首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A sensitive and simplified voltammetric method is developed for the determination of trace amounts of vanadium(V) by adsorptive anodic stripping voltammetry using an acetylene black (AB) paste electrode. The method is based on the preconcentration of the V(V)–alizarin violet (AV) complex at open circuit while stirring the solution for 90 s in 0.15 mol dm−3 hexamethylenetetraamine–hydrochloric acid buffer (pH 4.4), the adsorbed complex is then oxidized, producing a response with a peak potential of 564 mV when scanning linearly from 0 to 1000 mV. For voltammetric determination of V(V), the parameters influencing the peak current have been optimized. Under the selected conditions, the peak current and concentration of V(V) accorded with linear relationship in the range of 8.0 × 10−10 mol dm−3–1.0 × 10−7 mol dm−3 (cAV = 2.0 × 10−6 mol dm−3) and 1.0 × 10−7 mol dm−3–8.0 × 10−6 mol dm−3 (cAV = 2.0 × 10−5 mol dm−3), the detection limit (three times signal to noise) was estimated to be 6.0 × 10−10 mol dm−3 for 90 s accumulation. The relative standard deviation (RSD) is 1.9% and 2.3% for V(V) concentrations of 1.0 × 10−7 mol dm−3 and 1.0 × 10−8 mol dm−3 respectively. Finally, this proposed method was successfully applied to the determination of V(V) in natural water samples.  相似文献   

2.
A novel modified carbon-paste electrode was employed for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) with good selectivity and high sensitivity. Silver nanoparticle and carbon nanotube modified carbon-paste electrode (Ag/CNT–CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA) and ascorbic acid (AA). The oxidation overpotentials of DA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA and AA. The peak separation between DA and AA was 67 mV. The calibration curves for DA and AA were obtained in the range of 8.0 × 10−7–6.4 × 10−5 M and 3.0 × 10−5–2.0 × 10−3 M, respectively. The lowest detection limits (S/N = 3) were 3.0 × 10−7 M and 1.2 × 10−5 M for DA and AA, respectively. Method was applied to the determination of DA and AA in real samples.  相似文献   

3.
A functionalized carbon nanotubes paste electrode modified with cross-linked chitosan for the determination of trace amounts of cadmium(II) and mercury(II) by linear anodic stripping voltammetry is described. Under optimal experimental conditions, the peak current was linear in the Cd(II) concentration range from 5.9 × 10−8 to 1.5 × 10−6 mol L−1 with a detection limit of 9.8 × 10−9 mol L−1 and, for Hg(II) from 6.7 × 10−9 to 8.3 × 10−8 mol L−1with a detection limit of 2.4 × 10−9 mol L−1. The proposed method was successfully applied for the determination of Hg(II) in natural and industrial wastewater samples, and Cd(II) in sediments, human urine, natural, and industrial wastewater samples.  相似文献   

4.
Cyclic voltammetric investigation of calcium dobesilate (CD) in aqueous acid media was carried out by using an ordered mesoporous carbon-modified pyrolytic graphite electrode (OMC/PGE). A pair of well-defined redox peaks of CD was observed at the OMC/PGE, showing its good elelctrochemial response towards CD. The anodic current is linear with CD concentration in the range of 1.0 × 10−7–1.3 × 10−3 mol L−1, with a detection limit of 4.0 × 10−8 mol L−1. Meanwhile, the proposed electrode can avoid some interference coexisting with CD, such as uric acid, serotonin, and ascorbic acid. The proposed method can be potentially applied for selective electrochemical sensing of CD in physiological condition.  相似文献   

