首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several investigators have shown the presence of two types of central nervous system receptors for serotonin but the functional significance of these receptors is unknown. Using a 5,7-dihydroxytryptamine lesion and a direct binding assay, we have investigated the suggestion that one of these sites may occur presynaptically in rat cortex and possibly function as an autoreceptor. Our results disprove this theory and furthermore, they show that cortical serotonin receptors do not exhibit denervation supersensitivity.  相似文献   

2.
Summary GR67330 potently inhibited 5-hydroxytryptamine (5-HT)-induced depolarizations of the rat isolated vagus nerve. At the higher concentrations used (0.3 nmol/l–1 nmol/l) this was accompanied by a marked reduction in the maximum response to 5-HT. The calculated pKB value was 10.2.The binding of the tritiated derivative of GR67330 to homogenates of rat entorhinal cortex was examined. Kinetic analysis revealed that specific [3H] GR67330 (0.1 nmol/l) binding was rapid and reversible. Association and dissociation rate constants were 1.48 ± 0.36 × 108 mol/l–1 s–1 and 7.85 ± 0.41 × 10–3 s–1 respectively. Equilibrium saturation analysis revealed specific binding was to a single site (Bmax 22.6±0.21 fmol/mg protein) of high affinity (Kd 0.038±0.003 nmol/l). At low ligand concentrations, specific binding was up to 90% of total binding. If unlabelled GR67330 was used to define non-specific binding two sites were evident (Kd1 0.066 ± 0.007 nmol/l, Kd2 20.1 ± 9.7 nmol/l; Bmax2 31.5 ± 3.2 fmol/mg protein, Bmax2 1110 ± 420 fmol/mg protein). [3H] GR67330 binding was inhibited potently by 5-HT3 antagonists and agonists. Ligands for other 5-HT receptors and other neurotransmitter receptors were either only weakly active or inactive at inhibiting binding. Hill numbers for antagonist inhibition of binding were close to unity, except for quipazine which was significantly greater than one. In common with other 5-HT3 binding studies, all 5-HT3 agonist tested had Hill numbers greater than one (1.51–1.71). GR38032 and GR65630 inhibited a greater proportion of binding than other 5-HT3 antagonists, this additional binding was interpreted as inhibition from a second saturable site unrelated to the 5-HT3 receptor.Homogenates of five areas of rat brain were examined for specific [3H]-GR67330 binding (entorhinal cortex, cingulate cortex, parietal cortex, hippocampus and nucleus accumbens/olfactory tubercle). In each brain area a site of very high affinity was labelled. Drug inhibition profiles were also very similar in each brain area. It is concluded that, because of its high affinity, [3H] GR67330 will be a useful ligand to label 5-HT3 receptors especially in tissues with low receptor densities and to map 5-HT3 receptors autoradiographically.Abbreviations 5-HT 5-Hydroxytryptamine - 8-OH-DPAT 8-hydroxy-2-di-N-propylaminotetralin - 5-CT 5-carboxyamidotryptamine - GR38032 (±) 1,2,3,9-tetrahydro-9-methyl-3[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one - GR65630 3-(5-methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-indol-3-yl) -1-propanone - GR67330 (±)1,2,3,9 - tetrahydro-9-methyl-3-[(5-methyl-1H-imidazol-4-yl)methyl]-4H-carbazol-4-one - MDL72222 1H,3,5H-tropan-3-yl-3,5-dichlorobenzoate - ICS 205–930 (3-tropanyl)-1H-indole-3-carboxylic acid ester - BRL24924 endo-4-amino-5-chloro-2-methoxy-N-(1-azabicyclo[3,3,1]non-4-yl)benzamide - BRL43694 endo-N-(9-methyl-9-azabicyclo[3,3,1]non-3-yl)-1-methyl-indazole-3-carboxamide - SDZ 206-830 (3-homotropanyl)-1-methyl-5-fluoro-indole-3-carboxylic acid ester - mCPP meta-chlorophenylpiperazine Send offprint requests to G. J. Kilpatrick at the above address  相似文献   

