首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Embryonic stem (ES) cells, which can differentiate into almost all types of cells, have been derived from the house mouse Mus musculus, rat, rabbit, humans, and other species. Transmission of the genotype to the offspring of chimeras has been achieved only with M. musculus ES cells, limiting targeted mutagenesis using ES cells to this species. Mus spretus, which exhibits many genetic polymorphisms with M. musculus, displays dominant resistance to cancer and inflammation, making derived inbred strains very useful in positional cloning and interspecies mapping. We show here for the first time the derivation of ES cells from hybrid blastocysts, obtained by the mating of two different species, namely Mus musculus and Mus spretus, and their use for the generation of chimeric mice that transmit the Mus spretus genotype and phenotype to the offspring. These hybrid ES cells allow the genetic manipulation of Mus spretus, as an alternative to Mus musculus.  相似文献   

2.
Embryonic stem cells and the challenge of transplantation tolerance   总被引:5,自引:0,他引:5  
Isolated from early blastocysts, embryonic stem (ES) cells capture the brief moment of pluripotency in the developing embryo, as evidenced by their differentiation into many somatic cell types in vitro. Although these properties might help meet the growing demand for 'spare parts' to replace diseased or worn-out tissues, their use in so-called cell replacement therapy (CRT) poses several challenges, not least of which is the prevention of their subsequent rejection. Here we explore the notion that ES cells might spawn cell types necessary for the treatment of disease while acting as a plentiful source of hematopoietic stem cells (HSCs) or terminally differentiated dendritic cells (DCs) that might facilitate the induction of transplantation tolerance to the replacement tissues.  相似文献   

3.
Various conditions for differentiating embryonic stem (ES) cells or induced pluripotent stem (iPS) cells into specific kinds of cell lines are under intensive investigation. However, the production of a functional organ with a three‐dimensional structure from ES or iPS cells is difficult to achieve in vitro. In the present paper, we describe the establishment of a green fluorescent protein‐expressing rat ES cell line and production of mouse?rat ES chimera by injecting rat ES cells into mouse blastocysts. The rat ES cells contributed to various organs in the chimera, including germ cells. When we injected ES cells into blastocysts of nu/nu mice lacking a thymus, the resultant chimeras produced thymus derived from rat ES cells in their bodies. The chimeric animals may provide a method for the derivation of various organs from ES or iPS cells.  相似文献   

4.
Huang J  Deng K  Wu H  Liu Z  Chen Z  Cao S  Zhou L  Ye X  Keefe DL  Liu L 《Stem cells (Dayton, Ohio)》2008,26(7):1883-1890
The conventional method for producing embryonic stem (ES) cell-derived knockout or transgenic mice involves injection of ES cells into normal, diploid blastocysts followed by several rounds of breeding of resultant chimeras and thus is a time-consuming and inefficient procedure. F0 ES cell pups can also be derived directly from tetraploid embryo complementation, which requires fusion of two-cell embryos. Recently, F0 ES cell pups have been produced by injection of ES cells into eight-cell embryos using a laser-assisted micromanipulation system. We report a simple method for producing F0 ES cell germline-competent mice by piezo injection of ES cells into four- or eight-cell embryos. The efficiency of producing live, transgenic mice by this method is higher than that with the tetraploid blastocyst complementation method. This efficient and economical technique for directly producing F0 ES cell offspring can be applicable in many laboratories for creating genetically manipulated mice using ES cell technology and also for stringent testing of the developmental potency of new ES cell or other types of pluripotent stem cell lines.  相似文献   

5.
Embryoid bodies: an in vitro model of mouse embryogenesis   总被引:9,自引:0,他引:9  
Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of blastocysts. ES cells are able to differentiate into the three primitive layers (endoderm, mesoderm and ectoderm) of the organism, including the germline. To study early stages of development, as well as to investigate the impact of a gene knock-out in vitro, ES cells are differentiated into three-dimensional structures called embryoid bodies, because of their ability to mimick post-implantation embryonic tissues. This review summarises the work on ES cell differentiation into haematopoietic and vascular cells, neuronal and glial cells, myocytes, and adipocytes, using this in vitro model of early embryogenesis. We also present the potential of this method to analyse the impact of genetic alterations in vitro.  相似文献   