5.
The electrochemical behaviors of magnolol have been studied at glassy carbon electrode using cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Moreover, its interaction with DNA was investigated in solution by electrochemical methods and ultraviolet–visible spectroscopy. The experiment results indicated that the electrochemical oxidation of magnolol was an irreversible process with one proton and one electron transfer. The electron transfer coefficient (α) was calculated to be 0.441 ± 0.001. At the scan rate from 100 mV/s to 450 mV/s, the electrode process was controlled by the adsorption step and at the range of 600–950 mV/s the electrochemical oxidation was diffusion controlled process. The corresponding electrochemical rate constant (ks) was 0.0760 ± 0.0001 s−1. Through chronocoulometry experiment, the diffusion coefficient (D) and the surface concentration (Γ) were obtained as (3.76 ± 0.01) × 10−7 cm2/s and (2.98 ± 0.01) × 10−10 mol/cm2. In addition, the interaction of magnolol and DNA was ascribed to be electrostatic interaction and the calculated association constant (β) and Hill coefficient (m) were 1.14 × 105 M−1 and 0.973. At last a sensitive and convenient electrochemical method was proposed for the determination of magnolol.  相似文献   

6.
A new method is established for the electrochemical detection of zirconium ion (Zr(IV)) based on electrochemical impedance spectroscopy transduction method, and hydroxamated gold surface recognition system. The method successfully served for the detection of Zr(IV) with a wide dynamic range of 1.0 × 10−9 to 5.0 × 10−5 mol L−1, and a detection limit in nmol L−1 scale. Construction of the calibration curve by “one-impedance for one-concentration” method developed here helped us to save the experimental time by saving the data acquisition time by a factor of ∼20, and further, eliminating data approximation and parameter extraction times.  相似文献   

7.
Potentiometric electrodes based on the incorporation of surfactant-modified zeolite Y (SMZ) particles into poly vinyl chloride (PVC) membranes were described. The electrode characteristics were evaluated regarding the response towards perchlorate ions. PVC membranes plasticized with dioctyl phthalate and without lipophilic additives (co-exchanger) are used throughout this study. The influence of membrane composition on the electrode response was studied. The electrode exhibited a Nernstian response towards perchlorate in the concentration range of 7.9 × 10−6–8.0 × 10−2 M with a slope of 59.7 ± 0.9 mV per decade of perchlorate concentration with a working pH range of 1.7–9.5 with a fast response time of ≤10 s. The lower and upper detection limits were 4.07 × 10−7 and 0.13 M, respectively. The electrode response to perchlorate remains constant in the temperature range of 20–40 °C and in the presence of 2.5 × 10−6–1 × 10−2 M NaNO3. The selectivity coefficients for perchlorate anion as test species with respect to other anions were determined. The proposed modified zeolite-PVC electrode can be used for at least 30 days without any considerable divergence in potential. It was applied as indicator electrode in water samples with satisfactory results. The results of this study and our previous work show HDTMA plays different roles according to the zeolite type and matrix, as HDTMA-zeolite Y in a carbon paste matrix showed a good Nernstian behavior towards phosphate anion.  相似文献   

8.
Functionalized poly N,N-dimethylaniline film was prepared by adsorption of ferrocyanide onto the polymer forming at the surface of carbon paste electrode (CPE) in aqueous solution. The electrocatalytic ability of poly N,N-dimethylaniline/ferrocyanide film modified carbon paste electrode (PDMA/FMCPE) was demonstrated by oxidation of l-cysteine. Cyclic voltammetry and chronoamperometry techniques were used to investigate this ability. In the optimum pH (6.00), the electrocatalytic ability about 480 mV and the catalytic reaction rate constant, (kh), can be seen 3.08 × 103 M−1 s−1. The catalytic oxidation peak current determined by cyclic voltammetry method was linearly dependent on the l-cysteine concentration and the linearity range obtained was 8.00 × 10−5 –2.25 × 10−3 M. Detection limit of this method was determined as 6.17 × 10−5 M (2σ). At a fixed potential under hydrodynamic conditions (stirred solution), the calibration plot was linear over the l-cysteine concentration range 7.40 × 10−6 M–1.38 × 10−4 M. The detection limit of the method was 6.38 × 10−6 M (2σ).  相似文献   

