首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats transgenic (TG) for the human major histocompatibility complex (MHC) class I HLA-B27 and beta2-microglobulin genes develop chronic colitis under specific pathogen-free (SPF) but not sterile (germ-free, GF) conditions. We investigated the role of antigen-presenting molecules involved in generating immune responses by CD4+ mesenteric lymph node (MLN) cells from colitic HLA-B27 TG rats to commensal enteric micro-organisms. All TG MLN cells expressed HLA-B27. A higher level of MHC class II was expressed on cells from TG rats, both SPF and GF, compared to non-TG littermates. In contrast, rat MHC class I expression was lower on TG than non-TG cells. Both TG and non-TG antigen presenting cells (APC) pulsed with caecal bacterial antigens induced a marked interferon-gamma (IFN-gamma) response in TG CD4+ T lymphocytes but failed to stimulate non-TG cells. Blocking MHC class II on both TG and non-TG APC dramatically inhibited their ability to induce TG CD4+ T cells to produce IFN-gamma. Blocking HLA-B27 on TG APC similarly inhibited IFN-gamma responses. When the antibodies against MHC class II and HLA-B27 were combined, no APC-dependent IFN-gamma response was detected. These data implicate both native rat MHC class II and TG HLA-B27 in CD4+ MLN T-cell IFN-gamma responses to commensal enteric microflora in this colitis model.  相似文献   

2.
Abstract: Cells lacking expression of the transporter associated with antigen processing (TAP) are deficient in surface HLA class I, yet express reduced levels of HLA-A2 antigen through TAP-independent processing pathways. We have analysed the expression of HLA-A, -B and -C antigens on the 721.174 and T2 TAP-deficient mutant cell lines using a panel of monoclonal antibodies specific for the HLA antigens encoded by the genotype of these cells. Our study has shown the constitutive expression of HLA-Cwl molecules on the cell surface of both T2 and 721.174 cells and has confirmed that HLA-A2 and HLA-B51 are expressed at low levels. Transfection of 721.174 cells with cDNAs encoding TAP1 and TAP2 proteins did not fully restore HLA class I antigen expression on these cells, which appeared to be mainly due to a deficiency in expression of the HLA-B51-associ-ated Bw4 epitope. This suggests that additional antigen-processing genes may be required for optimal generation of HLA-B-binding peptides. Our results indicate that TAP-independent pathways of antigen-processing provide peptides for functional expression of all three classical HLA class I molecules.  相似文献   

3.
The T-cell differentiation antigen, CD4, is expressed by major histocompatibility (MHC) class II restricted T lymphocytes. CD4+CD8- T cells use their T-cell receptor to recognize foreign antigens in association with MHC class II products (Ia). The association between CD4 expression and restriction by MHC class II products has led to the hypothesis that CD4 may interact with monomorphic determinants of MHC class II molecules. A large body of experimental evidence suggests that CD4 interaction with MHC class II molecules leads to an increase in the binding avidity of T cell-stimulator cell interactions. A direct test for a functional CD4-MHC class II interaction in T-cell activation requires a separate evaluation of CD4-Ia interactions from T-cell receptor (TcR)-antigen (Ag)/Ia recognition. However, a separate evaluation proves difficult since the T-cell receptor and CD4 may interact with the same MHC class II molecule. In this report, we use a T-cell activation protocol where TcR-Ag/Ia recognition is replaced by TcR complex-anti-CD3 antibody interactions. Therefore, the affinity of the TcR complex for its ligand (the anti-CD3 mAb) is independent from MHC expression on target cells and allows a separate evaluation of the role of accessory molecules in T-cell activation. We have analysed the effects of monoclonal anti-MHC class II antibodies on the activation of a CD4+ T-cell hybridoma in the absence of its TcR restricting MHC class II molecule (I-Ek) but in the presence of unrelated MHC class II molecules (I-Ed, I-Ad). The data obtained indicate a functional interaction between the CD4 molecule and a non-polymorphic region of the MHC class II product in T-cell triggering.  相似文献   