6.
Embryonic stem (ES) cell lines are pluripotent stem cell lines that can be propagated indefinitely in culture, retaining their potency to differentiate into every type of cell and tissue in the body. ES cell lines were first established from mouse blastocysts, and have been used for research in developmental biology. ES cells have been proven to be very valuable in the genetic modification of the mouse, especially in producing knockout mice. Since establishment of human ES cell lines was reported, their use in cell replacement therapies has been enthusiastically expected. There have been reports of the differentiation of several useful cell types from human ES cell lines, and clinical use of functional tissues and cells from human ES cells is anticipated. In Japan, there have also been many demands for the use of human ES cells in basic and pre-clinical research. We obtained governmental permission to establish human ES cell lines in April 2002 and started research using donated frozen embryos in January 2003. We successfully established three ES cell line from three blastocysts. These cell lines will be distributed at cost to researchers who have governmental permission to use human ES cells.  相似文献   

7.
Three tumours which arose in two (one male and one hermaphrodite) out of 63 chimaeric mice resulting from injection of E14TG2a embryo stem (ES) cells into host blastocysts have been investigated. All of the tumours appeared within the first 3 weeks after birth. The tumour in the male chimaera and one of the tumours in the hermaphrodite were in the perigenital region but were extragonadal. The third, smaller tumour in the hermaphrodite was on the caecum. The perigenital tumour in the male chimaera was a teratocarcinoma with a wide variety of differentiated tissues, including non-pigmented retina, as well as nests of undifferentiated embryonal carcinoma (EC) cells with high levels of alkaline phosphatase activity. The perigenital tumour in the hermaphrodite was a teratoma, less differentiated and with no evidence of EC cells. Glucose phosphate isomerase isozyme analysis indicated that both perigenital tumours were predominantly of the injected ES cell rather than the host blastocyst type. The possible origins of these tumours, which are the first reported to have arisen from ES cells in chimaeric mice, are discussed.  相似文献   

8.
Although the complete sequence of a mammalian genome defines the information content of each cell, understanding the selective usage of this information during the development of specific cell types is limited. The fundamental questions that remain to be answered includes, which are the gene subsets that define the pluripotential self-renewing state of embryonic stem (ES) cells, partially and terminally differentiated developmental states, and how are transitions between these states regulated (lineage commitment)? The FunGenES consortium has been formed to address this challenge by mapping the gene subsets involved in pluripotent, lineage committed, and selected differentiated cell types using gene expression profiling and functional screens. They create an atlas of mammalian genome participating in early and late developmental processes. To fulfil the aim, mouse ES cells were used as an in vitro developmental model system that is very close to the human as they are pluripotent. They can be differentiated through the three major developmental pathways ecto-, meso-, and endoderm into many committed cell types and can be genetically engineered with relative ease. Knowledge of genetic pathways in mouse ES cell differentiation and development might be translated to human ES cells and the potential development of stem cell-based therapies.  相似文献   

9.
ActRIB is a type I transmembrane serine/threonine kinase receptor that has been shown to form heteromeric complexes with the type II activin receptors to mediate activin signal. To investigate the function of ActRIB in mammalian development, we generated ActRIB-deficient ES cell lines and mice by gene targeting. Analysis of the ActRIB−/− embryos showed that the epiblast and the extraembryonic ectoderm were disorganized, resulting in disruption and developmental arrest of the egg cylinder before gastrulation. To assess the function of ActRIB in mesoderm formation and gastrulation, chimera analysis was conducted. We found that ActRIB−/− ES cells injected into wild-type blastocysts were able to contribute to the mesoderm in chimeric embryos, suggesting that ActRIB is not required for mesoderm formation. Primitive streak formation, however, was impaired in chimeras when ActRIB−/− cells contributed highly to the epiblast. Further, chimeras generated by injection of wild-type ES cells into ActRIB−/− blastocysts formed relatively normal extraembryonic tissues, but the embryo proper developed poorly probably resulting from severe gastrulation defect. These results provide genetic evidence that ActRIB functions in both epiblast and extraembryonic cells to mediate signals that are required for egg cylinder organization and gastrulation.  相似文献   

