首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl chloride) (PVC)-based membranes of silacrown end grafted carbosilane dendrimer (I) with sodium tetraphenylborate (NaTPB) as an anion inhibitor and dibutylphthalate (DBP), dioctylphthalate (DOP), dibutyl (butyl) phosphonate (DBBP) and 1-chloronaphthalene (CN) as plasticizing solvent mediators were prepared and used as Na+-selective electrodes. Optimum performance was observed with the membrane having I–PVC–NaTPB–DOP in the ratio 1:33:1:65 (w/w). The electrode works well over a wide concentration range 1.5 × 10−6–1.0 × 10−1 M with Nernstian compliance 56.0 mV/decade between pH 5.8 and 9.2 with a fast response time of about 15 s. The selectivity relative to alkali, alkaline earth and transition heavy metal ions is good. The selectivity coefficient values towards potassium ions have been calculated to be 2.3 × 10−4 by utilizing Fixed Interference Method. The proposed electrode could be used for at least 2 months without considerable alteration in its potential. The effect of nonionic surfactants Tween 20, Tween 80, Triton X 100, Span 20 and Span 60 on the potentiometric properties of the sodium selective membrane was also studied.  相似文献   

2.
A novel modified carbon-paste electrode was employed for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) with good selectivity and high sensitivity. Silver nanoparticle and carbon nanotube modified carbon-paste electrode (Ag/CNT–CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA) and ascorbic acid (AA). The oxidation overpotentials of DA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA and AA. The peak separation between DA and AA was 67 mV. The calibration curves for DA and AA were obtained in the range of 8.0 × 10−7–6.4 × 10−5 M and 3.0 × 10−5–2.0 × 10−3 M, respectively. The lowest detection limits (S/N = 3) were 3.0 × 10−7 M and 1.2 × 10−5 M for DA and AA, respectively. Method was applied to the determination of DA and AA in real samples.  相似文献   

3.
A sensitive and selective method for determination of dopamine (DA) using multi-wall carbon nanotube (MWCNT)-poly(3,5-dihydroxy benzoic acid) [poly(DBA)] modified electrode is developed. The modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solutions at pH 7.4. Using cyclic voltammetry, the linear range of 1 × 10−7–7.0 × 10−5 M in the interference of 500 μM ascorbic acid (AA) and the detection limit of 1.0 × 10−8 M were estimated for the measurement of DA in pH 7.4 phosphate buffer solutions. The value of DA current retained 98.36% of the initial response current after the modified electrode exposed to the air for one week. The interference studies showed that the modified electrode excludes effectively large excess of AA. The kinetic characteristics of the transfer of DA demonstrated that the electron propagation between DA and electrode was accelerated at MWCNT-poly(DBA) modified electrode. The work provided a valid and simple approach to selectively detect dopamine in the presence of AA in physiological environment.  相似文献   

4.
Cyclic voltammetric investigation of calcium dobesilate (CD) in aqueous acid media was carried out by using an ordered mesoporous carbon-modified pyrolytic graphite electrode (OMC/PGE). A pair of well-defined redox peaks of CD was observed at the OMC/PGE, showing its good elelctrochemial response towards CD. The anodic current is linear with CD concentration in the range of 1.0 × 10−7–1.3 × 10−3 mol L−1, with a detection limit of 4.0 × 10−8 mol L−1. Meanwhile, the proposed electrode can avoid some interference coexisting with CD, such as uric acid, serotonin, and ascorbic acid. The proposed method can be potentially applied for selective electrochemical sensing of CD in physiological condition.  相似文献   

5.
In this paper, a multiwall carbon nanotube/Nafion composite modified glassy carbon electrode (MWNT/Nafion/GCE) was used as a voltammetric sensor to determine 8-hydroxyquinoline (8-HQ) in cosmetic. This voltammetric sensor exhibited strong catalytic effect toward the oxidation of 8-HQ and caused an anodic peak at 0.97 V in HAc-NaAc buffer solution (0.2 M, pH 3.6). Under the optimized condition, the anodic peak current was linear with the concentration of 8-HQ in the range of 2 × 10−8 M–1.0 × 10−5 M. The detection limit was 9 × 10−9 M. The practical application of MWNT/Nafion/GCE was carried out for determining 8-HQ in cosmetic sample with satisfactory results. The electrode reaction mechanism was studied by cyclic voltammetry and UV–vis spectra.  相似文献   