4.
In general, exogenous proteins are processed by antigen-presenting cells in the endosomes for major histocompatibility complex (MHC) class II presentation to CD4+ T cells, while proteins synthesized endogenously are processed in the cytoplasm for MHC class I presentation to CD8+ T cells. However, it is recognized that exogenous proteins can be processed for MHC class I presentation also, and evidence in favour of alternatives to the conventional MHC class I processing and presentation pathway is accumulating. Here, we show that exogenous recombinant influenza A virus nucleoprotein (rNP) is processed for MHC class I presentation to CD8+ cytotoxic T lymphocytes (CTL) by EBV-transformed, B-lymphoblastoid cell lines (B-LCL). Processing of rNP for HLA-B27-associated presentation seemed to follow the conventional MHC class I pathway predominantly, as presentation was diminished in the presence of lactacystin and brefeldin A, but was less sensitive to chloroquine and NH4Cl. HLA-B27-associated presentation was also observed using cells lacking a functional transporter associated with antigen processing, suggesting that alternative pathways may be exploited for processing of rNP.  相似文献   

5.
Tapasin is a 48-kDa endoplasmic reticulum (ER)-resident glycoprotein that binds to the transporter associated with antigen processing (TAP) and mediates an interaction between TAP and newly synthesized MHC class I molecules. It is also essential for the proper antigen presenting function of HLA-A*0101 (HLA-A1), HLA-A*0801 (HLA-B8) and HLA-B*4402 (HLA-B4402). We show here that while tapasin is required for HLA-A*0201 (HLA-A2) molecules to bind to TAP, its absence does not block the presentation of HLA-A2-restricted TAP-dependent epitopes to cytotoxic T lymphocytes indicating that, unlike HLA-A1, HLA-B8 and HLA-B4402, HLA-A2 has access to the TAP-dependent peptide pool even in the absence of tapasin. Nevertheless, the overall efficiency with which HLA-A2 was loaded with optimal, stabilizing peptides was impaired in the cell line .220, resulting in a significant increase in the fraction of HLA-A2 molecules being released from the ER in a “peptide-receptive” state.  相似文献   

6.
In order to determine how T cell-presented peptides associate with the antigen binding sites (desetopes) of class I major histocompatibility complex (MHC) molecules and how they might be scavenged from an endogenous processing pathway for transfer to those molecules, we characterized the binding of two synthetic peptides restricted by HLA-B37 or HLA-A2 to class I MHC molecules and to cellular proteins of histotyped cell lines, by gel filtration and photo-affinity labeling techniques. In gel filtration binding studies, each peptide associated with immunopurified class I MHC molecules from cells with its restricting, histotype, but little was bound to class I MHC molecules from cells without the restricting histotype and none was bound to bovine serum albumin. After crosslinkage of a radioiodinated photoreactive derivative of influenza virus nucleoprotein peptide NP(336-355Y) and immunoprecipitations with antibodies to class I MHC molecules, that peptide was found to bind to immunopurified class I MHC molecules from HLA-B37+ but not HLA-B37- cells. Binding of the [125I]NP peptide increased from 6 to 12 hr of incubation and was competed by unlabeled, NP peptide but not by HLA-A2-restricted, influenza virus matrix MA(57-73). The principal microsomal membrane proteins binding [125I]NP were about 65, 45 and 33 kD.  相似文献   

7.
Human leukocyte antigen (HLA) class I and class II molecules differ with respect to their intracellular pathways and the compartments where they associate with processed antigen. To study possible consequences of these differences for the kinetics of antigen presentation by HLA class I and class II molecules, we analyzed changes in the concentrations of free intracellular calcium ions in influenza virus-specific T cell clones after recognition of specific antigen/HLA complexes. HLA class II-restricted viral antigen presentation by Epstein-Barr virus-transformed B lymphoblastoid cell lines (B-LCL) to CD4+ T cell clones started within 1 h and showed little variability, irrespective of antigen specificity or restriction element tested. In contrast, kinetics of viral antigen presentation by HLA class I molecules to CD8+ T cell clones were slower and differed for three antigen/HLA class I complexes tested. While B-LCL presented antigen by HLA-A2 and by HLA-B37 after at least 2 h, they only started to present antigen in the context of HLA-B7 after more than 4 h. This difference in kinetics did not correlate with differences in bulk transport rates of HLA-A2, HLA-B37, and HLA-B7, but seemed greatly influenced by differential rates of peptide generation. Brefeldin A treatment of B-LCL showed for both HLA class I and class II that de novo synthesized HLA molecules were involved in antigen presentation. Thus, differences between intracellular pathways of HLA class I and class II molecules may result in different kinetics of antigen presentation.  相似文献   

