首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Novel vistas of calcium-mediated signalling in the thalamus   总被引:5,自引:3,他引:5  
Traditionally, the role of calcium ions (Ca2+) in thalamic neurons has been viewed as that of electrical charge carriers. Recent experimental findings in thalamic cells have only begun to unravel a highly complex Ca2+ signalling network that exploits extra- and intracellular Ca2+ sources. In thalamocortical relay neurons, interactions between T-type Ca2+ channel activation, Ca2+-dependent regulation of adenylyl cyclase activity and the hyperpolarization-activated cation current (Ih) regulate oscillatory burst firing during periods of sleep and generalized epilepsy, while a functional triad between Ca2+ influx through high-voltage-activated (most likely L-type) Ca2+ channels, Ca2+-induced Ca2+ release via ryanodine receptors (RyRs) and a repolarizing mechanism (possibly via K+ channels of the BKCa type) supports tonic spike firing as required during wakefulness. The mechanisms seem to be located mostly at dendritic and somatic sites, respectively. One functional compartment involving local GABAergic interneurons in certain thalamic relay nuclei is the glomerulus, in which the dendritic release of GABA is regulated by Ca2+ influx via canonical transient receptor potential channels (TRPC), thereby presumably enabling transmitters of extrathalamic input systems that are coupled to phospholipase C (PLC)-activating receptors to control feed-forward inhibition in the thalamus. Functional interplay between T-type Ca2+ channels in dendrites and the A-type K+ current controls burst firing, contributing to the range of oscillatory activity observed in these interneurons. GABAergic neurons in the reticular thalamic (RT) nucleus recruit a specific set of Ca2+-dependent mechanisms for the generation of rhythmic burst firing, of which a particular T-type Ca2+ channel in the dendritic membrane, the Ca2+-dependent activation of non-specific cation channels (ICAN) and of K+ channels (SKCa type) are key players. Glial Ca2+ signalling in the thalamus appears to be a basic mechanism of the dynamic and integrated exchange of information between glial cells and neurons. The conclusion from these observations is that a localized calcium signalling network exists in all neuronal and probably also glial cell types in the thalamus and that this network is dedicated to the precise regulation of the functional mode of the thalamus during various behavioural states.  相似文献   

2.
Voltage-activated calcium channels in thalamic neurons are considered important elements in the generation of thalamocortical burst firing during periods of electroencephalographic synchronization. A potent counterpart of calcium-mediated depolarization may reside in the activation of calcium-dependent potassium conductances. In the present study, thalamocortical relay cells that were acutely dissociated from the rat ventrobasal thalamic complex (VB) were studied using whole-cell patch-clamp techniques. The calcium-dependent potassium-current (IK(Ca)) was evident as a slowly activating component of outward current sensitive to the calcium ions (Ca2+)-channel blocker methoxyverapamil (10 μM) and to substitution of external calcium by manganese. The IK(Ca) was blocked by tetraethylammonium chloride (1 mM) and iberiotoxin (100 nM), but not apamin (1 μM). In addition, isolated VB neurons were immunopositive to anti-α(913–926) antibody, a sequence-directed antibody to the α-subunit of “big” Ca2+-dependent K+-channel (BKCa) channels. Activators of the adenylyl cyclase cyclic adenosine monophosphate (cAMP) system, such as forskolin (20 μM), dibutyryl-cAMP (10 mM) and 3-isobutyl-1-methylxanthine (500 μM), selectively and reversibly suppressed IK(Ca). These results suggest that a rise in intracellular cAMP level leads to a decrease in a calcium-dependent potassium conductance presumably mediated via BKCa type channels, thereby providing an additional mechanism by which neurotransmitter systems are able to control electrogenic activity in thalamocortical neurons and circuits during various states of electroencephalographic synchronization and de-synchronization.  相似文献   