6.
Functionalized poly N,N-dimethylaniline film was prepared by adsorption of ferrocyanide onto the polymer forming at the surface of carbon paste electrode (CPE) in aqueous solution. The electrocatalytic ability of poly N,N-dimethylaniline/ferrocyanide film modified carbon paste electrode (PDMA/FMCPE) was demonstrated by oxidation of l-cysteine. Cyclic voltammetry and chronoamperometry techniques were used to investigate this ability. In the optimum pH (6.00), the electrocatalytic ability about 480 mV and the catalytic reaction rate constant, (kh), can be seen 3.08 × 103 M−1 s−1. The catalytic oxidation peak current determined by cyclic voltammetry method was linearly dependent on the l-cysteine concentration and the linearity range obtained was 8.00 × 10−5 –2.25 × 10−3 M. Detection limit of this method was determined as 6.17 × 10−5 M (2σ). At a fixed potential under hydrodynamic conditions (stirred solution), the calibration plot was linear over the l-cysteine concentration range 7.40 × 10−6 M–1.38 × 10−4 M. The detection limit of the method was 6.38 × 10−6 M (2σ).  相似文献   

7.
This work compares the electroactivity of a conventional carbon-paste electrodes and screen-printed carbon electrodes. Potentiometric sensors responsive to sildenafil citrate (SILC) drug (the active component of Viagra) are described, characterized, compared and used for drug assessment. The proposed carbon paste electrode is fully characterized in terms of plasticizer type, response time, life span, soaking time, titrant, pH and temperature. The electrodes exhibited linear response with a Nernstian slope of 58.20 ± 1 and 58.82 ± 0.5 mV decade−1 for SILC in the concentration range from 1.0 × 10−7 to 1.0 × 10−2 and 5.30 × 10−7 to 1.0 × 10−2 mol L−1 with good reproducibility for CPE and SPE, respectively. Both CPE and SPE could be used in the pH range 3.0–5.0 and the isothermal coefficient is found to be 0.98 and 0.85 mV/°C, respectively. The limit of detection was found to be 9.0 × 10−8 and 3.5 × 10−7 mol L−1 for CPE and SPE, respectively. They were applied to potentiometric determination of SILC in pure state and pharmaceutical preparation under batch conditions. The CPE and SPE sensors display good selectivity for SILC drug over large number of inorganic cations, sugars and amino acids commonly used in drug formulations. The CPE and SPE show high selectivity for the drug under investigation. The results obtained using the fabricated CPE is compared with those obtained by SPE for spiked pharmaceutical samples.  相似文献   

8.
The functionalized carbon nanotube electrode was fabricated by electrodeposition of 1,2-naphthoquinone-4-sulfonic acid sodium (Nq) on single-wall carbon nanotube (SWNT) modified glassy carbon electrode (GCE). This electrode was characterized by scanning electron microscopy (SEM) and the results showed that Nq can rapidly and effectively be deposited on the surface of SWNT film with high stability. The electrochemical properties of functionalized SWNT/GCE with Nq (SWNT–Nq/GCE) were studied using cyclic voltammetry, double step potential chronoamperometry and differential pulse voltammetry methods. The results indicated that SWNT could improve the electrochemical behavior of Nq and greatly enhances its redox peak currents. The SWNT–Nq/GCE exhibited a pair of well-defined redox peaks. The experimental results also demonstrated that the Nq deposited species on SWNT could catalyze cysteamine oxidation and SWNT–Nq exhibited a high performance with lowering the overpotential by more than 710 mV. The effect of pH value, number of scans and Nq concentration were investigated on the electrochemical behavior of cysteamine. The selectivity of the reaction has been assessed with no interference from tyrosine, lysine, methionine, tryptophan, alanine and glutathione. The presented method has highly selectivity for voltammetric detection of cysteamine in the dynamic range from 5.0 × 10−6 M to 2.7 × 10−4 M and with a detection of limit (3σ) 3.0 × 10−6 M.  相似文献   