3.
The effect of the selective r5-HT1B agonist 3-(1,2,5,6-tetrahydro)-4-pyridil-5-pyrrolo [3,2-b] pyril-5-one (CP93,129) on the K+-evoked overflow of [3H]dopamine was studied in rat striatal synaptosomes loaded with [3H]dopamine. The aim of the study was to investigate the participation of 5-HT1B receptors in the serotonergic modulation of striatal dopaminergic transmission. The Ca2+-dependent, tetrodotoxin-resistant K+-evoked overflow of [3H]dopamine was inhibited by CP93,129 (0.01–100 μM) in a concentration-dependent manner (IC50=1.8 μM; maximal inhibition by 35.5% of control). [±]8-OH-DPAT, a 5-HT1A receptor agonist, [+/–]DOI, a 5-HT2 receptor agonist, and 2-methyl-5-hydroxytryptamine, a 5-HT3 receptor agonist, at concentrations ranging from 0.01 μM to 100 μM did not show any significant effect. Neither ketanserin (1 μM and 5 μM), a selective 5-HT2/5-HT1D receptor antagonist, nor ondansetron (1 μM), a 5-HT3 receptor antagonist, changed the inhibitory effect of CP93,129. SB224289, GR55562, GR127935, isamoltane and metergoline, selective and non-selective 5-HT1B receptor antagonists, in contrast, used at a concentration of 1 μM, antagonized the inhibitory effect of CP93,129 (3 μM and 10 μM). SB224289, a selective 5-HT1B receptor antagonist, inhibited the effect of CP93,129 in a concentration-dependent manner; the calculated K i value was 1.8 nM. Our results indicate that in rat striatal axon terminals the K+-evoked release of dopamine is regulated by the presynaptic 5-HT1B heteroreceptors. Received: 7 September 1998 / Accepted: 2 November 1998  相似文献   

4.
Elucidating the mechanisms of action of hallucinogens has become an increasingly important area of research as their abuse has grown in recent years. Although serotonin receptors appear to play a role in the behavioral effects of the phenethylamine and indoleamine hallucinogens, the signaling pathways activated by these agents are unclear. Here it is shown that administration of serotonin (5-hydroxytryptamine, 5-HT) increased cyclic guanosine monophosphate (cGMP) production in frontal cortical slices of rat brain. The effect of 5-HT was greater than that of N-methyl-D-aspartate (NMDA), a stimulant of cGMP formation in the central nervous system. The 5-HT2A/2C receptor phenethylamine agonist, 2,5-dimethoxy-4-methylamphetamine (DOM), increased cGMP content in the slices. Additionally 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), a 5-HT1A/7 receptor agonist also increased cGMP production. Stimulation of cGMP formation by DOM was prevented by a 5-HT2A/2C receptor antagonist, pirenperone, as well as by a 5-HT2A receptor selective antagonist, MDL100907. A 5-HT2C receptor antagonist, SB242084, did not block the effect of DOM. Stimulation of cGMP production by DPAT was blocked by the 5-HT1A receptor antagonist, WAY100635. Stimulation of cGMP formation by serotonin could be prevented by pirenperone orWAY100635. In summary, activation of serotonin 5-HT1A and 5-HT2A receptors increase brain cGMP levels.  相似文献   