9.
Voltammetric and electrochemical impedance spectroscopic (EIS) studies of generation one poly(propylene imine) (G1 PPI) dendrimer as an electroactive and catalytic nanomaterials both in solution and as an electrode modifier based on a simple one step electrodeposition method is presented. The G1 PPI exhibited a reversible one electron redox behaviour at E0′ ca 210 mV in phosphate buffer pH 7.2 with diffusion coefficient and Warburg coefficient of 7.5 × 10−10 cm2 s−1 and 8.87 × 10−4 Ω s−1/2 respectively. Cyclic voltammetric electrodeposition of a monolayer of G1 PPI on glassy carbon electrode was carried out between −100 mV and 1100 mV for 10 cycles. The nanoelectrode was electroactive in PBS at E0′ ca 220 mV. Kinetic profiles such as time constant (4.64 × 10−5 s rad−1), exchange current (1.55 × 10−4 A) and heterogeneous rate constant (4.52 × 10−3 cm s−1) obtained from EIS showed that the dendrimer layer catalysed the redox reaction of Fe2+/3+ in [Fe(CN)6]3−/4− redox probe.  相似文献   

10.
Poly(vinyl chloride) (PVC)-based membranes of silacrown end grafted carbosilane dendrimer (I) with sodium tetraphenylborate (NaTPB) as an anion inhibitor and dibutylphthalate (DBP), dioctylphthalate (DOP), dibutyl (butyl) phosphonate (DBBP) and 1-chloronaphthalene (CN) as plasticizing solvent mediators were prepared and used as Na+-selective electrodes. Optimum performance was observed with the membrane having I–PVC–NaTPB–DOP in the ratio 1:33:1:65 (w/w). The electrode works well over a wide concentration range 1.5 × 10−6–1.0 × 10−1 M with Nernstian compliance 56.0 mV/decade between pH 5.8 and 9.2 with a fast response time of about 15 s. The selectivity relative to alkali, alkaline earth and transition heavy metal ions is good. The selectivity coefficient values towards potassium ions have been calculated to be 2.3 × 10−4 by utilizing Fixed Interference Method. The proposed electrode could be used for at least 2 months without considerable alteration in its potential. The effect of nonionic surfactants Tween 20, Tween 80, Triton X 100, Span 20 and Span 60 on the potentiometric properties of the sodium selective membrane was also studied.  相似文献   

11.
A stable modified glassy carbon electrode based on the poly 3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid (CDDA) film was prepared by electrochemical polymerization technique to investigate its electrochemical behavior by cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and their stability were examined. The homogeneous rate constant, ks, for the electron transfer between CDDA and glassy carbon electrode was calculated as 5.25(±0.20) × 102 cm s−1. The modified electrode showed electrocatalytic activity toward ascorbic acid (AA), dopamine (DA), and uric acid (UA) oxidation in a buffer solution (pH 4.0) with a diminution of their overpotential of about 0.12, 0.35, and 0.50 V for AA, DA, and UA, respectively. An increase could also be observed in their peak currents. The modified glassy carbon electrode was applied to the electrocatalytic oxidation of DA, AA, and UA, which resolved the overlapping of the anodic peaks of DA, AA, and UA into three well-defined voltammetric peaks in differential pulse voltammetry (DPV). This modified electrode was quite effective not only for detecting DA, AA, and UA, but also for simultaneous determination of these species in a mixture. The separation of the oxidation peak potentials for ascorbic acid–dopamine and dopamine–uric acid were about 0.16 V and 0.17 V, respectively. The final DPV peaks potential of AA, DA and UA were 0.28, 0.44, and 0.61 V, respectively. The calibration curves for DA, AA, and UA were linear for a wide range of concentrations of each species including 5.0–240 μmol L−1 AA, 5.0–280 μmol L−1 DA, and 0.1–18.0 μmol L−1 UA. Detection limits of 1.43 μmol L−1 AA, 0.29 μmol L−1 DA and 0.016 μmol L−1 UA were observed at pH 4. Interference studies showed that the modified electrode exhibits excellent selectivity toward AA, DA, and UA.  相似文献   