3.
In the cardiovascular system, Ca2+-activated K+-channels (KCa) are considered crucial mediators in the control of vascular tone and blood pressure by modulating the membrane potential and shaping Ca2+-dependent contraction. Vascular smooth muscle cells express the BKCa channel which fine-tunes contractility by providing a negative feedback on Ca2+-elevations. BKCa channel's ion-conducting α-subunit is encoded by the KCa1.1 gene, and the accessory and Ca2+-sensitivity modulating β1-subunit is encoded by the KCNMB1 gene. Vascular endothelial cells express the calmodulin-gated KCa channels IKCa (encoded by the KCa3.1 gene) and SKCa (encoded by the KCa2.3 gene). These two channels mediate endothelial hyperpolarization and initiate the endothelium-derived hyperpolarizing factor-dilator response. Considering these essential roles of KCa in arterial function, mutations in KCa genes have been suspected to contribute to cardiovascular disease in humans. So far, DNA sequence analysis in the population and patient cohorts has identified single-nucleotide polymorphisms (SNPs) in the BKCa β1-subunit gene as well as in the α-subunit gene (KCa1.1). Some of these SNPs produce amino acid exchanges and evoke alterations of channel functions (“gain-of-function” as well as “loss-of-function”). Moreover, the epidemiological studies showed that the presence of the E65K polymorphism in, e.g., BKCa β1-subunit gene (producing a “gain-of-function”) lowers the prevalence for severe hypertension and myocardial infarction. Other SNPs in the BKCa α-subunit gene and also in the KCa3.1 gene expressed in the endothelium have been suggested to increase the risk of cardiovascular disease. These findings from sequence analysis of human KCa genes, and epidemiological studies thus provide evidence that genetic variations and mutations in KCa channel genes contribute to human cardiovascular disease.  相似文献   

4.
Intracellular Ca2+ and Ca2+-permeable ion channels are important in regulating the firing activity and pattern of midbrain dopamine neurons, but the role of Ca2+-permeable nonselective cation channels (NSCCs) on spontaneous firing activity is unclear. Therefore, we investigated how Ca2+-permeable NSCCs modulate spontaneous firing activity and cytosolic Ca2+ concentration ([Ca2+]c) in acutely isolated midbrain dopamine neurons of the rat. Applications of voltage-dependent Ca2+ channels antagonists failed to abolish spontaneous firing activity completely, but they decreased firing rate and [Ca2+]c. However, a blockade of NSCCs by 2-APB or SKF96365 more potently suppressed spontaneous firings with a depolarization of membrane potential and strong decreases in basal [Ca2+]c levels. The depolarization of membrane potentials was attenuated by intracellular dialysis with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). NSCCs blockers inhibited oscillatory potentials and decreased basal [Ca2+]c in the presence of tetrodotoxin. Apamin, a small-conductance Ca2+-activated K+ channel inhibitor, depolarized membrane potentials and enhanced firing rates. From these data, we conclude that NSCCs not only make up the tonic Ca2+ entry pathways to uphold basal [Ca2+]c levels but also contribute to generation of spontaneous firings, thereby regulating spontaneous firing activities of the midbrain dopamine neurons.  相似文献   

5.
Ca2+ signaling and neurotransmission modulate touch-evoked responses in Merkel cell–neurite complexes. To identify mechanisms governing these processes, we analyzed voltage-activated ion channels and Ca2+ signaling in purified Merkel cells. Merkel cells in the intact skin were specifically labeled by antibodies against voltage-activated Ca2+ channels (CaV2.1) and voltage- and Ca2+-activated K+ (BKCa) channels. Voltage-clamp recordings revealed small Ca2+ currents, which produced Ca2+ transients that were amplified sevenfold by Ca2+-induced Ca2+ release. Merkel cells’ voltage-activated K+ currents were carried predominantly by BKCa channels with inactivating and non-inactivating components. Thus, Merkel cells, like hair cells, have functionally diverse BKCa channels. Finally, blocking K+ channels increased response magnitude and dramatically shortened Ca2+ transients evoked by mechanical stimulation. Together, these results demonstrate that Ca2+ signaling in Merkel cells is governed by the interplay of plasma membrane Ca2+ channels, store release and K+ channels, and they identify specific signaling mechanisms that may control touch sensitivity.  相似文献   