10.
Chromosome deletions have several applications in the genetic analysis of complex organisms. They can be used as reagents in region-directed mutagenesis, for mapping of simple or complex traits, or to identify biological consequences of segmental haploidy, the latter being relevant to human contiguous gene syndromes and imprinting. We have generated three deletion complexes in ES (Embryonic Stem) cells that collectively span approximately 40 cM of proximal mouse chromosome 5. The deletion complexes were produced by irradiation of F(1) hybrid ES cells containing herpes simplex virus thymidine kinase genes (tk) integrated at the Dpp6, Hdh (Huntington disease locus), or Gabrb1 loci, followed by selection for tk-deficient clones. Deletions centered at the adjacent Hdh and Dpp6 loci ranged up to approximately 20 cM or more in length and overlapped in an interdigitated fashion. However, the interval between Hdh and Gabrb1 appeared to contain a locus haploinsufficient for ES cell viability, thereby preventing deletions of either complex from overlapping. In some cases, the deletions resolved the order of markers that were previously genetically inseparable. A subset of the ES cell-bearing deletions was injected into blastocysts to generate germline chimeras and establish lines of mice segregating the deletion chromosomes. At least 11 of the 26 lines injected were capable of producing germline chimeras. In general, those that failed to undergo germline transmission bore deletions larger than the germline-competent clones, suggesting that certain regions of chromosome 5 contain haploinsufficient developmental genes, and/or that overall embryonic viability is cumulatively decreased as more genes are rendered hemizygous. Mice bearing deletions presumably spanning the semidominant hammertoe locus (Hm) had no phenotype, suggesting that the classic allele is a dominant, gain-of-function mutation. Overlapping deletion complexes generated in the fashion described in this report will be useful as multipurpose genetic tools and in systematic functional mapping of the mouse genome.  相似文献   

11.
Classic derivation of mouse embryonic stem (ES) cells from blastocysts is inefficient, strain-dependent, and requires expert skills. Over recent years, several major improvements have greatly increased the success rate for deriving mouse ES cell lines. The first improvement was the establishment of a user-friendly and reproducible medium-alternating protocol that allows isolation of ES cells from C57BL/6 transgenic mice with efficiencies of up to 75%. A recent report describes the use of this protocol in combination with leukemia inhibitory factor and pluripotin treatment, which made it possible to obtain ES cells from F1 strains with high efficiency. We report modifications of these protocols for user-friendly and reproducible derivation of mouse ES cells with efficiencies of up to 100%. Our protocol involves a long initial incubation of primary outgrowths from blastocysts with pluripotin, which results in the formation of large spherical outgrowths. These outgrowths are morphologically distinct from classical inner cell mass (ICM) outgrowths and can be easily picked and trypsinized. Pluripotin was omitted after the first trypsinization because we found that it blocks attachment of ES cells to the feeder layer and its removal facilitated formation of ES cell colonies. The newly established ES cells exhibited normal karyotypes and generated chimeras. In summary, our user-friendly modified protocol allows formation of large spherical ICM outgrowths in a robust and reliable manner. These outgrowths gave rise to ES cell lines with success rates of up to 100%.  相似文献   

12.
In recent years, considerable progress has been made in the establishment and differentiation of human embryonic stem (ES) cell lines. The primordial germ cells (PGCs) and embryonic germ (EG) cells derived from them share many of their properties with ES cells. ES cell lines have now been derived from different stages of germ cell development and they have differentiated into gametes and shown embryonic development in mice, including the production of live pups. Conversely, germ cells can also be derived from ES cells. It has been demonstrated that murine (m) ES cells can differentiate into PGCs and subsequently into early gametes (oocytes and sperms) and blastocysts. Recently, immature sperm cells derived from mES cells in culture have produced live offspring. Preliminary research has indicated that human (h) ES cells probably have the potential to differentiate into germ cells. Adult stem cells have been reported to differentiate into mature germ cells in vitro. Therefore, stem cells may offer a valuable in vitro model for the investigation of germ cell development and the early stages of human gametogenesis, including epigenetic modifications of the germ line. This review discusses recent developments in the derivation and specification of mammalian germ cells from ES cells and describes some of the mechanisms of germ cell development.  相似文献   

