首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The goal of our study was to investigate the anisotropy of normal breast glandular and fatty tissue with acoustic radiation force impulse (ARFI) quantification. A total of 137 breasts in 137 women were enrolled. These breasts were divided into the duct-apparent group and the duct-inapparent group, divided into the ligament-apparent group and the ligament-inapparent group. Shear wave velocity (SWV) in the radial (SWVr) and anti-radial (SWVa-r) directions was measured. The elastic anisotropy of glandular tissue and fatty tissue was evaluated as the ratio between SWVr and SWVa-r. The SWV ratio was 1.30 ± 0.45 for glandular tissue and 1.27 ± 0.53 for fatty tissue in the total group. In glandular tissue, the SWV ratio of the duct-apparent group was higher than that of the duct-inapparent group (p = 0.011). In both glandular and fatty tissue, the SWV ratio was higher in the ligament-apparent group than in the ligament-inapparent group (p < 0.05 for both). SWVr was higher than SWVa-r in both glandular tissue and fatty tissue in all groups (p < 0.05 for all) except in breast fatty tissue in the ligament-inapparent group (p = 0.913). It is concluded that both breast glandular tissue and fatty tissue exhibited anisotropy of elastic behavior. To improve the diagnostic power of elastography in breast lesions, the elastic anisotropy of glandular tissue and fatty tissue should be taken into account in calculating strain ratio or elasticity ratio.  相似文献   

2.
3.
4.
5.
6.
This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion (“internal” value) and the marginal areas (“marginal” value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses.  相似文献   

7.
The aim of the study described here was to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in the differential diagnosis between benign and malignant solid hypo-echoic thyroid nodules (SHTNs) on ultrasound. In this retrospective study, 183 histologically proven SHTNs in 159 patients were enrolled. Conventional US, as well as Virtual Touch tissue imaging (VTI) and Virtual Touch tissue quantification (VTQ) of ARFI elastography, was performed on each nodule. The VTI features of SHTNs were divided into six grades, where higher grades represent harder tissue. VTQ was expressed as shear wave velocity, where higher shear wave velocity values indicate stiffer tissue. The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Youden index for ultrasound and ARFI were assessed. The 183 pathologically proven SHTNs included 117 benign and 66 malignant lesions. Nodules classified as VTI grades IV to VI were more frequently malignant (49/66, 74.2%) than benign (10/117, 8.5%) (p < 0.001). The mean shear wave velocity of VTQ for malignant SHTNs (mean ± standard deviation, 4.65 ± 2.68 m/s; range, 1.36–9 m/s) was significantly higher than that for benign SHTNs (2.34 ± 0.85 m/s, 0–5.7 m/s) (p < 0.001). The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Youden index were 27.3%–84.8%, 13.7%–89.7%, 39.3%–69.4%, 35.7%–60%, 61.5%–78.5%, and –0.015 to 0.37 for ultrasound; 68.2%, 76.9%, 73.8%, 62.5%, 81.1% and 0.451 for VTQ; and 74.2%, 91.5%, 85.2%, 83.1%, 86.3% and 0.657 for VTI, respectively. ARFI elastography performed at a superior level, compared with conventional ultrasound, in the differential diagnosis between malignant and benign SHTNs. The diagnostic performance of VTI is higher than that of VTQ.  相似文献   

8.
The aim of this study was to compare lymph node stiffness using acoustic radiation force impulse (ARFI) imaging in patients with cervical lymph node swelling. Forty-two cervical lymph nodes (reactive, n = 22; metastatic, n = 20) from 19 patients (13 men, 6 women; mean age, 63.68 ± 14.9 y; range, 23–85 y) were examined between September 2011 and March 2012. The shear wave velocity (SWV, m/s) of each lymph node was evaluated by ARFI imaging. SWV of reactive lymph nodes was 1.52 ± 0.48 m/s, and that of metastatic/malignant lymph nodes was 2.46 ± 0.75 m/s. A SWV > 1.9 m/s was very useful metastatic lymph node classification, with 95.0% specificity, 81.8% sensitivity and 88.0% overall accuracy. The area under the receiver operating characteristic curve was 0.923 (95% confidence interval, 0.842–1.000). ARFI imaging can be useful in the differentiation of reactive and malignant/metastatic cervical lymph nodes.  相似文献   

9.
The aim of this study was to determine the appearance of breast lesions using acoustic radiation force impulse imaging (ARFI) and to correlate the ARFI values with the pathologic results. The area ratio (AR) and virtual touch tissue quantification (VTQ) values were analyzed in 86 patients (mean age 45.6 years, range 17-78 years) with 92 breast lesions (65 benign, 27 malignant; mean size 25.7 mm). The diagnostic performance of ultrasound (US) alone and US plus ARFI values were compared with respect to sensitivity, specificity and area under the curve (AUC) using a receiver operating characteristic curve analysis. The mean AR of the benign lesions (1.08 ± 0.21) differed from that of the malignant lesions (1.99 ± 0.63; p < 0.0001), as did the mean VTQ values (3.25 ± 2.03 m/s vs. 8.22 ± 1.27 m/s; p < 0.0001). In conclusion, ARFI provides quantitative elasticity measurements, which may complement B-mode US and potentially improve the characterization of breast lesions.  相似文献   