5.
The alpha 2 adrenergic antagonist [3H]rauwolscine binds with comparable nanomolar affinity to alpha 2 adrenoceptors and the nonadrenergic 5-HT1A receptors sites in human frontal cortex membranes. Addition of 0.5 mM GTP into the incubation medium produces a significant decrease in the amount of [3H]rauwolscine binding sites (Bmax = 230 +/- 16 and 115 +/- 11 fmol/mg protein in the absence and presence of GTP, respectively). The affinity for [3H]rauwolscine remains unchanged (i.e. KD = 40 +/- 0.9 nM and 4.1 +/- 1 nM). This effect of GTP can be attributed to decreased binding of the radioligand to the 5-HT1A receptors. GTP decreases binding of [3H]rauwolscine to nearly the same level as the one corresponding to the alpha 2 adrenoceptors in membranes from both the human frontal cortex and hippocampus. The venom of the marine cone snail, Conus tessulatus, preferentially inhibits [3H]rauwolscine binding to 5-HT1A receptors as compared with the alpha 2 adrenoceptors. Following complete masking of the 5-HT1A receptors by this venom. GTP no longer affects the saturation binding characteristics of [3H]rauwolscine for the remaining alpha 2 adrenoceptors. Nucleotides decrease the binding of [3H]rauwolscine to the 5-HT1A receptors with an order of potencies (i.e. GTP gamma S greater than GPP(NH)P much greater than GDP greater than GTP much greater than ATP) that is typical for nucleotide-mediated receptor-G protein dissociation. This suggests that [3H]rauwolscine is a 5-HT1A receptor agonist and this conclusion is compatible with earlier functional studies, indicating that rauwolscine (as well as yohimbine) has agonistic properties at the level of 5-HT autoreceptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In previous paper based on classical pharmacological tools, we identified a Gi protein-coupled presynaptic 5-hydroxytryptamine (5-HT) 1B receptor causing inhibition of dopamine (DA) release in rat striatal synaptosomes. It was the aim of the present study to further explore this receptor, using 5-HT moduline, a polyclonal antibody directed against 5-HT1B receptors and 5-HT1B receptor knock-out mice. Preincubation of rat striatal synaptosomes with 5-HT moduline (0.1, 1, or 10 microM) significantly reduced the inhibitory effect of CP93,129, a selective rat 5-HT1B receptor agonist, on K+-evoked overflow of [3H]DA in a non-competitive manner: 5-HT moduline did not modify the IC50 of CP93,129, but concentration-dependently reduced the maximal inhibitory effect. Preincubation of rat striatal synaptosomes with a specific polyclonal 5-HT1B receptor antibody also resulted in a significant attenuation of the inhibitory effect of CP93,129 on K+-evoked overflow of [3H]DA. In female 129/Sv wild-type mice, CP93,129 and 5-carboxyamidotryptamine maleate (5-CT), a non-selective 5-HT1B receptor agonist, inhibited the K+-evoked [3H]DA overflow in a concentration-dependent manner. Sumatriptan, a selective rat 5-HT1D receptor agonist, did not modify the overflow of [3H]DA. SB224289, a selective 5-HT1B receptor antagonist, abolished the inhibitory effects of CP93,129 and 5-CT. The inhibitory effects of CP93,129 and 5-CT were absent in synaptosomes from 5-HT1B receptor knockout mice. No compensatory inhibition effect in mutant mice was observed using sumatriptan. In conclusion, the results show that a non-competitive antagonist of the 5-HT1B receptor concentration-dependently decreases the maximal inhibitory effect of a 5-HT1B receptor agonist on the synaptosomal K+-evoked release of [3H]DA in striatum. Moreover, a specific antibody raised against the receptor and particularly directed against a region of the receptor protein involved in signal transduction, namely the coupling with the G-protein, also antagonizes the inhibitory effect of the stimulation of 5-HT1B receptor on the release of [3H]DA. Ultimately the disruption of 5-HT1B receptor gene in 5-HT1B knock-out mice leads to a total suppression of the effect of 5-HT1B receptor agonists on [3H]DA release. These observations further support our previous observations using selective agonists/antagonists, indicating that 5-HT1B receptors control the release of neuronal DA as presynaptic heteroreceptors.  相似文献   

7.
F13640 is a selective and high-efficacy serotonin 5-HT1A receptor agonist that demonstrates outstanding analgesic potential in different animal models. Here, we use the radiolabelled compound to further characterise its binding properties at 5-HT1A receptors. F13640 was tritium-labelled to 47 and 64 Ci/mmol specific activity and used as radioligand at membrane preparations of CHO cells expressing human (h) 5-HT1A receptors. The K d of [3H]-F13640 was 1.8 nM at h5-HT1A receptors as determined from saturation binding experiments. In association time-course experiments, k obs of [3H]-F13640 was 0.06 min?1. Dissociation experiments performed in the presence of unlabelled F13640 as competing ligand yielded a k off value of 0.05 min?1, resulting in a calculated K d of 1.4 nM. In comparison, [3H]-8-OH-DPAT had a k obs of 0.50 min?1, a k off of 0.25 min?1 and a calculated K d of 0.37 nM. Surprisingly, [3H]-F13640 dissociation kinetics were distinctly slower in the presence of WAY-100635 and spiperone as competing ligands when compared with the agonist competitors, F13640 and (+)8-OH-DPAT. The competitive binding profile of [3H]-F13640 with eight chemically diverse 5-HT1A receptor agonists and antagonists correlated highly (r?=?0.996) with that of [3H]-8-OH-DPAT. In conclusion, [3H]-F13640 is a potent agonist radioligand at 5-HT1A receptors and may be a useful tool in pharmacological studies at native and recombinant 5-HT1A receptors. In addition, [3H]-F13640 dissociates more slowly from h5-HT1A receptors than [3H]-8-OH-DPAT, a kinetic property that might be related to its powerful analgesic effects as observed in vivo.  相似文献   