6.
The large conductance Ca2+-activated K+ (BKCa) channel in vascular smooth muscle cell (VSMC) is an important potassium channel that can regulate vascular tone. Recent work has demonstrated that abnormalities in BKCa channel function are associated with changes in cell proliferation and the onset of vascular disease. However, until today there are rare reports to show whether this channel is involved in VSMC proliferation in response to fluid shear stress (SS). Here we investigated a possible role of BKCa channel in VSMC proliferation under laminar SS. Rat aortic VSMCs were plated in parallel-plate flow chambers and exposed to laminar SS with varied durations and magnitudes. VSMC proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA) expression and DNA synthesis. BKCa protein and gene expression was determined by flow cytometery and RT-PCR. The involvement of BKCa in SS-induced inhibition of proliferation was examined by BKCa inhibition using a BKCa specific blocker, iberiotoxin (IBTX), and by BKCa transfection in BKCa non-expressing CHO cells. The changes in [Ca2+]i were determined using a calcium-sensitive dye, fluo 3-AM. Membrane potential changes were detected with a potential-sensitive dye, DiBAC4(3). We found that laminar SS inhibited VSMC proliferation and stimulated BKCa channel expression. Furthermore, laminar SS induced an increase in [Ca2+]i and membrane hyperpolarization. Besides in VSMC, the inhibitory effect of BKCa channel activity on cell proliferation in response to SS was also confirmed in BKCa-transfected CHO cells showing a decline in proliferation. Blocking BKCa channel reversed its inhibitory effect, providing additional support for the involvement of BKCa in SS-induced proliferation reduction. Our results suggest, for the first time, that BKCa channel mediates laminar SS-induced inhibition of VSMC proliferation. This finding is important for understanding the mechanism by which SS regulates VSMC proliferation, and should be helpful in developing strategies to prevent flow-initiated vascular disease formation.  相似文献   

7.
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na+ concentration ([Na+]i) and vice versa. In addition, extracellular Na+ depletion decreased [Na+]i. In voltage-clamped cells, BKCa currents were markedly increased by extracellular Na+ depletion. In inside-out patches, increasing [Na+]i from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BKCa channels and decreasing intracellular K+ concentration ([K+]i) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na+]i gradually from 0 to 70 mM, by replacing K+, markedly reduced single channel conductance and NPo. The Na+–Ca2+ exchange blocker Ni2+ or KB-R7943 decreased [Na+]i and increased BKCa currents simultaneously, and the Na+ ionophore monensin completely inhibited BKCa currents. BKCa currents were significantly augmented by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM and significantly reduced by decreasing [K+]o from 12 or 6 to 0 mM or applying the Na+–K+ pump inhibitor ouabain. These results suggest that intracellular Na+ inhibit single channel conductance of BKCa channels and that intracellular K+ increases single channel conductance and NPo. GH Liang and MY Kim contributed equally to this publication and therefore share the first authorship.  相似文献   

8.
Absence epilepsy accompanies the paroxysmal oscillations in the thalamocortical circuit referred as spike and wave discharges (SWDs). Low-threshold burst firing mediated by T-type Ca2+ channels highly expressed in both inhibitory thalamic reticular nuclei (TRN) and excitatory thalamocortical (TC) neurons has been correlated with the generation of SWDs. A generally accepted view has been that rhythmic burst firing mediated by T-type channels in both TRN and TC neurons are equally critical in the generation of thalamocortical oscillations during sleep rhythms and SWDs. This review examined recent studies on the T-type channels in absence epilepsy which leads to an idea that even though both TRN and TC nuclei are required for thalamocortical oscillations, the contributions of T-type channels to TRN and TC neurons are not equal in the genesis of sleep spindles and SWDs. Accumulating evidence revealed a crucial role of TC T-type channels in SWD generation. However, the role of TRN T-type channels in SWD generation remains controversial. Therefore, a deeper understanding of the functional consequences of modulating each T-type channel subtype could guide the development of therapeutic tools for absence seizures while minimizing side effects on physiological thalamocortical oscillations.  相似文献   