10.
11.
Acoustic radiation force impulse (ARFI) quantification, a novel ultrasound-based elastography method, has been used to measure liver fibrosis. However, few studies have been performed on the use of ARFI quantification in kidney examinations. We evaluated renal allograft stiffness using ARFI quantification in patients with stable renal function (n = 52) and those with biopsy-proven allograft dysfunction (n = 50). ARFI quantification, given as shear wave velocity (SWV), was performed. The resistance index (RI) was calculated by pulsed-wave Doppler ultrasound, and clinical and laboratory data were collected. Morphologic changes in transplanted kidneys were diagnosed by an independent pathologist. Mean SWV was more significantly negatively correlated with estimated glomerular filtration rate (eGFR) (r = –0.657, p < 0.0001) than was RI (r = –0.429, p = 0.0004) in transplanted kidneys. Receiver operating characteristic curve analysis revealed that the sensitivity and specificity of quantitative ultrasound in the diagnosis of renal allograft dysfunction were 72.0% and 86.5% (cutoff value = 2.625), respectively. The latter values were better than those of RI, which were 62.0% and 69.2% (cutoff value = 0.625), respectively. The coefficient of variation for repeat SWV measurements of the middle part of transplanted kidney was 8.64%, and inter-observer agreement on SWV was good (Bland-Altman method, ICC = 0.890). In conclusion, tissue elasticity quantification by ARFI is more accurate than the RI in diagnosing renal allograft function.  相似文献   

12.
13.
14.
15.
To estimate the diagnostic performance of acoustic radiation force impulse elastography in distinguishing between benign and malignant superficial lymph nodes, relevant articles published before October 31, 2018, in China and other countries were used. Conclusively, a total of 18 articles were analyzed. Sixteen studies used Virtual Touch tissue quantification (Siemens Healthineers, Erlangen, Germany), and 4 studies used Virtual Touch tissue imaging (Siemens Healthineers). After a meta-analysis, it was found that acoustic radiation force impulse elastography is an efficient method for detecting superficial lymph nodes. In addition, if the cutoff value for the shear wave velocity were less than 2.85 m/s, the summary sensitivity would increase, and the heterogeneity would be reduced.  相似文献   

16.
目的 探讨2013版超声乳腺影像报告和数据系统(BI-RADS)分类诊断标准结合声触诊组织量化技术(VTQ)鉴别乳腺良恶性病灶的价值。方法 对251位患者共334个乳腺病灶行常规超声检查,并用BI-RADS分类诊断标准判断其良恶性;然后应用VTQ技术测量病灶的剪切波速度(SWV);以病理结果作为金标准,构建受试者的工作特征曲线,比较两种方法的诊断价值。结果 BI-RADS分类诊断标准及VTQ技术鉴别乳腺良恶性病灶的ROC曲线下面积分别为0.899、0.855,两者差异无统计学意义(z=1.367,P=0.172)。结论 BI-RADS分类诊断标准与VTQ技术结合可以提高乳腺病灶的诊断准确性。对于BI-RADS 4类的病灶,联合VTQ技术可减少不必要的穿刺活检或手术。  相似文献   

17.
The aim of this study was to evaluate the use of gray-level quantification (GLQ) in virtual touch tissue imaging (VTI) in the differential diagnosis of breast lesions. GLQ values of 153 lesions (101 benign, 52 malignant) were analyzed with matrix laboratory software (MATLAB, The MathWorks, Natick, MA, USA), with gray levels ranging from 0 (pure black) to 255 (pure white). The diagnostic performance of GLQ was also evaluated using receiver operating characteristic curve analysis. The mean GLQ value for benign lesions (103.27 ± 39.44) differed significantly from that for malignant lesions (44.57 ± 13.61) (p < 0.001). At a cutoff value of 52.31, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value were 86.5%, 93.1%, 90.8%, 86.5% and 93.1%, respectively. In conclusion, we have proposed a method for quantification of gray levels in VTI for the differential diagnosis of breast lesions. Our results indicate that this method has the potential to aid in the classification of benign and malignant breast masses.  相似文献   

18.
19.
The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77–0.84) and 0.84 (95% CI: 0.81–0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56–7.62) and 0.23 (95% CI: 0.17–0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58–52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound.  相似文献   

20.
The aim of this study is to evaluate the utility of acoustic radiation force impulse (ARFI) elastography for assessing hepatic fibrosis stage and non-alcoholic fatty liver disease (NAFLD) severity, as well as the relationship among hepatic histologic changes using shear wave velocity (SWV). Animal models with various degrees of NAFLD were established in 110 rats. The right liver lobe was processed and embedded in a fabricated gelatin solution (porcine skin). Liver mechanics were measured using SWV induced by acoustic radiation force. Among the histologic findings, liver elasticity could be used to differentiate normal rats from rats with simple steatosis (SS) as well as distinguish SS from non-alcoholic steatohepatitis (NASH), with areas under the receiver operating characteristic curves (AUROC) of 0.963 (95% confidence interval = 0.871–0.973) and 0.882 (95% confidence interval = 0.807–0.956), respectively. For NAFLD rats, the diagnostic performance of ARFI elastography in predicting significant fibrosis (F ≥ 2) had an AUROC of 0.963. For evaluating steatosis severity, we found a progressive increase in ARFI velocity proportional to steatotic severity in NAFLD rat models, but we observed no significant differences for steatotic severity after excluding the rats with fibrosis. ARFI elastography may be used to differentiate among degrees of severity of NAFLD and hepatic fibrotic stages in NAFLD rat models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号