8.
Human HLA class I deficiency is a rare disease which, in most of the patients described to date, results from a defect in subunit 1 or 2 of the peptide transporter associated with antigen processing (TAP). The clinical features of TAP deficiency include a chronic inflammation of the respiratory tract and/or granulomatous skin lesions. In this report, we describe two adult siblings with an HLA class I deficiency. One individual had only spontaneously-healing skin granulomatous lesions, while the second did not display any of the symptoms associated with HLA class I deficiency and could be considered to be healthy. We show that the patients display a homozygous TAP2 mutation which blocks the maturation of HLA class I molecules. Cell surface expression of these molecules is strongly reduced, but three times higher than on cells from other previously described TAP-deficient individuals. This higher expression results, at least in part, from the presence of HLA-B7 molecules which are probably empty of peptide. The numbers of CD8+ alphabeta T cells are almost normal in these patients. The anti-EBV T-cell response of one patient is mediated by HLA-B7 restricted CD8+ alphabeta T lymphocytes recognizing the BMRF1 nuclear EBV antigen, demonstrating that CD8+ alphabeta T cells can participate in anti-viral responses. This study shows that TAP deficiency can remain totally asymptomatic for several decades, and suggests that in some cases, TAP-independent immune responses provide efficient protection from most of the common intracellular pathogens.  相似文献   

9.
Recent evidence has demonstrated that cross-linking class I major histocompatibility complex (MHC) molecules on human T cells with monoclonal antibodies (mAb) triggers T cell activation. The only known natural ligand for MHC class I molecules is CD8. Therefore, the possibility that CD8+ T cells might provide activation signals to other T cells by engaging MHC class I molecules was examined by culturing CD4+ peripheral blood T cells with Chinese hamster ovary cells (CHO) cells that had been transfected with the alpha chain or alpha and beta chains of CD8 and assessing interleukin (IL)-2 production. CD4+ T cells did not secrete IL-2 when cultured alone, with control or CD8+ CHO cells. In contrast, CD4+ T cells produced IL-2 when cultured with CD8+ CHO cells and co-stimulated with phorbol myristate acetate (PMA) or mAb to CD3 or CD28. PMA stimulated substantially less IL-2 when control CHO cells were employed and the mAb to CD3 and CD28 did not stimulate IL-2 production in the presence of control CHO cells. The co-stimulatory activity of CD8+ CHO cells was completely eliminated by mAb to CD8 or MHC class I molecules. The data demonstrate that CD8 can interact with MHC class I molecules expressed on T cells and deliver a costimulatory signal that increases IL-2 production. Thus, engagement of MHC class I molecules by its natural ligand, CD8, provides an activation signal to T cells. Under some circumstances, such interactions may amplify the responses of T cells.  相似文献   

10.
Peripheral blood gamma delta T cells from non-exposed individuals respond to antigens of the malaria parasite, Plasmodium falciparum, in vitro. This response, largely caused by T cells bearing the V gamma 9+ chain of the T-cell receptor, is stimulated by components of the parasite expressed on the schizont stage and released at schizont rupture. The response of V gamma 9+ T cells to parasite components is inhibited by antibodies to major histocompatibility complex (MHC) class I and class II. However, the inhibition by anti-MHC class II antibodies can be overcome by the addition of interleukin-2 (IL-2) to the cultures, suggesting that gamma delta T cells themselves do not recognize MHC class II molecules but require an MHC class II-dependent response taking place in the culture. In contrast, the inhibition by anti-class I antibodies cannot be reversed by addition of IL-2. Since an accompanying CD4+ T-cell response occurred in peripheral blood mononuclear cells cultured with P falciparum antigens, it was considered that these cells provide the cytokines necessary for the subsequent activation and expansion of V gamma 9+ T cells recognizing components of the parasite and MHC class I molecules. This was confirmed by reconstituting the response of enriched gamma delta T cells to P falciparum schizont extract by addition of purified CD4+ T cells.  相似文献   

