首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B Zheng  Y H Chang  W F Good  D Gur 《Medical physics》2001,28(11):2302-2308
The authors investigated a new method to optimize artificial neural networks (ANNs) with adaptive filtering used in computer-assisted detection schemes in digitized mammograms and to assess performance changes when averaging classification scores from three sets of optimized schemes. Two independent training and testing image databases involving 978 and 830 digitized mammograms, respectively, were used in this study. In the training data set, initial filtering and subtraction resulted in the identification of 592 mass regions and 3790 suspicious, but actually negative regions. These regions (including both true-positive and negative regions) were segmented into three subsets three times based on the calculation of the values of three features as segmentation indices. The indices were "mass" size multiplied by their digital value contrast, conspicuity, and circularity. Nine ANN-based classifiers were separately optimized using a genetic algorithm for each subset of regions. Each region was assigned three classification scores after applying the three adaptive ANNs. The performance gain of the CAD scheme after averaging the three scores for each suspicious region was tested using an independent data set and a ROC methodology. The experimental results showed that the areas under ROC curves (Az) for the testing database using three sets of optimized ANNs individually were 0.84+/-0.01, 0.83+/-0.01, and 0.84+/-0.01, respectively. The between-index correlations of three A values were 0.013, -0.007, and 0.086. Similar to averaging diagnostic ratings from independent observers, by averaging three ANN-generated scores for each testing region, the performance of the CAD scheme was significantly improved (p<0.001) with Az value of 0.95+/-0.01.  相似文献   

2.
A method is presented to improve computer aided detection (CAD) results for masses in mammograms by fusing information obtained from two views of the same breast. It is based on a previously developed approach to link potentially suspicious regions in mediolateral oblique (MLO) and craniocaudal (CC) views. Using correspondence between regions, we extended our CAD scheme by building a cascaded multiple-classifier system, in which the last stage computes suspiciousness of an initially detected region conditional on the existence and similarity of a linked candidate region in the other view. We compared the two-view detection system with the single-view detection method using free-response receiver operating characteristic (FROC) analysis and cross validation. The dataset used in the evaluation consisted of 948 four-view mammograms, including 412 cancer cases with a mass, architectural distortion, or asymmetry. A statistically significant improvement was found in the lesion based detection performance. At a false positive (FP) rate of 0.1 FP/image, the lesion sensitivity improved from 56% to 61%. Case based sensitivity did not improve.  相似文献   

3.
We are developing an automated stereo spot mammography technique for improved imaging of suspicious dense regions within digital mammograms. The technique entails the acquisition of a full-field digital mammogram, automated detection of a suspicious dense region within that mammogram by a computer aided detection (CAD) program, and acquisition of a stereo pair of images with automated collimation to the suspicious region. The latter stereo spot image is obtained within seconds of the original full-field mammogram, without releasing the compression paddle. The spot image is viewed on a stereo video display. A critical element of this technique is the automated detection of suspicious regions for spot imaging. We performed an observer study to compare the suspicious regions selected by radiologists with those selected by a CAD program developed at the University of Michigan. True regions of interest (TROIs) were separately determined by one of the radiologists who reviewed the original mammograms, biopsy images, and histology results. We compared the radiologist and computer-selected regions of interest (ROIs) to the TROIs. Both the radiologists and the computer were allowed to select up to 3 regions in each of 200 images (mixture of 100 CC and 100 MLO views). We computed overlap indices (the overlap index is defined as the ratio of the area of intersection to the area of interest) to quantify the agreement between the selected regions in each image. The averages of the largest overlap indices per image for the 5 radiologist-to-computer comparisons were directly related to the average number of regions per image traced by the radiologists (about 50% for 1 region/image, 84% for 2 regions/image and 96% for 3 regions/image). The average of the overlap indices with all of the TROIs was 73% for CAD and 76.8% +/- 10.0% for the radiologists. This study indicates that the CAD determined ROIs could potentially be useful for a screening technique that includes stereo spot mammography imaging.  相似文献   