9.
Potassium channels play an essential role in the membrane potential of arterial smooth muscle, and also in regulating contractile tone. Four types of K+ channel have been described in vascular smooth muscle: Voltage-activated K+ channels (KV) are encoded by the Kv gene family, Ca2+-activated K+ channels (BKCa) are encoded by the slogene, inward rectifiers (KIR) by Kir2.0, and ATP-sensitive K+ channels (KATP) by Kir6.0 and sulphonylurea receptor genes. In smooth muscle, the channel subunit genes reported to be expressed are: Kv1.0, Kv1.2, Kv1.4–1.6, Kv2.1, Kv9.3, Kvβ1–β4, slo α and β, Kir2.1, Kir6.2, and SUR1 and SUR2. Arterial K+ channels are modulated by physiological vasodilators, which increase K+ channel activity, and vasoconstrictors, which decrease it. Several vasodilators acting at receptors linked to cAMP-dependent protein kinase activate KATP channels. These include adenosine, calcitonin gene-related peptide, and β-adrenoceptor agonists. β-adrenoceptors can also activate BKCa and KV channels. Several vasoconstrictors that activate protein kinase C inhibit KATP channels, and inhibition of BKCa and KV channels through PKC has also been described. Activators of cGMP-dependent protein kinase, in particular NO, activate BKCa channels, and possibly KATP channels. Hypoxia leads to activation of KATP channels, and activation of BKCa channels has also been reported. Hypoxic pulmonary vasoconstriction involves inhibition of KV channels. Vasodilation to increased external K+ involves KIR channels. Endothelium-derived hyperpolarizing factor activates K+ channels that are not yet clearly defined. Such K+ channel modulations, through their effects on membrane potential and contractile tone, make important contributions to the regulation of blood flow.  相似文献   

10.
Ca2+-mediated Ca2+ spikes were analysed in fura-2-loaded megakaryocytes. Direct Ca2+ loading using whole-cell dialysis induced an all-or-none Ca2+ spike on top of a tonic increase in cellular Ca2+ concentration ([Ca2+]i) with a latency of 3–7 s. The latency decreased with increasingly higher concentrations of Ca2+ in the dialysing solution. Spike size and its initiation did not correlate with the tonic level of [Ca2+]i. Thapsigargin completely abolished the Ca2+-induced spike initiation, suggesting that Ca2+ spikes originate from thapsigargin-sensitive Ca2+ pools. An inhibitor of phosphatidylinositide-specific phospholipase C (PLC), 2-nitro-4-carboxyphenyl-N,N-diphenyl-carbamate prolonged the latency without changes of spike size in most cases (6/9 cells), but abolished the spike initiation in the other cells (3/9). The results suggest that an increase in [Ca2+]i charges up the inositol-1,4,5-trisphosphate(InsP 3)- and thapsigargin-sensitive Ca2+ pools which progressively sensitize to low or slightly elevated levels of InsP3 by the action of Ca2+-dependent PLC until a critical Ca2+ content is reached, and then the Ca2+ spike is triggered. Thus, the limiting step of Ca2+ spike triggering is the initial filling process and the level of InsP3 in megakaryocytes.  相似文献   