9.
The ion exchange of anionic polyelectrolytes (APEs) on the PVC membrane containing tridodecylmethylammonium bromide as a carrier was analyzed by monitoring elution of the bromide from and penetration of APEs into the membrane. The equilibration time for exchange by APEs was around three times longer than that by a common anion of perchlorate. Heparin at 10−4 mol L−1 and poly(vinyl sulfate) (PVS) at 10−2 mol L−1 could completely replace the bromide in the membrane, while polyacrylate (PA) at 10−2 mol L−1 could not. The chemical amount of the penetrated PVS was comparable to that of the eluted bromide, while that of PA was much larger than that of the eluted bromide and even the total amount of the carrier. PA penetrated into the organic phase within the membrane by coextraction with proton as well as by ion exchange, so as to avoid geometric restriction on multiple ion-pair formation.  相似文献   

10.
A sensitive and simplified voltammetric method is developed for the determination of trace amounts of vanadium(V) by adsorptive anodic stripping voltammetry using an acetylene black (AB) paste electrode. The method is based on the preconcentration of the V(V)–alizarin violet (AV) complex at open circuit while stirring the solution for 90 s in 0.15 mol dm−3 hexamethylenetetraamine–hydrochloric acid buffer (pH 4.4), the adsorbed complex is then oxidized, producing a response with a peak potential of 564 mV when scanning linearly from 0 to 1000 mV. For voltammetric determination of V(V), the parameters influencing the peak current have been optimized. Under the selected conditions, the peak current and concentration of V(V) accorded with linear relationship in the range of 8.0 × 10−10 mol dm−3–1.0 × 10−7 mol dm−3 (cAV = 2.0 × 10−6 mol dm−3) and 1.0 × 10−7 mol dm−3–8.0 × 10−6 mol dm−3 (cAV = 2.0 × 10−5 mol dm−3), the detection limit (three times signal to noise) was estimated to be 6.0 × 10−10 mol dm−3 for 90 s accumulation. The relative standard deviation (RSD) is 1.9% and 2.3% for V(V) concentrations of 1.0 × 10−7 mol dm−3 and 1.0 × 10−8 mol dm−3 respectively. Finally, this proposed method was successfully applied to the determination of V(V) in natural water samples.  相似文献   

11.
The electrochemical behaviors of magnolol have been studied at glassy carbon electrode using cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Moreover, its interaction with DNA was investigated in solution by electrochemical methods and ultraviolet–visible spectroscopy. The experiment results indicated that the electrochemical oxidation of magnolol was an irreversible process with one proton and one electron transfer. The electron transfer coefficient (α) was calculated to be 0.441 ± 0.001. At the scan rate from 100 mV/s to 450 mV/s, the electrode process was controlled by the adsorption step and at the range of 600–950 mV/s the electrochemical oxidation was diffusion controlled process. The corresponding electrochemical rate constant (ks) was 0.0760 ± 0.0001 s−1. Through chronocoulometry experiment, the diffusion coefficient (D) and the surface concentration (Γ) were obtained as (3.76 ± 0.01) × 10−7 cm2/s and (2.98 ± 0.01) × 10−10 mol/cm2. In addition, the interaction of magnolol and DNA was ascribed to be electrostatic interaction and the calculated association constant (β) and Hill coefficient (m) were 1.14 × 105 M−1 and 0.973. At last a sensitive and convenient electrochemical method was proposed for the determination of magnolol.  相似文献   

12.
With ordered mesoporous carbon (OMC) as the modifier, a voltammetric sensor for folic acid (FA) was constructed on a glassy carbon electrode (GCE). Due to the good characteristics of OMC, FA exhibited an enhanced electrochemical response and lower reduction potential in the neutral solution. In addition, the experimental parameters such as pH values, accumulation time and potential were optimized. Using the differential pulse voltammetry (DPV) measurement, the peak current was found to be linear with FA concentration in the range from 5.0 × 10−10 to 1.0 × 10−7 M with a lower detection limit of 6.0 × 10−11 M (S/N = 3). Also, in real samples analysis, the as-prepared sensor successfully gives satisfying results.  相似文献   

13.
Here, we report a simple and extremely effective method to modify a glassy carbon (GC) electrode with carbon nanotubes (CNTs) and [Mn(CH3COO)(CH3OH)2(pyterpy)]ClO4, (pyterpy = 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine) complex. The kinetics of the reaction between, the terpyridine manganese(II) complex, mediator and hydrazine has been characterized using cyclic voltammetry and rotating disk electrode voltammetry. The catalytic currents were proportional to the concentration of hydrazine giving rise to calibration curves characterized by two linear segments. The linear segment over the concentration range of 1.00 × 10−3–1.05 mM could be used with analytical purposes to determination of hydrazine with a detection limit of 0.50 μM and a sensitivity of 0.038 μA/μM. The heterogeneous rate constant, k′ for the oxidation of hydrazine at the surface of the modified electrode was determined by rotating disk electrode voltammetry using the Koutecky–Levich plot. The transfer coefficient (α) for electrocatalytic oxidation of hydrazine and the diffusion coefficient of this substance under the experimental conditions were also investigated. The resulting modified electrode retains its initial response for at least one month if stored dry in air.  相似文献   