4.
Breast cancer screening is central to early breast cancer detection. Identifying and monitoring process measures for screening is a focus of the National Cancer Institute’s Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) initiative, which requires participating centers to report structured data across the cancer screening continuum. We evaluate the accuracy of automated information extraction of imaging findings from radiology reports, which are available as unstructured text. We present prevalence estimates of imaging findings for breast imaging received by women who obtained care in a primary care network participating in PROSPR (n = 139,953 radiology reports) and compared automatically extracted data elements to a “gold standard” based on manual review for a validation sample of 941 randomly selected radiology reports, including mammograms, digital breast tomosynthesis, ultrasound, and magnetic resonance imaging (MRI). The prevalence of imaging findings vary by data element and modality (e.g., suspicious calcification noted in 2.6 % of screening mammograms, 12.1 % of diagnostic mammograms, and 9.4 % of tomosynthesis exams). In the validation sample, the accuracy of identifying imaging findings, including suspicious calcifications, masses, and architectural distortion (on mammogram and tomosynthesis); masses, cysts, non-mass enhancement, and enhancing foci (on MRI); and masses and cysts (on ultrasound), range from 0.8 to1.0 for recall, precision, and F-measure. Information extraction tools can be used for accurate documentation of imaging findings as structured data elements from text reports for a variety of breast imaging modalities. These data can be used to populate screening registries to help elucidate more effective breast cancer screening processes.  相似文献   

5.
A new restoration methodology is proposed to enhance mammographic images through the improvement of contrast features and the simultaneous suppression of noise. Denoising is performed in the first step using the Anscombe transformation to convert the signal-dependent quantum noise into an approximately signal-independent Gaussian additive noise. In the Anscombe domain, noise is filtered through an adaptive Wiener filter, whose parameters are obtained by considering local image statistics. In the second step, a filter based on the modulation transfer function of the imaging system in the whole radiation field is applied for image enhancement. This methodology can be used as a preprocessing module for computer-aided detection (CAD) systems to improve the performance of breast cancer screening. A preliminary assessment of the restoration algorithm was performed using synthetic images with different levels of quantum noise. Afterward, we evaluated the effect of the preprocessing on the performance of a previously developed CAD system for clustered microcalcification detection in mammographic images. The results from the synthetic images showed an increase of up to 11.5 dB (p = 0.002) in the peak signal-to-noise ratio. Moreover, the mean structural similarity index increased up to 8.3 % (p < 0.001). Regarding CAD performance, the results suggested that the preprocessing increased the detectability of microcalcifications in mammographic images without increasing the false-positive rates. Receiver operating characteristic analysis revealed an average increase of 14.1 % (p = 0.01) in overall CAD performance when restored image sets were used.  相似文献   

6.
The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrieval precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.  相似文献   

7.
The purpose of this work was to develop and evaluate a computer-aided detection (CAD) scheme for the improvement of mass identification on digitized mammograms using a knowledge-based approach. Three hundred pathologically verified masses and 300 negative, but suspicious, regions, as initially identified by a rule-based CAD scheme, were randomly selected from a large clinical database for development purposes. In addition, 500 different positive and 500 negative regions were used to test the scheme. This suspicious region pruning scheme includes a learning process to establish a knowledge base that is then used to determine whether a previously identified suspicious region is likely to depict a true mass. This is accomplished by quantitatively characterizing the set of known masses, measuring "similarity" between a suspicious region and a "known" mass, then deriving a composite "likelihood" measure based on all "known" masses to determine the state of the suspicious region. To assess the performance of this method, receiver-operating characteristic (ROC) analyses were employed. Using a leave-one-out validation method with the development set of 600 regions, the knowledge-based CAD scheme achieved an area under the ROC curve of 0.83. Fifty-one percent of the previously identified false-positive regions were eliminated, while maintaining 90% sensitivity. During testing of the 1,000 independent regions, an area under the ROC curve as high as 0.80 was achieved. Knowledge-based approaches can yield a significant reduction in false-positive detections while maintaining reasonable sensitivity. This approach has the potential of improving the performance of other rule-based CAD schemes.  相似文献   

8.
Content-based image retrieval approach was used in our computer-aided detection (CAD) schemes for breast cancer detection with mammography. In this study, we assessed CAD performance and reliability using a reference database including 1500 positive (breast mass) regions of interest (ROIs) and1500 normal ROIs. To test the relationship between CAD performance and the similarity level between the queried ROI and the retrieved ROIs, we applied a set of similarity thresholds to the retrieved similar ROIs selected by the CADschemes for all queried suspicious regions, and used only the ROIs that were above the threshold for assessing CAD performance at each threshold level. Using the leave-one-out testing method, we computed areas under receiver operating characteristic (ROC) curves (A Z ) to assess CAD performance. The experimental results showed that as threshold increase, (1) less true positive ROIs can be referenced in the database than normal ROIs and (2) the A Z value was monotonically increased from 0.854±0.004 to 0.932±0.016. This study suggests that (1) in order to more accurately detect and diagnose subtle masses, a large and diverse database is required, and (2) assessing the reliability of the decision scores based on the similarity measurement is important in application of the CBIR-based CAD schemes when the limited database is used.  相似文献   