11.
Most immune responses to viral infections involve CD8+ T cells recognizing viral peptides of typically 9-10 amino acids in the groove of major histocompatibility complex (MHC) class I. Importantly, CD8+ T-cell responses appear to focus on few viral epitopes, a phenomenon termed immunodominance. While the understanding of this phenomenon has been based largely on experimental mice models, it is imperative to evaluate its contribution in humans, as the design of peptide-based vaccines may be influenced by immunodomination. Here, we present evidence that immunodominance can be detected among Epstein-Barr virus (EBV) epitopes associated with two of the most frequent class I alleles in Western Europe, human leucocyte antigen (HLA)-A2 and HLA-B7. CD8+ T-cell responses to HLA-A2-associated EBV epitopes were significantly reduced in individuals coexpressing HLA-B7. The impairment of HLA-A2-associated responses correlated with a dominant response to an HLA-B7 epitope. The data demonstrate a hierarchy in the human cellular immune response to immunodominant EBV epitopes presented by separate HLA class I alleles. This may have implications for EBV vaccine development as well as for the interpretation of isolated analysis of immunodominant responses to EBV.  相似文献   

12.
An L3T4(CD4)+ CTL clone specific for Friend virus-induced tumor FBL-3 was isolated, characterized and compared with a conventional Lyt-2(CD8)+ CTL clone. This clone L3.1 was obtained from the limiting dilution culture of splenic MLTC cells from a CB6F1 mouse whose CD8+ T cells had been suppressed by an in vivo injection of anti-Lyt-2.2 mAb. The phenotype of clone L3.1 was sIg-, Thy-1.2+, L3T4(CD4)+, Lyt-2 (CD8)-, and Ia- as determined by flow-cytometry. Northern blot analysis also confirmed that mRNA for L3T4(CD4), but not for Lyt-2 (CD8) was present in the total RNA of L3.1. The FBL-3-specific killing activity of L3.1 was inhibited by anti-H-2D6 mAb, and the tumor cells did not express class II MHC antigen, indicating that the recognition of tumor antigen by this CD4+ CTL clone was restricted by the class I MHC molecule on the tumor cells. Furthermore, the finding that anti-L3T4(CD4) mAb GK1.5 inhibited the specific and lectin-dependent non-specific cytotoxicity of L3.1 suggested that CD4 molecules on this CTL clone are not ligand (MHC class II)-binding proteins, but are involved in signal transduction.  相似文献   

13.
Challenged by scattered understanding of protective immunity to Mycobacterium tuberculosis (MTB), we have mapped peptide epitopes to human leukocyte antigen (HLA)-A*0101, A*0201, A*1101, A*2402, B*0702, B*0801 and B*1501 of the secreted mycobacterial antigen Ag85B, a vaccine candidate that may be associated with immune protection. Affinity (ED(50)) and half-life (t(1/2), off-rate) analysis for individual peptide species on HLA-A and HLA-B molecules revealed binding ranges between 10(-3) and 10(-7) M. After selection of the best matches, major histocompatibility complex class I/peptide tetramer complexes were constructed to measure the CD8+ T-cell responses directly ex vivo in peripheral blood mononuclear cells (PBMC) derived from 57 patients with acute pulmonary tuberculosis. Three patterns of (allele-) specific CD8+ recognition were identified: (a). Focus on one dominant epitope with additional recognition of several subdominant T-cell epitopes (HLA-A*0301, A*2402, B*0801 and B*1501); (b). Co-dominant recognition of two distinct groups of peptides presented by HLA-B*0702; and (c). Diverse and broad recognition of peptides presented by HLA-A*0201. Peptides that bound with slow off-rates to class I alleles, that is HLA-A*0201, were associated with low frequency of CD8+ T cells in PBMCs from patients with tuberculosis. HLA-B alleles showed fast off-rates in peptide binding and restricted high numbers (up to 6%) of antigen-specific CD8+ T cells in patients with pulmonary tuberculosis.  相似文献   