14.
A comparison of the analytical performances of several enzyme biosensor designs, based on the use of different tailored gold nanoparticle-modified composite PVC/TTF-TCNQ electrodes, is discussed. The analytical characteristics of glucose calibration plots and kinetic parameters of the enzyme reaction were compared for the biosensors tested: Aucoll + GOx, GOx + Aucoll, Mixed GOx + Aucoll and PVC/TTF-TCNQ-Aucoll. The presence of this nanomaterial enhances the analytical performance with respect to the precursor biosensor without Au. The proposed biosensor can be applied in batch (response linear up to 2.0 mM, sensitivity of 45 ± 0.5 mA M−1 with a limit of detection, s/n = 3, of 6.2 × 10−6 M) and in FIA systems (linear range between 0.1 and 8 mM, sensitivity of 3.67 ± 0.3 mA M−1 with a limit of detection, s/n = 3, of 1.9 × 10−5 M).  相似文献   

15.
A novel and reliable electrochemical sensor based on PbO2-carbon nanotubes-room temperature ionic liquid (i.e., 1-butyl-3-methylimidazolium hexafluorophosphate, BMIMPF6) composite film modified glassy carbon electrode (GCE) (PbO2–MWNT–RTIL/GCE) was proposed for simultaneous and individual determination of guanine and adenine. The guanine and adenine oxidation responses were monitored by differential pulse voltammetric (DPV) measurement. Compared with the bare electrode, the PbO2–MWNT–RTIL/GCE not only significantly enhanced the oxidation peak currents of guanine and adenine, but also lowered their oxidation overpotentials, suggesting that the synergistic effect of PbO2, MWNT and RTIL could dramatically improve the determining sensitivity of guanine and adenine. The PbO2–MWNT–RTIL/GCE showed good stability, high accumulation efficiency and enhanced electrocatalytic ability for the detection of guanine and adenine. Besides, the modified electrode also exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation of 0.29 V in 0.1 M pH 7.0 phosphate buffer solution (PBS). Under the optimal conditions, the detection limit for individual determination of guanine and adenine was 6.0 × 10−9 M and 3.0 × 10−8 M (S/N = 3), respectively. The proposed method for the measurements of guanine and adenine in herring sperm DNA was successfully applied with satisfactory results.  相似文献   

16.
A functionalized carbon nanotubes paste electrode modified with cross-linked chitosan for the determination of trace amounts of cadmium(II) and mercury(II) by linear anodic stripping voltammetry is described. Under optimal experimental conditions, the peak current was linear in the Cd(II) concentration range from 5.9 × 10−8 to 1.5 × 10−6 mol L−1 with a detection limit of 9.8 × 10−9 mol L−1 and, for Hg(II) from 6.7 × 10−9 to 8.3 × 10−8 mol L−1with a detection limit of 2.4 × 10−9 mol L−1. The proposed method was successfully applied for the determination of Hg(II) in natural and industrial wastewater samples, and Cd(II) in sediments, human urine, natural, and industrial wastewater samples.  相似文献   

17.
A novel electrochemical sensor for the selective and sensitive detection of dopamine (DA) in presence of large excess of ascorbic acid (AA) and uric acid (UA) at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with biocompatible graphite oxide (GO). Very small quantity of GO in carbon paste matrix imparted selectivity through electrostatic interactions. The modifier was characterized using infrared spectroscopy and powder X-ray diffraction. Large peak separation, good sensitivity and stability allow this modified electrode to analyze DA individually and simultaneously along with AA and UA. Applying differential pulse technique, DA could be detected even in the presence of 1000 fold excess of AA and UA. A linear dynamic range of 0.07–70 μM with detection limit of 1.5 × 10−8 M was obtained for DA. None of the bulk modified electrodes reported in the literature have shown such a low detection limit at the physiological pH. The practical application of the modified electrode was demonstrated by spiking the human blood serum and cerebral fluid with dopamine and the results obtained were satisfactory.  相似文献   