13.
14.
Multilineage differentiation from human embryonic stem cell lines   总被引:68,自引:0,他引:68  
Stem cells are unique cell populations with the ability to undergo both self-renewal and differentiation. A wide variety of adult mammalian tissues harbors stem cells, yet "adult" stem cells may be capable of developing into only a limited number of cell types. In contrast, embryonic stem (ES) cells, derived from blastocyst-stage early mammalian embryos, have the ability to form any fully differentiated cell of the body. Human ES cells have a normal karyotype, maintain high telomerase activity, and exhibit remarkable long-term proliferative potential, providing the possibility for unlimited expansion in culture. Furthermore, they can differentiate into derivatives of all three embryonic germ layers when transferred to an in vivo environment. Data are now emerging that demonstrate human ES cells can initiate lineage-specific differentiation programs of many tissue and cell types in vitro. Based on this property, it is likely that human ES cells will provide a useful differentiation culture system to study the mechanisms underlying many facets of human development. Because they have the dual ability to proliferate indefinitely and differentiate into multiple tissue types, human ES cells could potentially provide an unlimited supply of tissue for human transplantation. Though human ES cell-based transplantation therapy holds great promise to successfully treat a variety of diseases (e.g., Parkinson's disease, diabetes, and heart failure) many barriers remain in the way of successful clinical trials.  相似文献   

15.
Embryonic stem (ES) cells are derived from the inner cell mass (ICM) of blastocysts. The use of ES cells as a source of differentiated cells holds great promise for cell transplantation therapy. The efficiency of ES cell derivation is affected by genetic variation in mice; that is, some mouse strains, such as C57BL/6, are amenable to ES cell derivation, whereas others, such as BALB/c, are refractory. Developing an efficient method to establish ES cells from strains of various genetic backgrounds should be valuable for derivation of ES cells in various mammalian species, including human. Although it is well-established that various signaling pathways, including phosphoinositide 3-kinase (PI3K)/Akt and Wnt/beta-catenin, regulate the maintenance of ES cell pluripotency, little is known about the signaling pathways involved in the derivation of ES cells from ICMs. In this study, we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3), one of the crucial molecules in the regulation of the Wnt/beta-catenin, Hedgehog, and Notch signaling pathways, dramatically augmented ES cell derivation from both C57BL/6 and BALB/c mouse strains. In contrast, Akt signaling activation enhanced the growth of ICM but did not increase the efficiency of ES cell derivation. Our study establishes an efficient means for ES cell derivation by pharmacological inhibition of GSK-3.  相似文献   

16.
Human embryonic stem (ES) cells are pluripotent cells that can differentiate into a large array of cell types and, thus, hold promise for advancing our understanding of human embryology and for contributing to transplantation medicine. In this study, differentiation of human ES cells was examined in vivo by in ovo transplantation to organogenesis-stage embryos. Colonies of human ES cells were grafted into or in place of epithelial-stage somites of chick embryos of 1.5 to 2 days of development. The grafted human ES cells survived in the chick host and were identified by vital staining with carboxyfluorescein diacetate or use of a green fluorescent protein-expressing cells. Histologic analysis showed that human ES cells are easily distinguished from host cells by their larger, more intensely staining nuclei. Some grafted cells differentiated en masse into epithelia, whereas others migrated and mingled with host tissues, including the dorsal root ganglion. Colonies grafted directly adjacent to the host neural tube produced primarily structures with the morphology and molecular characteristics of neural rosettes. These structures contain differentiated neurons as shown by beta-3-tubulin and neurofilament expression in axons and cell bodies. Axons derived from the grafted cells penetrate the host nervous system, and host axons enter the structures derived from the graft. Our results show that human ES cells transplanted in ovo survive, divide, differentiate, and integrate with host tissues and that the host embryonic environment may modulate their differentiation. The chick embryo, therefore, may serve as an accessible and unique experimental system for the study of in vivo development of human ES cells.  相似文献   