14.
The mechanisms of antigen recognition employed by both class I and class II MHC-restricted T cells are very similar, yet many of the T cell determinants described to date are recognized in the context of a single class of MHC molecules, and generally with only one or a very few different MHC alleles. To determine whether this might be due to a structural difference between class I and class II restricted T cell determinants, peptides previously shown to be recognized in the context of MHC class I proteins by mouse or human CD8+ T lymphocytes were tested for their capacity to bind to HLA-DR molecules on the surface of B lymphoblastoid cell lines (B-LCL). Four out of five class I restricted T cell determinants tested bound to a panel of B-LCL, and the binding was inhibited by anti-HLA-DR mAb. The peptides did not bind to the class II-negative B-LCL RJ2.2.5 nor to mouse L cells, but did bind to L cells transfected with HLA-DR1.  相似文献   

15.
A human T cell receptor (TcR) alpha/beta CD4+CD8-T cell clone (R416) is reactive with the minor histocompatibility antigen H-Y in the context of major histocompatibility complex (MHC) class I and not class II molecules. Therewith clone R416 violates the so-called specificity association of mature TcR alpha/beta+ T cells. R416 displays H-Y-specific, HLA-A2-restricted proliferation as well as cytotoxicity in vitro. Its fine specificity is identical to that of a classical H-Y-reactive CD4-CD8+ MHC class I-restricted CTL clone, showing that CTL expressing either CD4 or CD8 can display identical antigenic specificities. Exploiting the MHC class I restriction of this CD4+ T cells clone, it was found that interaction of CD4 with non-TcR-bound MHC class II molecules does not contribute to antigen specific activation of these CD4+ T cells. This coreceptor-mismatched T cell clone was not generated in vitro but obtained by expansion of CD8-depleted peripheral blood mononuclear cells of a female who had been immunized against H-Y. The existence of such MHC class I-restricted mature TcR alpha/beta+ T cells expressing CD4 and not CD8 is relevant because it indicates that the generally accepted model for thymic selection, in which the TcR specificity alone determines CD4/CD8 expression of mature thymocytes, may not be absolute.  相似文献   

16.
T helper cells recognize processed antigen (Ag) in the context of major histocompatibility complex (MHC) class II antigens present on the surface of B cells and other Ag-presenting cells. This interaction is mediated through the T cell receptor complex with associate recognition of class II molecules by the CD4 molecule. In this study, the binding of a soluble recombinant CD4/Ig heavy chain fusion protein (CD4-gamma 3) or monoclonal antibody (mAb) to class II antigens on human B cells was shown to induce rapid and specific homotypic adhesion of B cells and most B lymphoblastoid cell lines. mAb reactive with CD4 inhibited CD4-gamma 3-induced adhesion and a mutant B lymphoblastoid cell line deficient in class II antigens failed to respond. Induction of homotypic adhesion was dependent on energy metabolism and a functional cytoskeleton, and class II+ pre-B cells did not exhibit adhesion in response to these stimuli, suggesting that cross-linking of class II molecules generated a transmembrane signal and did not simply aggregate cells. In addition, MHC class II-induced adhesion was Fc receptor independent, as 15 mAb of different Ig isotypes reactive with HLA-D or HLA-DQ gene products induced adhesion. Anti-class II mAb and CD4-gamma 3 were able to induce adhesion at concentrations as low as 10 ng/ml and 100 ng/ml, respectively. Suboptimal stimulation of B cell lines through HLA-D antigens induced homotypic adhesion that was dependent on the activation of LFA-1 (CD11a/CD18), and which could be blocked by specific mAb. However, at greater signal strengths, adhesion was not blocked by mAb against the known adhesion receptors, suggesting the induction of a novel adhesion pathway. Consistent with this, homotypic adhesion induced by engagement of MHC class II antigens was observed with LFA-1-deficient B cell lines, and was independent of CD49d or CD18 expression. Thus, the direct engagement of B cell class II antigens by CD4 is likely to generate transmembrane signals which trigger both LFA-1-dependent and LFA-1-independent adhesion pathways.  相似文献   