8.
9.
Clostridium difficile toxin B that inactivates Rho subfamily proteins by glucosylation, inhibited dinitrophenyl-conjugated bovine serum albumin (DNP-BSA) and phorbol 12-myristate 13-acetate (PMA)-induced mast cell activation by 80 to 90% in a concentration- and time dependent manner with a delay of about 30 min. Activation of mast cells by compound 48/80 and calcium ionophore A23187 was maximally inhibited by about 50%. Inhibition by toxin B was observed with suspended, attached and permeabilised mast cells. C3 ADP-ribosyltransferase, which selectively inactivates RhoA,B,C subtype proteins inhibited antigen, compound 48/80, PMA, A23187 and GTP[S]-induced degranulation of permeabilised mast cells. C3-induced inhibition of stimulated histamine release was smaller than that observed with toxin B and both inhibitory effects were not additive. These findings suggest the involvement of Rho subtype GTPases and, additionally, of other members of the Rho subfamily GTPases in activation of rat peritoneal mast cells. Received: 7 October 1996 / Accepted: 22 November 1996  相似文献   

10.
Psychostimulant (cocaine, amphetamine and its derivatives) addiction is an important health problem with implications in social and economic life. Although mesocorticolimbic dopamine system plays a crucial role in the mechanism responsible for the rewarding effects of these drugs, recent data also show involvement of the brain serotonin (5-HT) system. In the present review we discuss the role of 5-HT(1B) receptors in the psychostimulant addiction on the base of the effects of 5-HT(1B) receptor ligands on the behavioral effects of the psychostimulants in experimental models (sensitization, intracranial self-stimulation, conditioned place preference, self-administration and extinction/reinstatement model) used to assess their addictive properties. Moreover, the effect of long-term treatment with psychostimulants on 5-HT(1B) receptors is also discussed.  相似文献   

11.
The interaction of the enantiomers of mianserin and propranolol with the binding of [3H]5-hydroxytryptamine ([3H]5-HT) to the 5-HT1A, 5-HT1B and 5-HT1C sites, and with the binding of [3H]ketanserin to the 5-HT2 site, has been evaluated in rat brain membranes. A stereoselective interaction at the 5-HT1A, 5-HT1B and 5-HT1C sites was demonstrated for both compounds, with (+)-mianserin being a more potent displacer than (-)-mianserin and (-)-propranolol being more potent than (+)-propranolol. Only mianserin interacted in a stereoselective manner with the 5-HT2 site, (+)-mianserin being the more potent isomer. The stereoselective association of mianserin and propranolol with the 5-HT1A, 5-HT1B and 5-HT1C sites may prove useful in the characterization of these sites.  相似文献   

12.
1. The 5-HT(1A) agonist 8-OH-DPAT has been shown to have additional 5-HT uptake inhibiting properties. The present work was undertaken to examine further the binding of [(3)H]-8-OH-DPAT in the raphe area of the rat brain, a region rich in 5-HT(1A) receptors and 5-HT uptake sites. 2. 5-HT inhibited [(3)H]-8-OH-DPAT binding in a biphasic manner (pK(i1): 8.82+/-0.01, pK(i2): 6.07+/-0.05, n=4) with the low affinity site representing 36+/-4% of the total population. A biphasic inhibition curve was found also with the 5-HT(1A) antagonist, WAY 100635 (pK(i1): 8.65+/-0.17, pK(i2): 4.26+/-0.38, n=3). In the presence of 1 microM WAY 100635 to mask 5-HT(1A) receptors, 5-HT inhibited [(3)H]-8-OH-DPAT binding in a monophasic manner (pK(i): 6.04+/-0.07, n=3). 3. The affinities of various compounds for sites labelled by [(3)H]-8-OH-DPAT in the presence of 1 microM WAY 100635 and for sites labelled by [(3)H]-citalopram (a selective 5-HT uptake inhibitor) were determined. There was a significant correlation between pK(i) values at 5-HT uptake sites and at non-5HT(1A) sites labelled by [(3)H]-8-OH-DPAT (r=0.80, P<0. 001, n=17), suggesting these latter sites to be 5-HT uptake sites. 4. Whereas the affinities of R(+) and S(-) enantiomers of 8-OH-DPAT for the 5-HT uptake site are similar, R(+)8-OH-DPAT has 10 times higher affinity for the non-5-HT(1A) site than S(-)8-OH-DPAT and was considered as an outlier in the correlation. It is suggested that [(3)H]-8-OH-DPAT labels other, as yet unknown binding sites in the raphe.  相似文献   