17.
The earliest segregation of lineages in the developing embryo is the commitment of cells to the inner cell mass or the trophoectoderm in preimplantation blastocysts. The exogenous signals that control commitment to a particular cell lineage are poorly understood; however, it has been suggested that extracellular "niche" and extracellular matrix, in particular, play an important role in determining the developmental fate of stem cells. Collagen IV (ColIV) has been reported to direct embryonic stem (ES) cell differentiation to mesodermal lineages in both mouse and human ES cells. To define the effects of ColIV on ES cell differentiation and to identify the resulting heterogeneous cell types, we performed microarray analyses and determined global gene expression. We observed that ColIV induced the expression of mesodermal genes specific to hematopoietic, endothelial, and smooth muscle cells and, surprisingly, also a panel of trophoectoderm-restricted markers. This effect was specific to collagen IV, as no trophoblast differentiation was seen on collagen I, laminin, or fibronectin. Stimulation with basic fibroblast growth factor (FGF) or FGF4 increased the number of trophoectodermal cells. These cells were isolated under clonal conditions and successfully differentiated into a variety of trophoblast derivatives. Interestingly, differentiation of ES cells to trophoblastic lineages was only seen in ES cell lines maintained on embryonic feeder layers and was caudal-type homeobox protein 2 (Cdx2)-dependent, consistent with Cdx2's postulated role in trophoectoderm commitment. Our data suggest that, given the appropriate extracellular stimuli, mouse embryonic stem cells can differentiate into trophoectoderm. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

18.
Understanding how to direct the fate of embryonic stem (ES) cells upon differentiation is critical to their eventual use in therapeutic applications. Clues for controlling ES cell differentiation may be found in the early embryo because mouse ES cells form derivatives of all three embryonic germ layers upon injection into blastocysts. One promising candidate for influencing the differentiation of ES cells into the embryonic germ layers is the transforming growth factor-beta (TGF-beta) growth factor, Nodal. Nodal null mouse mutants lack mesoderm, and injection of Nodal mRNA into nonmammalian embryos induces mesodermal and endodermal tissues. We find that overexpression of Nodal in mouse ES cells leads not only to up-regulation of mesodermal and endodermal cell markers but also to downregulation of neuroectodermal markers. These findings demonstrate the importance of Nodal's influence on the differentiation of pluripotent cells to all three of the primary germ layers. Accordingly, altering expression of factors responsible for cell differentiation in the intact embryo provides an approach for directing ES cell fates in vitro toward therapeutically useful cell types.  相似文献   

19.
BALB/c is one of the most widely used and best characterized mouse strains in immunology. For various applications, it is necessary to generate BALB/c transgenic mice. However, using the conventional microinjection technique it is extremely inefficient to produce transgenic BALB/c mice since the one-cell stage BALB/c embryos are highly vulnerable to pronuclear DNA microinjection. To overcome this problem, we have investigated the generation of Egr-1 (early growth response gene) transgenic mice via the transfection of BALB/c embryonic stem cells. Transfectants carrying Egr-1 constructs comprising either the immunoglobulin heavy chain or the MHC class II promoter/enhancer system were injected into C57BL/6 host blastocysts resulting in chimeric mice. For both type of expression vectors, transgenic offspring of the germline chimeras expressed recombinant Egr-1 in lymphoid tissues containing B cells. This demonstrates the successful generation of Egr-1 transgenic BALB/c mice using transfected ES cell.  相似文献   

20.
Human embryonic stem (ES) cells are predicted to be a valuable source for producing ES-derived therapeutic spare tissues to treat diseases by controlling their growth and differentiation. To understand the regulative mechanisms of their differentiation in vivo and in vitro, ES cells derived from nonhuman primates could be a powerful tool. We established four ES cell lines from cynomolgus monkey (Macaca fascicularis) blastocysts produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). The ES cells were characterized by the expression of specific markers such as alkaline phosphatase and stage-specific embryonic antigen-4. They were successfully maintained in an undifferentiated state and with a normal karyotype even after more than 6 months of culture. Pluripotential competence was confirmed by the formation of teratomas containing ectoderm-, mesoderm-, and endoderm- derivatives after subcutaneous injection into SCID mice. Differentiation to a variety of tissues was identified by immunohistochemical analyses using tissue-specific antibodies. Therefore, we established pluripotent ES cell lines derived from monkeys that are widely used as experimental animals. These lines could be a useful resource for preclinical stem cell research, including allogenic transplantation into monkey models of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号