首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary neutron doses from the delivery of 18 MV conventional and intensity modulated radiation therapy (IMRT) treatment plans were compared. IMRT was delivered using dynamic multileaf collimation (MLC). Additional measurements were made with static MLC using a primary collimated field size of 10 x 10 cm2 and MLC field sizes of 0 x 0, 5 x 5, and 10 x 10 cm2. Neutron spectra were measured and effective doses calculated. The IMRT treatment resulted in a higher neutron fluence and higher dose equivalent. These increases were approximately the ratio of the monitor units. The static MLC measurements were compared to Monte Carlo calculations. The actual component dimensions and materials for the Varian Clinac 2100/2300C including the MLC were modeled with MCNPX to compute the neutron fluence due to neutron production in and around the treatment head. There is excellent agreement between the calculated and measured neutron fluence for the collimated field size of 10 x 10 cm2 with the 0 x 0 cm2 MLC field. Most of the neutrons at the detector location for this geometry are directly from the accelerator head with a small contribution from room scatter. Future studies are needed to investigate the effect of different beam energies used in IMRT incorporating the effects of scattered photon dose as well as secondary neutron dose.  相似文献   

2.
3.
Chibani O  Ma CM 《Medical physics》2007,34(4):1206-1216
Significant discrepancies between Monte Carlo dose calculations and measurements for the Varian 18 MV photon beam with a large field size (40 x 40 cm2) were reported by different investigators. In this work, we investigated these discrepancies based on a new geometry model ("New Model") of the Varian 21EX linac using the GEPTS Monte Carlo code. Some geometric parameters used in previous investigations (Old Model) were inaccurate, as suggested by Chibani in his AAPM presentation (2004) and later confirmed by the manufacturer. The entrance and exit radii of the primary collimator of the New Model are 2 mm larger than previously thought. In addition to the corrected dimensions of the primary collimator, the New Model includes approximate models for the lead shield and the mirror frame between the monitor chamber and the Y jaws. A detailed analysis of the phase space data shows the effects of these corrections on the beam characteristics. The individual contributions from the linac component to the photon and electron fluences are calculated. The main source of discrepancy between measurements and calculations based on the Old Model is the underestimated electron contamination. The photon and electron fluences at the isocenter are 5.3% and 36% larger in the New Model in comparison with the Old Model. The flattening filter and the lead shield (plus the mirror frame) contribute 48.7% and 13% of the total electron contamination at the isocenter, respectively. For both open and filtered (2 mm Pb) fields, the calculated (New Model) and measured dose distributions are within 1% for depths larger than 1 cm. To solve the residual problem of large differences at shallow depths (8% at 0.25 cm depth), the detailed geometry of an IC-10 ionization chamber was simulated and the dose in the air cavity was calculated for different positions on the central axis including at the surface, where half of the chamber is outside the phantom. The calculated and measured chamber responses are within 3% even at the zero depth.  相似文献   

4.
Peripheral dose (PD) to critical structures outside treatment volume is of clinical importance. The aim of the current study was to estimate PD on a linear accelerator equipped with multileaf collimator (MLC). Dose measurements were carried out using an ionization chamber embedded in a water phantom for 6 and 18 MV photon beams. PD values were acquired for field sizes from 5 x 5 to 20 x 20 cm2 in increments of 5 cm at distances up to 24 cm from the field edge. Dose data were obtained at two collimator orientations where the measurement points are shielded by MLC and jaws. The variation of PD with the source to skin distance (SSD), depth, and lateral displacement of the measurement point was evaluated. To examine the dependence of PD upon the tissue thickness at the entrance point of the beam, scattered dose was measured using thermoluminescent dosemeters placed on three anthropomorphic phantoms simulating 5- and 10-year-old children and an average adult patient. PD from 6 MV photons varied from 0.13% to 6.75% of the central-axis maximum dose depending upon the collimator orientation, extent of irradiated area, and distance from the treatment field. The corresponding dose range from 18 MV x rays was 0.09% to 5.61%. The variation of PD with depth and with lateral displacements up to 80% of the field dimension was very small. The scattered dose from both photon beams increased with the increase of SSD or tissue thickness along beam axis. The presented dosimetric data set allows the estimation of scattered dose outside the primary beam.  相似文献   