13.
p11 is an adaptor protein which binds to serotonin 5-HT1B receptors and 5-HT4 receptors and regulates their localization at the cell surface. In the present study, we examined to what extent p11 containing neurons co-expressed 5-HT1BR and/or 5-HT4R in cerebral cortex, hippocampus, cerebellum and caudate-putamen. A triple-labeling immunohistochemical approach was taken using antibodies to detect native p11 and 5-HT1BR combined with visualization of EGFP driven under the 5-HT4R promoter in BAC-transgenic mice. In the caudate-putamen, the hippocampal pyramidal cell layer of CA1 and the hippocampal granule cell layer of dentate gyrus, most p11 containing cells co-expressed both 5-HT1BR and 5-HT4R. In the cingulate cortex, stratum radiatum/oriens of CA1, hilus of the dentate gyrus and cerebellar cortex, many cells co-expressed p11 and 5-HT1BR, but not 5-HT4R. In the studied brain regions, few cells solely expressed p11 without any significant expression of 5-HT1BR or 5-HT4R. It can be concluded that p11 is anatomically positioned to modulate serotonin neurotransmission, via 5-HT1BR and 5-HT4R, in brain regions important for emotionality, cognition and locomotion.  相似文献   

14.
The pharmacological characteristics of the binding of [3H]8-OH-DPAT ([3H]8-hydroxy-2(di-n-propylamino)tetralin, [125I]CYP ((-)[125I]iodocyanopindolol) (in the presence of 30 microM (-)isoprenaline) and [3H]mesulergine to 5-HT1 recognition sites were studied in rat and pig brain membranes. [3H]8-OH-DPAT bound in rat and pig cortex to the 5-HT1A recognition site characterized by high affinity for 5-CT (5-carboxamido-tryptamine), 8-OH-DPAT, 5-HT (5-hydroxytryptamine, serotonin) and low affinity for pirenperone, ketanserin and mesulergine. [125I]CYP bound in rat but not in pig cortex to the 5-HT1B site which shows high affinity for (-)21-009 (4[3-ter-butyl-amino-2-hydroxy-propoxy]indol-2-carbonic acid isopropyl ester), (+/-)ICYP (3-I-cyanopindolol), 5-HT, RU 24969 (5-methoxy-3-[1,2,3,6-tetrahydropyridon-4-yl]1H-indole) and low affinity for 8-OH-DPAT, mesulergine and pirenperone. [3H]Mesulergine bound in pig choroid plexus and in rat cortex (besides binding to 5-HT2 sites in rat cortex) to the 5-HT1C recognition site characterized by high affinity for metergoline, mesulergine, 5-HT and methergine and low affinity for (-)21-009, ICYP, 8-OH-DPAT and spiroperidol. The pharmacological profile of 5-HT1A sites in rat and pig cortex appears to be identical; 5-HT1C sites in pig choroid plexus and rat cortex show no differences. In contrast, it was not possible to label 5-HT1B sites with [125I]CYP in pig brain membranes indicating that like 5-HT2 receptors, 5-HT1 recognition sites show species differences. The pharmacological profiles of the three 5-HT1 recognition sites are clearly different from one another. Furthermore, the pharmacological profile of each individual 5-HT1 recognition site is also different from that of the 5-HT2 receptors labelled with [3H]ketanserin in rat cortex membranes although some similarities exist between 5-HT2 and 5-HT1C sites. Finally, the beta-adrenoceptor antagonist (-)21-009 which has different affinities for 5-HT1A, 5-HT1B and 5-HT1C recognition sites, yielded triphasic competition curves for [3H]5-HT binding in rat cortex membranes providing evidence that [3H]5-HT labels three distinct 5-HT1 sites in these membranes.  相似文献   