9.
Zheng B  Gur D  Good WF  Hardesty LA 《Medical physics》2004,31(11):2964-2972
The purpose of this study is to develop a new method for assessment of the reproducibility of computer-aided detection (CAD) schemes for digitized mammograms and to evaluate the possibility of using the implemented approach for improving CAD performance. Two thousand digitized mammograms (representing 500 cases) with 300 depicted verified masses were selected in the study. Series of images were generated for each digitized image by resampling after a series of slight image rotations. A CAD scheme developed in our laboratory was applied to all images to detect suspicious mass regions. We evaluated the reproducibility of the scheme using the detection sensitivity and false-positive rates for the original and resampled images. We also explored the possibility of improving CAD performance using three methods of combining results from the original and resampled images, including simple grouping, averaging output scores, and averaging output scores after grouping. The CAD scheme generated a detection score (from 0 to 1) for each identified suspicious region. A region with a detection score >0.5 was considered as positive. The CAD scheme detected 238 masses (79.3% case-based sensitivity) and identified 1093 false-positive regions (average 0.55 per image) in the original image dataset. In eleven repeated tests using original and ten sets of rotated and resampled images, the scheme detected a maximum of 271 masses and identified as many as 2359 false-positive regions. Two hundred and eighteen masses (80.4%) and 618 false-positive regions (26.2%) were detected in all 11 sets of images. Combining detection results improved reproducibility and the overall CAD performance. In the range of an average false-positive detection rate between 0.5 and 1 per image, the sensitivity of the scheme could be increased approximately 5% after averaging the scores of the regions detected in at least four images. At low false-positive rate (e.g., < or =average 0.3 per image), the grouping method alone could increase CAD sensitivity by 7%. The study demonstrated that reproducibility of a CAD scheme can be tested using a set of slightly rotated and resampled images. Because the reproducibility of true-positive detections is generally higher than that of false-positive detections, combining detection results generated from subsets of rotated and resampled images could improve both reproducibility and overall performance of CAD schemes.  相似文献   

10.
Computer-aided diagnosis (CAD) systems are software programs that use algorithms to find patterns associated with breast cancer on breast magnetic resonance imaging (MRI). The most commonly used CAD systems in the USA are CADstream (CS) (Merge Healthcare Inc., Chicago, IL) and DynaCAD for Breast (DC) (Invivo, Gainesville, FL). Our primary objective in this study was to compare the CS and DC breast MRI CAD systems for diagnostic accuracy and postprocessed image quality. Our secondary objective was to compare the evaluation times of radiologists using each system. Three radiologists evaluated 30 biopsy-proven malignant lesions and 29 benign lesions on CS and DC and rated the lesions’ malignancy status using the Breast Imaging Reporting and Data System. Image quality was ranked on a 0–5 scale, and mean reading times were also recorded. CS detected 70 % of the malignant and 32 % of the benign lesions while DC detected 81 % of the malignant lesions and 34 % of the benign lesions. Analysis of the area under the receiver operating characteristic curve revealed that the difference in diagnostic performance was not statistically significant. On image quality scores, CS had significantly higher volume rendering (VR) (p < 0.0001) and motion correction (MC) scores (p < 0.0001). There were no statistically significant differences in the remaining image quality scores. Differences in evaluation times between DC and CS were also not statistically significant. We conclude that both CS and DC perform similarly in aiding detection of breast cancer on MRI. MRI CAD selection will likely be based on other factors, such as user interface and image quality preferences, including MC and VR.  相似文献   

