1 h. Although PD98059 and U0126 at 30 microM partially inhibited staurosporine-induced COX-2 protein expression, they completely inhibited staurosporine-induced PGE(2) production. LY294002 at 100 microM did not inhibit staurosporine-induced expression of COX-2 protein. In contrast, Ro-31-8220, a PKC inhibitor, completely inhibited staurosporine-induced PGE(2) production and COX-2 protein expression at 8 h but did not inhibit staurosporine-induced phosphorylation of p44/42 MAP kinases and cPLA(2). These findings suggest that staurosporine induces PGE(2) production by two mechanisms. One is cPLA(2) phosphorylation through a signal transduction pathway from PI 3-kinase to p44/42 MAP kinases, by which arachidonic acid, a substrate for COX-1 and COX-2, is increased. The other is COX-2 protein expression, which is induced mainly by activation of PKC and partially by activation of p44/42 MAP kinases; thus, arachidonic acid is metabolized to PGE(2).  相似文献   

19.
Non-small cell lung cancer (NSCLC) cells are often associated with constitutive activation of the phosphoinositide 3-kinase (PI3K) → Akt → mTOR pathway. The mucin 1 (MUC1) heterodimeric glycoprotein is aberrantly overexpressed in NSCLC cells and induces gene signatures that are associated with poor survival of NSCLC patients. The present results show that the MUC1 C-terminal subunit (MUC1-C) cytoplasmic domain associates with PI3K p85 in NSCLC cells. We show that inhibition of MUC1-C with cell-penetrating peptides blocks this interaction with PI3K p85 and suppresses constitutive phosphorylation of Akt and its downstream effector, mTOR. In concert with these results, treatment of NSCLC cells with the MUC1-C peptide inhibitor GO-203 was associated with downregulation of PI3K → Akt signaling and inhibition of growth. GO-203 treatment was also associated with increases in reactive oxygen species (ROS) and induction of necrosis by a ROS-dependent mechanism. Moreover, GO-203 treatment of H1975 (EGFR L858R/T790M) and A549 (K-Ras G12S) xenografts growing in nude mice resulted in tumor regressions. These findings indicate that NSCLC cells are dependent on MUC1-C both for activation of the PI3K → Akt pathway and for survival.  相似文献   

20.
Cardiomyocytes in culture can survive low or mild doses of oxidants but later increase cell volume and protein content. To understand the mechanism, we determined the early signaling events of oxidative stress. With 200 microM H2O2, the activity of p70 S6 kinase-1 (p70S6K1) increased at 30 min and reached a plateau at 90 min. Dose-response studies at the 60 min time point show that p70S6K1 activity reached its highest level with 150 microM H2O2. Increased p70S6K1 activity correlated with phosphorylation of Thr389 and Thr421/Ser424 residues, suggesting the involvement of an upstream kinase. Phosphoinositide 3-kinase (PI3K) activity was elevated by 5 min, reached a plateau at 10 min, and remained more than 6-fold induced for at least 60 min after 200 microM H2O2 exposure. The dose-response studies at 10 min found that 150 microM H2O2 induced the highest PI3K activity. Increased PI3K activity correlated with tyrosine phosphorylation of the 85-kDa regulatory subunit. Inactivating PI3K with wortmannin prevented H2O2 from inducing Thr389 phosphorylation and p70S6K1 activation. Wortmannin and rapamycin prevented H2O2 from inducing increases in cell volume and protein content. The antineoplastic drugs doxorubicin and daunorubicin also induced significant enlargement of cardiomyocytes at 10 to 100 nM dose range. Although the glutathione synthesis inhibitor buthionine sulfoximine potentiated the effect of doxorubicin and H2O2, the antioxidant N-acetylcysteine prevented induction of cell enlargement. Our data suggest that oxidative stress induces activation of PI3K, which leads to p70S6K1 activation and enlargement of cell size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号