18.
A stable modified glassy carbon electrode based on the poly 3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid (CDDA) film was prepared by electrochemical polymerization technique to investigate its electrochemical behavior by cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and their stability were examined. The homogeneous rate constant, ks, for the electron transfer between CDDA and glassy carbon electrode was calculated as 5.25(±0.20) × 102 cm s−1. The modified electrode showed electrocatalytic activity toward ascorbic acid (AA), dopamine (DA), and uric acid (UA) oxidation in a buffer solution (pH 4.0) with a diminution of their overpotential of about 0.12, 0.35, and 0.50 V for AA, DA, and UA, respectively. An increase could also be observed in their peak currents. The modified glassy carbon electrode was applied to the electrocatalytic oxidation of DA, AA, and UA, which resolved the overlapping of the anodic peaks of DA, AA, and UA into three well-defined voltammetric peaks in differential pulse voltammetry (DPV). This modified electrode was quite effective not only for detecting DA, AA, and UA, but also for simultaneous determination of these species in a mixture. The separation of the oxidation peak potentials for ascorbic acid–dopamine and dopamine–uric acid were about 0.16 V and 0.17 V, respectively. The final DPV peaks potential of AA, DA and UA were 0.28, 0.44, and 0.61 V, respectively. The calibration curves for DA, AA, and UA were linear for a wide range of concentrations of each species including 5.0–240 μmol L−1 AA, 5.0–280 μmol L−1 DA, and 0.1–18.0 μmol L−1 UA. Detection limits of 1.43 μmol L−1 AA, 0.29 μmol L−1 DA and 0.016 μmol L−1 UA were observed at pH 4. Interference studies showed that the modified electrode exhibits excellent selectivity toward AA, DA, and UA.  相似文献   

19.
Electrochemistry of cytochrome c (cyt c) at biomimetic phospholipid layers was studied in a phosphate buffer solution, which were formed with dilauroyl phosphatidic acid (DLPA, C12:0), dipalmitoyl phosphatidic acid (DPPA, C16:0), distearoyl phosphatidic acid (DSPA, C18:0), and palmitoyl–oleoyl phosphatidic acid (POPA, C16:0–18:1). The lipid-layers formed firstly at the air/water interface were immediately transferred onto the electrode surface using the Langmuir–Blodgett (LB) technique. The electrochemical properties of cyt c at the lipid covered electrodes depended on the orientation, number of layers of phospholipids, tail (or head) group down, and vice versa. Atomic force microscopy (AFM) images of cyt c adsorbed on the POPA monolayer (showing the head group diameter of POPA to be ca. 0.7 nm) formed on highly oriented pyrolytic graphite (HOPG) displayed uniform surface morphology of lipid layer and clumps of aggregated cyt c molecules with a minimum size corresponding to four cyt c molecules. The heterogeneous electron transfer rate constants, k0 values, of cyt c were determined to be 1.02 × 10−3, 0.98 × 10−3, and 0.67 × 10−3 cm/s for the lipid monolayer in the tail down orientation (X-type) of POPA, DLPA, and DPPA, and 0.67 × 10−3 and 0.50 × 10−3 cm/s for the head down orientation (Z-type) of POPA and DLPA monolayers, respectively.  相似文献   

20.
The nano composited film of indigotetrasulfonate (ITS) electrodeposited onto poly-l-lysine (PLL)–glutaraldehyde (GA) (ITS/PLL–GA) was modified on glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. Composited of the proposed film was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and UV–vis spectrum for the absorption at λmax at 566 nm. For the electrocatalytic reduction of dissolved oxygen, ITS/PLL–GA film modified electrodes was determined in 0.1 M acetate buffer solution (pH 5.6) by cyclic voltammetry and rotating disk electrode voltammetry. This dissolved oxygen electrochemical sensor exhibited a linear response range (from 0 to 178.4 μM, R2 = 0.9949), lowest detection limit (2.2 μM), lowest overpotential at −0.09 V, high sensitivity (906 μA mM−1) and relative standard deviation (RSD) for determining dissolved oxygen (n = 3) was 4.2%. In addition, the ITS/PLL–GA/GCE was advantageous in terms of its simple preparation, specificity, stability and the ability of regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号