11.
Marker-Controlled Watershed for Lesion Segmentation in Mammograms   总被引:1,自引:0,他引:1  
Lesion segmentation, which is a critical step in computer-aided diagnosis system, is a challenging task as lesion boundaries are usually obscured, irregular, and low contrast. In this paper, an accurate and robust algorithm for the automatic segmentation of breast lesions in mammograms is proposed. The traditional watershed transformation is applied to the smoothed (by the morphological reconstruction) morphological gradient image to obtain the lesion boundary in the belt between the internal and external markers. To automatically determine the internal and external markers, the rough region of the lesion is identified by a template matching and a thresholding method. Then, the internal marker is determined by performing a distance transform and the external marker by morphological dilation. The proposed algorithm is quantitatively compared to the dynamic programming boundary tracing method and the plane fitting and dynamic programming method on a set of 363 lesions (size range, 5–42 mm in diameter; mean, 15 mm), using the area overlap metric (AOM), Hausdorff distance (HD), and average minimum Euclidean distance (AMED). The mean ± SD of the values of AOM, HD, and AMED for our method were respectively 0.72 ± 0.13, 5.69 ± 2.85 mm, and 1.76 ± 1.04 mm, which is a better performance than two other proposed segmentation methods. The results also confirm the potential of the proposed algorithm to allow reliable segmentation and quantification of breast lesion in mammograms.  相似文献   

12.
We are developing a computer-aided detection (CAD) system for breast masses on full field digital mammographic (FFDM) images. To develop a CAD system that is independent of the FFDM manufacturer's proprietary preprocessing methods, we used the raw FFDM image as input and developed a multiresolution preprocessing scheme for image enhancement. A two-stage prescreening method that combines gradient field analysis with gray level information was developed to identify mass candidates on the processed images. The suspicious structure in each identified region was extracted by clustering-based region growing. Morphological and spatial gray-level dependence texture features were extracted for each suspicious object. Stepwise linear discriminant analysis (LDA) with simplex optimization was used to select the most useful features. Finally, rule-based and LDA classifiers were designed to differentiate masses from normal tissues. Two data sets were collected: a mass data set containing 110 cases of two-view mammograms with a total of 220 images, and a no-mass data set containing 90 cases of two-view mammograms with a total of 180 images. All cases were acquired with a GE Senographe 2000D FFDM system. The true locations of the masses were identified by an experienced radiologist. Free-response receiver operating characteristic analysis was used to evaluate the performance of the CAD system. It was found that our CAD system achieved a case-based sensitivity of 70%, 80%, and 90% at 0.72, 1.08, and 1.82 false positive (FP) marks/image on the mass data set. The FP rates on the no-mass data set were 0.85, 1.31, and 2.14 FP marks/image, respectively, at the corresponding sensitivities. This study demonstrated the usefulness of our CAD techniques for automated detection of masses on FFDM images.  相似文献   

13.
With the implementation of the PACS in the hospital, there is an increasing demand from the clinicians for immediate access and display of radiological images. Recently, our hospital has installed the first wireless local area network (WLAN)-based direct digital radiography (DDR) portable radiography system. The DDR portable radiography system allows wireless retrieval of modality worklist and wireless transmission of portable X-ray image on the console to the Picture Archiving and Communication System (PACS), via WLAN connection of wireless fidelity (Wi-Fi). The aim of this study was to analyze the workflow and performance between the WLAN-based DDR portable radiography system and the old practice using conventional portable X-ray machine with computed radiography (CR) system. A total of 190 portable chest X-ray examinations were evaluated and timed, using the conventional portable X-ray machine with CR from March to April of 2012 and using the new DDR portable radiography system on December of 2012 (n = 97 for old system and n = 93 for DDR portable system). The time interval of image becoming available to the PACS using the WLAN-based DDR portable radiography system was significantly shorter than that of the old practice using the conventional portable X-ray machine with CR (6.8 ± 2.6 min for DDR portable system; 23 ± 10.2 min for old system; p < 0.0001), with the efficiency improved by 70 %. The implementation of the WLAN-based DDR portable radiography system can enhance the workflow of portable radiography by reduction of procedural steps.  相似文献   