12.
Nafion® 211 differs from previous versions of Nafion in that the membrane is cast from a dispersion rather than being melt-extruded. As such, the water sorption properties are different, as is the rate of increase in water content with temperature. Kinetic and mass-transport parameters for dispersion-cast Nafion® 211 were determined using solid-state electrochemistry in the temperature range 30–70 °C, 100% relative humidity, and 30 psi oxygen pressure. Exchange current densities, Tafel slopes, and transfer coefficients for ORR in Nafion® 211, are similar to those observed in Nafion® 117; mass-transport parameters are not. At 30 °C and 100% RH oxygen solubility and the diffusion coefficient is determined to be 1.16 × 10−5 mol cm−3 and 1.13 × 10−6 cm2 s−1, respectively. Oxygen permeability at 30 °C (1.28 × 10−11 mol cm−1 s−1) is lower than in Nafion® 117 (5.31 × 10−11 mol cm−1 s−1) by factor of 4, while at T > 60 °C the permeability of Nafion® 211 increases significantly to values higher than Nafion® 117, and is correlated with the increase in water content and hydration number (λ) with temperature.  相似文献   

13.
Trace chromium(VI) determination plays an important role since it is carcinogenic agent and toxic pollutant. For this purpose a direct method is developed using differential pulse polarography, DPP. When selenite was added into solutions of some ions such as copper(II), lead(II), cadmium(II), zinc(II), and chromium(VI) their DP polarographic peak decreased. This kind of interference will cause large errors in the determinations, its elimination is very important. The interference between selenite and Cr(VI) ions could be eliminated in B-R (Britton-Robbinson) buffer at pH 8.5. In this work the effect of components present in buffer has been investigated and it was found that phosphate and borate eliminated the formation of Cr–Se intermetallic compound formation. While it was possible to determine 1 × 10−5 M Cr(VI) in the presence of 100 times more selenite as (1.0 ± 0.1) × 10−5 M, in borate medium, it was possible to determine (1.0 ± 0.05) × 10−5 M in phosphate medium. In the presence of selenite detection limit (S/N = 3) was 9.0 × 10−8 M Cr(VI) by using either phosphate or borate This method was applied to Gerede river water, after oxidation all Cr(III) present into Cr(VI).  相似文献   

14.
The ion exchange of anionic polyelectrolytes (APEs) on the PVC membrane containing tridodecylmethylammonium bromide as a carrier was analyzed by monitoring elution of the bromide from and penetration of APEs into the membrane. The equilibration time for exchange by APEs was around three times longer than that by a common anion of perchlorate. Heparin at 10−4 mol L−1 and poly(vinyl sulfate) (PVS) at 10−2 mol L−1 could completely replace the bromide in the membrane, while polyacrylate (PA) at 10−2 mol L−1 could not. The chemical amount of the penetrated PVS was comparable to that of the eluted bromide, while that of PA was much larger than that of the eluted bromide and even the total amount of the carrier. PA penetrated into the organic phase within the membrane by coextraction with proton as well as by ion exchange, so as to avoid geometric restriction on multiple ion-pair formation.  相似文献   

15.
A comparison of the analytical performances of several enzyme biosensor designs, based on the use of different tailored gold nanoparticle-modified composite PVC/TTF-TCNQ electrodes, is discussed. The analytical characteristics of glucose calibration plots and kinetic parameters of the enzyme reaction were compared for the biosensors tested: Aucoll + GOx, GOx + Aucoll, Mixed GOx + Aucoll and PVC/TTF-TCNQ-Aucoll. The presence of this nanomaterial enhances the analytical performance with respect to the precursor biosensor without Au. The proposed biosensor can be applied in batch (response linear up to 2.0 mM, sensitivity of 45 ± 0.5 mA M−1 with a limit of detection, s/n = 3, of 6.2 × 10−6 M) and in FIA systems (linear range between 0.1 and 8 mM, sensitivity of 3.67 ± 0.3 mA M−1 with a limit of detection, s/n = 3, of 1.9 × 10−5 M).  相似文献   