17.
Dendritic cells have been used effectively to select for human cytomegalovirus (CMV)-specific T cells for immunotherapy applications. The ability to process and present relevant major histocompatibility complex class I and II peptides to T cells makes them ideal for selecting CD4+ and CD8+ T cells regardless of HLA tissue type. This study compared the generation of CMV-specific T cells by using dendritic cells loaded with either CMV pp65495-503 peptide or CMV lysate or transduced with adenovirus encoding the pp65 gene (Ad5pp65GFP) for the generation of CD4+ and CD8+ CMV-specific T cells in HLA-A2+ and HLA-A2 - donors. In HLA-A2+ donors, CD8+ tetramer+ T cells increased with all antigens but were greatest in peptide- and Ad5pp65GFP-stimulated T cells. The CD4+ /CD8+ ratio in the stimulated T-cell cultures proved to be dependent on the antigen used. CMV lysate-stimulated cells were primarily CD4+, whereas peptide- and Ad5pp65GFP-stimulated cultures were mostly CD8+. Analysis of cells from lysate-stimulated or gene-transduced-stimulated cultures showed expansion of CMV-specific CD4+ T cells, indicating that major histocompatibility complex class II peptides were present in both antigens. Furthermore, CMV-specific T cells were generated from HLA-A2 - donors by using Ad5pp65GFP transduction or CMV lysate stimulation and were able to recognize a pp65 peptide restricted to the HLA-B35 allele. These data indicate that either CMV lysate or adenovirus encoding CMV antigenic genes may be useful for the generation of both CD4+ and CD8+ CMV-specific T cells in donors irrespective of HLA tissue type and may be applicable to clinical immunotherapy.  相似文献   

18.
Cytotoxic T lymphocytes (CTL) recognize foreign antigens as short peptides presented by class I molecules of the major histocompatibility complex (MHC). T2 cells are profoundly defective in the presentation of endogenously synthesized antigens to CTL due to a deletion of MHC class II-encoded genes for transporters associated with antigen presentation (TAP1/TAP2). Surprisingly, we here demonstrate that T2 cells, after infection with Sendai virus, are readily killed by H-2Kb restricted CD8+ T cells. In contrast to classical class I-mediated antigen presentation, the presentation of Sendai virus antigen inT2Kb cells is brefeldin A (BFA) insensitive. The present findings may suggest the presence of an alternative pathway for MHC class I-mediated antigen presentation in T2 cells.  相似文献   

19.
Two major histocompatibility complex (MHC) class I-reactive T cell clones derived from H-2b mice, generated against the allogeneic Ld molecule, were found to recognize the H-2b class II mutant Abm12 molecule as well. In addition, these clones also recognize the class II As molecule, and display a class II-dependent reactivity to staphylococcal enterotoxin B. Neither the class I nor the class II alloreactivities of the clones were found to be dependent on other MHC molecules. Both clones express CD4+CD8? phenotypes. The CD4 molecule appears to be involved in their class II reactivity, while little or no role for CD4 could be detected in the class I reactivity. This is the first report of a class I/class II cross-reactivity being mediated by CD4+ T cells. The structural basis for this cross-reactivity is discussed.  相似文献   

20.
To investigate how early events in antigen processing affect the repertoire of peptides presented by MHC class I molecules, we compared the presentation of the influenza A nucleoprotein epitope 265 – 273 by HLA-A3 class I molecules in human and mouse cells. Mouse cells that express HLA-A3 failed to present the NP265 – 273 peptide when contained within the full-length nucleoprotein, to HLA-A3-restricted human cytotoxic T lymphocytes. However, when the epitope was generated directly in the cytosol using a recombinant vaccinia virus that expressed the nonamer peptide, mouse cells were recognized by HLA-A3-restricted CTL. Poor transport of the peptide by mouse TAP was not responsible for the defect as co-infection of mouse cells with recombinant vaccinia viruses encoding the full-length nucleoprotein and the human TAP1 and TAP2 peptide transporter complex failed to restore presentation. These results therefore demonstrate a differential processing of the influenza nucleoprotein in mouse and human cells. This polymorphism influences the repertoire of peptides presented by MHC class I molecules at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号