14.
This paper describes part of content-based image retrieval (CBIR) system that has been developed for mammograms. Details are presented of methods implemented to derive measures of similarity based upon structural characteristics and distributions of density of the fibroglandular tissue, as well as the anatomical size and shape of the breast region as seen on the mammogram. Well-known features related to shape, size, and texture (statistics of the gray-level histogram, Haralick’s texture features, and moment-based features) were applied, as well as less-explored features based in the Radon domain and granulometric measures. The Kohonen self-organizing map (SOM) neural network was used to perform the retrieval operation. Performance evaluation was done using precision and recall curves obtained from comparison between the query and retrieved images. The proposed methodology was tested with 1,080 mammograms, including craniocaudal and mediolateral-oblique views. Precision rates obtained are in the range from 79% to 83% considering the total image set. Considering the first 50% of the retrieved mages, the precision rates are in the range from 78% to 83%; the rates are in the range from 79% to 86% considering the first 25% of the retrieved images. Results obtained indicate the potential of the implemented methodology to serve as a part of a CBIR system for mammography.  相似文献   

15.
In previous research, we have developed a computer-aided detection (CAD) system designed to detect masses in mammograms. The previous version of our system employed a simple but imprecise method to localize the masses. In this research, we present a more robust segmentation routine for use with mammographic masses. Our hypothesis is that by more accurately describing the morphology of the masses, we can improve the CAD system's ability to distinguish masses from other mammographic structures. To test this hypothesis, we incorporated the new segmentation routine into our CAD system and examined the change in performance. The developed iterative, linear segmentation routine is a gray level-based procedure. Using the identified regions from the previous CAD system as the initial seeds, the new segmentation algorithm refines the suspicious mass borders by making estimates of the interior and exterior pixels. These estimates are then passed to a linear discriminant, which determines the optimal threshold between the interior and exterior pixels. After applying the threshold and identifying the object's outline, two constraints on the border are applied to reduce the influence of background noise. After the border is constrained, the process repeats until a stopping criterion is reached. The segmentation routine was tested on a study database of 183 mammographic images extracted from the Digital Database for Screening Mammography. Eighty-three of the images contained 50 malignant and 50 benign masses; 100 images contained no masses. The previously developed CAD system was used to locate a set of suspicious regions of interest (ROIs) within the images. To assess the performance of the segmentation algorithm, a set of 20 features was measured from the suspicious regions before and after the application of the developed segmentation routine. Receiver operating characteristic (ROC) analysis was employed on the ROIs to examine the discriminatory capabilities of each individual feature before and after the segmentation routine. A statistically significant performance increase was found in many of the individual features, particularly those describing the mass borders. To examine how the incorporation of the segmentation routine affected the performance of the overall CAD system, free-response ROC (FROC) analysis was employed. When considering only malignant masses, the FROC performance of the system with the segmentation routine appeared better than the previous system. When detecting 90% of the malignant masses, the previous system achieved 4.9 false positives per image (FPpI) compared to the post-segmentation system's 4.2 FPpI. At 80% sensitivity, the respective FPpI were 3.5 and 1.6.  相似文献   

16.
Radiology report errors occur for many reasons including the use of pre-filled report templates, wrong-word substitution, nonsensical phrases, and missing words. Reports may also contain clinical errors that are not specific to the speech recognition including wrong laterality and gender-specific discrepancies. Our goal was to create a custom algorithm to detect potential gender and laterality mismatch errors and to notify the interpreting radiologists for rapid correction. A JavaScript algorithm was devised to flag gender and laterality mismatch errors by searching the text of the report for keywords and comparing them to parameters within the study’s HL7 metadata (i.e., procedure type, patient sex). The error detection algorithm was retrospectively applied to 82,353 reports 4 months prior to its development and then prospectively to 309,304 reports 15 months after implementation. Flagged reports were reviewed individually by two radiologists for a true gender or laterality error and to determine if the errors were ultimately corrected. There was significant improvement in the number of flagged reports (pre, 198/82,353 [0.24 %]; post, 628/309,304 [0.20 %]; P = 0.04) and reports containing confirmed gender or laterality errors (pre, 116/82,353 [0.014 %]; post, 285/309,304 [0.09 %]; P < 0.0001) after implementing our error notification system. The number of flagged reports containing an error that were ultimately corrected improved dramatically after implementing the notification system (pre, 17/116 [15 %]; post, 239/285 [84 %]; P < 0.0001). We developed a successful automated tool for detecting and notifying radiologists of potential gender and laterality errors, allowing for rapid report correction and reducing the overall rate of report errors.  相似文献   