16.
Electrochemical impedance spectroscopy (EIS) studies were performed to analyze the passive properties of tantalum and niobium oxides films potentiostatically formed in a 0.1 M KOH solution. The quantitative characterization of these passive materials was carried out through a transfer function previously developed by our research group, which is based on the point defect model (PDM) framework considering the formation of molecular hydrogen. According to the PDM prediction criteria, Ta2O5 and Nb2O5 films exhibited an inherent n-type semiconductor behavior, which was confirmed by the parameters obtained from the fit to the transfer function. The diffusion coefficients of the oxygen vacancies were 0.53 ± 0.14 × 10−16 and 2.18 ± 0.14 × 10−16 cm2 s−1, for Ta2O5 and Nb2O5, respectively. And a slight increase of the corresponding hydroxyl vacancies diffusion (2.73 ± 0.02 and 2.23 ± 0.65 × 10−16 cm2 s−1) was obtained, suggesting the favorable diffusion of these defects due to the alkaline conditions.  相似文献   

17.
The phase-boundary potential between the moderately hydrophobic ionic liquid and a low ionic strength aqueous solution is demonstrated to be stable and constant with the standard deviation of 0.4 mV down to 20 μmol kg−1 HBr, LiBr, and KBr solutions, for three ionic liquids that consist of either N-methyl-N-octylpyrrolidinium, N-heptyl-N-methylpyrrolidinium, or N-hexyl-N-methylpyrrolidinium and a common anion species, bis(pentafluoroethanesulfonyl)amide. This stability is promising for accurate measurements of pH of low ionic strength samples and reliable estimates of single ion activities in general. The phase-boundary potential deviates from the value determined by the partition of the ionic liquid in further dilute aqueous solutions. The magnitude of the deviation ranges from 3 to 11 mV at 5 μmol kg−1 MBr (M is H+, Li+, or K+). The solubility of these ionic liquids in water is 0.2 mmol dm−3 at most at 25 °C, which is another advantage of ionic liquid salt bridge in electroanalytical chemistry.  相似文献   

18.
We report in this work, for the first time, the results obtained from both Pitzer, Pitzer–Simonson–Clegg (PSC) and an extended PSC ion-interaction approaches for modeling the non-ideal behavior of HCl electrolyte in the mixed ethanol + water solvent systems. In this context, a review of literature shows that the use of an exact and complete form of PSC ion-interaction approach for modeling electrolyte in mixed solvent systems was only limited to the works of two research groups. In this work, the modeling purposes were achieved based on the experimental potentiometric data of a galvanic cell containing a pH glass membrane and Ag/AgCl electrodes. The measurements were achieved over the HCl electrolyte molality ranging from 0.02 up to about 5 mol kg−1 in mixed ethanol (x%) + water (100 − x%) solvent with different solvent mass fractions percent (x% = 10%, 20%, 30%, 40% and 50%), at 298.15 ± 0.05 K.  相似文献   

19.
In this study, the electrochemical behavior of thianthrene (TH) and its application toward the electrocatalytic oxidation of guanosine (Gs) and DNA in a non-aqueous solution are investigated using different voltammetric techniques. Guanosine and DNA are adsorbed on the glassy carbon electrode (GCE) by applying a positive potential to the GCE. The rate constant of catalytic reaction between DNA and TH and also between Gs and TH were evaluated using chronoamperometry which gave rate constants of 2.41 × 106 cm3 mol−1 s−1 and 2.68 (±0.19) × 106 cm3 mol−1 s−1, respectively. Also the diffusion coefficient of TH was obtained using hydrodynamic voltammetry (3.17 × 10−5 cm2 s−1). Furthermore, using hydrodynamic voltammetry, a one-electron mechanism for oxidation of Gs is suggested.  相似文献   

20.
Molecularly Imprinted poly[tetra(o-aminophenyl)porphyrin] is presented as an electrosynthesized coating for the development of selective microsensors. A carbon fiber microelectrode has been modified with this covering by cyclic voltammetry in the potential range from −0.15 to 1.0 V (scan rate 50 mV s−1) obtaining a microsensor able to recognize the template molecule. To carry out this study dopamine was chosen as model to work with, since this molecule presents electroactivity as it can be oxidized on carbon electrodes. The MIP sensor presented a linear response to the dopamine concentration in the range from 10−6 to 10−4 M with good repeatability (RSD 6.22%). The selectivity shown by the microsensor was found to be excellent as it was able to differentiate between different catecholamines. A method has been developed for the determination of dopamine in brain tissue samples using the MIP microsensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号