11.
Ca2+-dependent inactivation (CDI) of high-voltage activated (HVA) Ca2+ channels was investigated in acutely isolated and identified thalamocortical relay neurons of the dorsal lateral geniculate nucleus (dLGN) by combining electrophysiological and immunological techniques. The influence of Ca2+-binding proteins, calmodulin and the cytoskeleton on CDI was monitored using double-pulse protocols (a constant post-pulse applied shortly after the end of conditioning pre-pulses of increasing magnitude). Under control conditions the degree of inactivation (34±9%) revealed a U-shaped and a sigmoid dependency of the post-pulse current amplitude on pre-pulse voltage and charge influx, respectively. In contrast to a high concentration (5.5 mM) of EGTA (31±3%), a low concentration (3 µM) of parvalbumin (20±2%) and calbindinD28K (24±4%) significantly reduced CDI. Subtype-specific Ca2+ channel blockers indicated that L-type, but not N-type Ca2+ channels are governed by CDI and modulated by Ca2+-binding proteins. These results point to the possibility that activity-dependent changes in the intracellular Ca2+-binding capacity can influence CDI substantially. Furthermore, calmodulin antagonists (phenoxybenzamine, 22±2%; calmodulin binding domain, 17±1%) and cytoskeleton stabilizers (taxol, 23±5%; phalloidin, 15±3%) reduced CDI. Taken together, these findings indicate the concurrent occurrence of different CDI mechanisms in a specific neuronal cell type, thereby supporting an integrated model of this feedback mechanism and adding further to the elucidation of the role of HVA Ca2+ channels in thalamic physiology.  相似文献   

12.
Plasma membrane store-operated Ca2+ release-activated Ca2+ (CRAC) channels are a widespread and conserved Ca2+ influx pathway, driving activation of a range of spatially and temporally distinct cellular responses. Although CRAC channels are activated by the loss of Ca2+ from the endoplasmic reticulum, their gating is regulated by mitochondria. Through their ability to buffer cytoplasmic Ca2+, mitochondria take up Ca2+ released from the endoplasmic reticulum by InsP3 receptors, leading to more extensive store depletion and stronger activation of CRAC channels. Mitochondria also buffer Ca2+ that enters through CRAC channels, reducing Ca2+-dependent slow inactivation of the channels. In addition, depolarised mitochondria impair movement of the CRAC channel activating protein STIM1 across the endoplasmic reticulum membrane. Because they regulate CRAC channel activity, particularly Ca2+-dependent slow inactivation, mitochondria influence CRAC channel-driven enzyme activation, secretion and gene expression. Mitochondrial regulation of CRAC channels therefore provides an important control element to the regulation of intracellular Ca2+ signalling.  相似文献   

13.

Purpose

Large-conductance Ca2+-activated K+ (BKCa) channels provide a negative feedback that regulates vascular tone in the brain circulation. This study investigated the effects of aerobic exercise on gating properties of BKCa channels in rat cerebral artery.

Methods

Rats were subjected to moderate-intensity exercise at low (EX-3d/w) and high (EX-5d/w) training volume on a motor-driven treadmill, and compared with age-matched sedentary animals (SED). Inside–out (I/O) patch clamp recording was performed to measure gating properties of the BKCa channel.

Results

Aerobic exercise induced a reduction in heart rate and body weight in both training groups. Exercise increased the channel activity, which was more pronounced in EX-5d/w than that in EX-3d/w group. Kinetic analysis revealed that (1) the contribution of short open states was elevated and the duration of both short and long open states were extended by exercising in EX-3d/w; (2) Ex-3d/w had no significant change on conformation of close states; (3) EX-3d/w increased the mean open time without changing mean closed time; (4) EX-5d/w increased both the contribution and duration of long open states; (5) EX-5d/w increased channel mean open time while decreased mean closed time.

Conclusion

The results suggest that regular aerobic exercise may enhance BKCa channel activity in cerebral arterial myocytes by changing its biophysical properties, and the electrical remolding induced by exercise may be training volume-dependent.  相似文献   