17.
The impact of image pattern recognition on accessing large databases of medical images has recently been explored, and content-based image retrieval (CBIR) in medical applications (IRMA) is researched. At the present, however, the impact of image retrieval on diagnosis is limited, and practical applications are scarce. One reason is the lack of suitable mechanisms for query refinement, in particular, the ability to (1) restore previous session states, (2) combine individual queries by Boolean operators, and (3) provide continuous-valued query refinement. This paper presents a powerful user interface for CBIR that provides all three mechanisms for extended query refinement. The various mechanisms of man–machine interaction during a retrieval session are grouped into four classes: (1) output modules, (2) parameter modules, (3) transaction modules, and (4) process modules, all of which are controlled by a detailed query logging. The query logging is linked to a relational database. Nested loops for interaction provide a maximum of flexibility within a minimum of complexity, as the entire data flow is still controlled within a single Web page. Our approach is implemented to support various modalities, orientations, and body regions using global features that model gray scale, texture, structure, and global shape characteristics. The resulting extended query refinement has a significant impact for medical CBIR applications.  相似文献   

18.
The aim of this work is to investigate how radiologist expertise and image appearance may have an impact on inter-reader variability of mammographic density (MD) identification. Seventeen radiologists, divided into three expertise groups, were asked to manually segment the areas they consider to be MD in 40 clinical images. The variation in identification of MD for each image was quantified by finding the range of segmentation areas. The impact of radiologist expertise and image appearance on this variation was explored. The range of areas chosen by participating radiologists varied from 7 to 73 % across the 40 images, with a mean range of 35 ± 13 %. Participants with high expertise were more likely to choose similar areas to one another, compared to participants with medium and low expertise levels (mean range were 19 ± 10 %, 29 ± 13 % and 25 ± 14 %, respectively, p < 0.0001). There was a significantly higher average grey level for the area segmented by all radiologists as MD compared to the area of variation, with mean grey level value for 8-bit images being 146 ± 19 vs. 99 ± 14, respectively. MD segmentation borders were consistent in areas where there was a sharp intensity change within a short distance. In conclusion, radiologists with high expertise tend to have a higher agreement when identifying MD. Tissues which have a lower contrast and a less visually sharp gradient change at the interface between high density tissue and adipose background lead to inter-reader variation in choosing mammographic density.  相似文献   

19.
The objective of this study is to assess the impact on nodule detection and efficiency using a computer-aided detection (CAD) device seamlessly integrated into a commercially available picture archiving and communication system (PACS). Forty-eight consecutive low-dose thoracic computed tomography studies were retrospectively included from an ongoing multi-institutional screening study. CAD results were sent to PACS as a separate image series for each study. Five fellowship-trained thoracic radiologists interpreted each case first on contiguous 5 mm sections, then evaluated the CAD output series (with CAD marks on corresponding axial sections). The standard of reference was based on three-reader agreement with expert adjudication. The time to interpret CAD marking was automatically recorded. A total of 134 true-positive nodules, measuring 3 mm and larger were included in our study; with 85 ≥ 4 and 50 ≥ 5 mm in size. Readers detection improved significantly in each size category when using CAD, respectively, from 44 to 57 % for ≥3 mm, 48 to 61 % for ≥4 mm, and 44 to 60 % for ≥5 mm. CAD stand-alone sensitivity was 65, 68, and 66 % for nodules ≥3, ≥4, and ≥5 mm, respectively, with CAD significantly increasing the false positives for two readers only. The average time to interpret and annotate a CAD mark was 15.1 s, after localizing it in the original image series. The integration of CAD into PACS increases reader sensitivity with minimal impact on interpretation time and supports such implementation into daily clinical practice.  相似文献   

20.
Microcalcification clusters in mammograms are an important early sign of breast cancer.The enhancement of microcalcifications in mammograms is one of the most important preprocessing techniques for the extraction of cluster microcalcifications.In this paper,we present a novel method for the enhancement of microcalcifications.Firstly,the initial microcalcification edges were extracted by using kirsch edge operator,and the discontinouse edges were linked by employing fractal technique.Then,the continuous closed edges of microcalcifications were filled by using seed filling algorithm.The pixel values of the filled region were replaced by the corresponding pixel values in the original image.Finally,the enhancement of microcalcifications in mammograms was achieved by adding the filled image to the original image.We evaluated the performance of our algorithm by using 50 regions of interesting (ROIs) with microcalcification clusters from DDSM database.The experiment results demonstrate that our CAD system can give better enhancement effect compared with other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号