15.
Investigations on the pharmacological properties of a series of chroman derivatives indicated that 5-methoxy-3-(di-n-propylamino)chroman (5-MeO-DPAC) acts in the nM range on 5-HT1A sites but recognizes very poorly other 5-HT sites and D2 sites in rat brain membranes. As expected from these observations, the tritiated derivative [3H]5-MeO-DPAC bound to a single class of specific sites which exhibited the same pharmacological properties as 5-HT1A sites labelled by [3H]8-OH-DPAT in hippocampal and cortical membranes. In contrast to [3H]8-OH-DPAT, [3H]5-MeO-DPAC did not bind to presynaptic striatal sites (possibly associated with 5-HT reuptake in serotoninergic terminals), which indicated that this new chroman derivative was even more selective than the [3H]tetralin ligand for the in vitro labelling of 5-HT1A sites. Comparison of the chemical structures of 5-MeO-DPAC and other 5-HT1A ligands suggests that electronic enrichment due to isosteric O-substitution in the chroman derivative may play an important role in the highly selective recognition of the 5-HT1A receptor by this drug.  相似文献   

16.
Oxymetazoline was recognized with nanomolar affinity by 5-HT1A, 5-HT1B and 5-HT1D binding sites and mimicked the effects of 5-hydroxytryptamine with about the same potency and intrinsic activity as the endogenous amine in the corresponding functional tests. At 5-HT1C receptors, oxymetazoline behaved as a mixed agonist-antagonist. Clonidine had minimal activity. Methiothepin antagonized the effects of oxymetazoline (7.4 less than pKB less than 8.8). Thus, oxymetazoline is a full and potent agonist at 5-HT1A, 5-HT1B and 5-HT1D receptors and a partial agonist at 5-HT1C receptors.  相似文献   

17.
The distribution of 5-HT3 receptor sites was examined in rat brain by autoradiography using 3H-enantiomers of zacopride. The (S)-3H-isomer labelled high densities of binding sites in the hippocampus, amygdala and cortex. The (R)-3H-isomer labelled considerably fewer sites than the (S)-isomer in nuclei of the lower medulla and did not exhibit any specific binding in the forebrain. These differences confirm that the (S)-isomer is specific for 5-HT3 binding sites and that it has a higher affinity than the (R)-isomer at these sites. These results are not consistent with the notion that 5-HT3 antagonist activity explains the anxiolytic effects of zacopride.  相似文献   

18.
19.
(-)-Pindolol, which possesses significant affinity for 5-HT1A, 5-HT1B, and beta 1/2-adrenergic receptors (AR)s, dose-dependently increased extracellular levels of dopamine (DA) and noradrenaline (NAD) versus 5-HT, in dialysates of the frontal cortex (FCX), but not accumbens and striatum, of freely-moving rats. In distinction, the preferential beta 1-AR antagonist, betaxolol, and the preferential beta 2-AR antagonist, ICI118,551, did not increase basal levels of DA, NAD, or 5-HT. Further, they both dose-dependently and markedly blunted the influence of (-)-pindolol upon DA and NAD levels. The selective 5-HT1A receptor antagonist, WAY100,635, slightly attenuated the (-)-pindolol-induced increase in DA and NAD levels, while the selective 5-HT1B antagonist, SB224,289, was ineffective. These data suggest that (-)-pindolol facilitates frontocortical dopaminergic (and adrenergic) transmission primarily by activation of beta 1/2-ARs and, to a lesser degree, by stimulation of 5-HT1A receptors, whereas 5-HT1B receptors are not involved. (-)-Pindolol potentiated the increase in FCX levels of 5-HT elicited by the 5-HT reuptake inhibitors, fluoxetine and duloxetine, and also enhanced their ability to elevate FCX levels of DA--though not of NAD. In contrast to (-)-pindolol, betaxolol and ICI118,551 did not affect the actions of fluoxetine, whereas both WAY100,635 and SB224,289 potentiated the increase in levels of 5-HT--but not DA or NAD levels--elicited by fluoxetine. In conclusion, (-)-pindolol modulates, both alone and together with 5-HT reuptake inhibitors, dopaminergic, adrenergic, and serotonergic transmission in the FCX via a complex pattern of actions at beta 1/2-ARs, 5-HT1A, and 5-HT1B receptors. These findings have important implications for clinical studies of the influence of (-)-pindolol upon the actions of antidepressant agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号