14.
 The exposure of frog skeletal muscle to caffeine (3–4 mM) generates an increase of the K+ (42K+) efflux rate coefficient (k K,o) which exhibits the following characteristics. First it is promoted by the rise in cytosolic Ca2+ ([Ca2+]i), because the effect is mimicked by ionomycin (1.25 μM), a Ca2+ ionophore. Second, the inhibition of caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) by 40 μM tetracaine significantly reduced the increase in k K,ok K,o). Third, charybdotoxin (23 nM), a blocker of the large-conductance Ca2+-dependent K+ channels (BKCa channels) reduced Δk K,o by 22%. Fourth, apamin (10 nM), a blocker of the small-conductance Ca2+-dependent K+ channels (SKCa channels), did not affect Δk K,o. Fifth, tolbutamide (800 μM), an inhibitor of KATP channels, reduced Δk K,o by about 23%. Sixth, Ba2+, a blocker of most K+ channels, did not preclude the caffeine-induced Δk K,o. Seventh, omitting Na+ from the external medium reduced Δk K,o by about 40%. Eight, amiloride (5 mM) decreased Δk K,o by 65%. It is concluded that the caffeine-induced rise of [Ca2+]i increases K+ efflux, through the activation of: (1) two channels (BKCa and KATP) and (2) an external Na+-dependent amiloride-sensitive process. Received: 13 March 1998 / Received after revision: 17 June 1998 / Accepted: 14 September 1998  相似文献   

15.
 The effects of high pressure (up to 10.1 MPa) on the spontaneous firing of Purkinje neurons in guinea-pig cerebellar slices were studied using the macropatch clamp technique. Pressure did not significantly alter the single somatic Na+ spike parameters or the frequency of regular Na+ spike firing. When Na+ currents were blocked by 0.5–1 μM tetrodotoxin (TTX), a pressure of 10.1 MPa slightly reduced the dendritic Ca2+ spike amplitude to 90.2±3.1% of its control value, and slowed its kinetics. The effects of pressure on the single Ca2+ spike were even less prominent when K+ currents were blocked by 5 mM 4-aminopyridine (4-AP). Pressure prolonged the active period of Ca2+ spike firing to 152.2±10.4% of the control value. Within the active period pressure increased the inter-spike interval to 164.9±8.7% and suppressed the typical firing of doublets. The latter changes were reversed by a high extracellular potassium concentration ([K+]o) and 1 μM 4-AP, whereas in the presence of 5 mM 4-AP the pattern was insensitive to pressure. A high [Ca2+]o reduced the firing frequency and suppressed doublet firing in a manner reminiscent of the pressure effect, but these changes could not be reversed by 4-AP. A low [Ca2+]o slightly increased the firing of doublets. These results show that the single somatic Na+ spike is insensitive and the dendritic Ca2+ spike is only mildly sensitive to pressure. However, alterations in Ca2+ spike firing pattern suggest that modulation of dendritic K+ currents induce depression of dendritic excitability at pressure. Received: 19 May 1998 / Received after revision: 15 July 1998 / Accepted: 3 September 1998  相似文献   

16.
Arachidonic acid (AA) is a polyunsaturated fatty acid involved in a complex network of cell signaling. It is well known that this fatty acid can directly modulate several cellular target structures, among them, ion channels. We explored the effects of AA on high conductance Ca2+- and voltage-dependent K+ channel (BKCa) in vascular smooth muscle cells (VSMCs) where the presence of β1-subunit was functionally demonstrated by lithocholic acid activation. Using patch-clamp technique, we show at the single channel level that 10 μM AA increases the open probability (Po) of BKCa channels tenfold, mainly by a reduction of closed dwell times. AA also induces a left-shift in Po versus voltage curves without modifying their steepness. Furthermore, AA accelerates the kinetics of the voltage channel activation by a fourfold reduction in latencies to first channel opening. When AA was tested on BKCa channel expressed in HEK cells with or without the β1-subunit, activation only occurs in presence of the modulatory subunit. These results contribute to highlight the molecular mechanism of AA-dependent BKCa activation. We conclude that AA itself selectively activates the β1-associated BKCa channel, destabilizing its closed state probably by interacting with the β1-subunit, without modifying the channel voltage sensitivity. Since BKCa channels physiologically contribute to regulation of VSMCs contractility and blood pressure, we used the whole-cell configuration to show that AA is able to activate these channels, inducing significant cell hyperpolarization that can lead to VSMCs relaxation.  相似文献   

17.
Di-8-ANEPPS (4-{2-[6-(dibutylamino)-2-naphthalenyl]-ethenyl}-1-(3-sulfopropyl)pyridinium inner salt) has been used as a fast-response voltage-sensitive styrylpyridinium probe. However, little is known regarding the mechanism of di-8-ANEPPS actions on ion currents. In this study, the effects of this dye on ion currents were investigated in pituitary GH3 cells. In whole-cell configuration, di-8-ANEPPS (10 μM) reversibly increased the amplitude of Ca2+-activated K+ current. In inside-out configuration, di-8-ANEPPS (10 μM) applied to the intracellular surface of the membrane caused no change in single-channel conductance; however, it did enhance the activity of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 7.5 μM. This compound caused a left shift in the activation curve of BKCa channels with no change in the gating charge of these channels. A decrease in mean closed time of the channels was seen in the presence of this dye. In the cell-attached mode, di-8-ANEPPS applied on the extracellular side of the membrane also activated BKCa channels. However, neither voltage-gated K+ nor ether-à-go-go-related gene (erg)-mediated K+ currents in GH3 cells were affected by di-8-APPNES. Under current-clamp configuration, di-8-ANEPPS (10 μM) decreased the firing of action potentials in GH3 cells. In pancreatic βTC-6 cells, di-8-APPNES (10 μM) also increased BKCa-channel activity. Taken together, this study suggests that during the exposure to di-8-ANEPPS, the stimulatory effects on BKCa channels could be one of potential mechanisms through which it may affect cell excitability.  相似文献   

18.
19.
We found a new type of Ca2+-dependent K+ channel in smooth muscle cell membranes of single cells of the rabbit portal vein. A slope conductance of the current was 180 pS when 142 mM K+ solution was exposed to both sides of the membrane (this channel was named the KM channel, in comparison to the known KL and KS channels from the same membrane patch; Inoue et al. 1985). This KM channel was less sensitive to the cytoplasmic Ca2+ concentration, [Ca2+]i, but was sensitive to the extracellular Ca2+, [Ca2+]o, e.g. in the outside-out membrane patch, lowering the [Ca2+]o in the bath markedly reduced the open probability of this channel, and also in cell-attached configuration, lowering of the [Ca2+]o using the internally perfused patch clamp electrode device reduced the opening of KM channel. TEA+ (1–10 mM) reduced the amplitude of the elementary current through the KM channel applied from each side of the membrane, but this agent inhibited the KM channel to a greater extent when applied to the inner than to the outer surface of the membrane. Furthermore, this KM channel had a weak voltage dependency, and the open probability of the channel remained much the same within a wide range of potential (from –60 mV to +60 mV). Whereas most Ca2+-dependent K+ channels are regulated mainly by [Ca2+]i and possess a voltage dependency, these properties of the KM channel differed from other Ca2+-dependent K+ channels. The elucidation of this KM channel should facilitate explanations of the actions of external Ca2+ or TEA+ on the membrane potential, in the smooth muscles of the rabbit portal vein.  相似文献   

20.
Many cell types respond to mechanical membrane perturbation with intracellular Ca2+ responses. Stretch-activated (SA) ion channels may be involved in such responses. We studied the occurrence as well as the underlying mechanisms of cell membrane stretche-voked responses in fetal chicken osteoclasts using separate and simultaneous patch-clamp and Ca2+ imaging measurements. In the present paper, evidence is presented showing that such responses involve a self-reinforcing mechanism including SA channel activity, Ca2+-activated K+ (KCa) channel activity, membrane potential changes and local and general intracellular Ca2+ ([Ca2+]i) increases. The model we propose is that during membrane stretch, both SA channels and KCa channels open at membrane potential values near the resting membrane potential. SA channel characterization showed that these SA channels are permeable to Ca2+. During membrane stretch, Ca2+ influx through SA channels and hyperpolarization due to KCa channel activity serve as positive feedback, leading ultimately to a Ca2+ wave and cell membrane hyperpolarization. This self-reinforcing mechanism is turned off upon SA channel closure after cessation of membrane stretch. We suggest that this Ca2+entry mechanism plays a role in regulation of osteoclast activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号