5.
Roy SC  Sandison GA 《Medical physics》2000,27(8):1800-1803
Neutrons are associated with therapeutic high energy x-ray beams as a contaminant that contributes significant unwanted dose to the patient. Measurement of both photon and neutron scattered dose at the position of a fetus from chest irradiation by a large field 18 MV x-ray beam was performed using an ionization chamber and superheated drop detector, respectively. Shielding construction to reduce this scattered dose was investigated using both lead sheet and borated polyethylene slabs. A 7.35 cm lead shield reduced the scattered photon dose by 50% and the scattered neutron dose by 40%. Adding 10 cm of 5% borated polyethylene to this lead shield reduced the scattered neutron dose by a factor of 7.5 from the unshielded value. When the 5% borated polyethylene was replaced by the same thickness of 30% borated polyethylene there was no significant change in the reduction of neutron scatter dose. The most efficient shield studied reduced the neutron scatter dose by a factor of 10. The results indicate that most of the scattered neutrons present at the position of the fetus produced by an 18 MV x-ray beam are of low energy and in the thermal to 0.57 MeV range since lead is almost transparent to neutrons with energies lower than 0.57 MeV. This article constitutes the first report of an effective shield to reduce neutron dose at the fetus when treating a pregnant woman with a high energy x-ray beam.  相似文献   

6.
A multiple source model (MSM) for the 6 MV beam of a Varian Clinac 2300 C/D was developed by simulating radiation transport through the accelerator head for a set of square fields using the GEANT Monte Carlo (MC) code. The corresponding phase space (PS) data enabled the characterization of 12 sources representing the main components of the beam defining system. By parametrizing the source characteristics and by evaluating the dependence of the parameters on field size, it was possible to extend the validity of the model to arbitrary rectangular fields which include the central 3 x 3 cm2 field without additional precalculated PS data. Finally, a sampling procedure was developed in order to reproduce the PS data. To validate the MSM, the fluence, energy fluence and mean energy distributions determined from the original and the reproduced PS data were compared and showed very good agreement. In addition, the MC calculated primary energy spectrum was verified by an energy spectrum derived from transmission measurements. Comparisons of MC calculated depth dose curves and profiles, using original and PS data reproduced by the MSM, agree within 1% and 1 mm. Deviations from measured dose distributions are within 1.5% and 1 mm. However, the real beam leads to some larger deviations outside the geometrical beam area for large fields. Calculated output factors in 10 cm water depth agree within 1.5% with experimentally determined data. In conclusion, the MSM produces accurate PS data for MC photon dose calculations for the rectangular fields specified.  相似文献   

7.
6MV与15MVX线在肺癌调强放疗中的剂量学比较   总被引:1,自引:0,他引:1  
目的:分析、比较用于治疗非小细胞肺癌(NSCLC)的6MV和15MVX线调强放疗(IMRT)计划。方法:随机选择10例NSCLC患者,采用6MV和15MVX射线对每例NSCLC进行IMRT的计划设计,并用ADAC Pinnacle3计划系统提供的卷积/迭加(convolution/superposition)算法对两种能量条件下相同布野方案的IMRT计划进行剂量计算,比较靶区及危及器官的剂量分布、DVH等指标。结果:6MV与15MV放疗计划的等剂量线和DVH相近,6MV计划的靶区剂量均匀性优于15MV计划.而15MV计划高剂量覆盖靶区的程度略优于6MV计划,食管、心脏、脊髓等危及器官的受量基本相同。结论:对于NSCLC,剂量计算应采用能够精确修正组织不均匀性影响的卷积/迭加等算法,调强放疗时应首选6MV X射线。  相似文献   

8.
We report new effective linear attenuation coefficients (mueff) for refined gypsum for Co-60 and 18 MV x-rays. 6 MV and 10 MV mueff agree with published data. For a 100 cm2 field size (FS), tissue defect x = 1.35 cm, target depth d = 1.65 cm beneath the tissue defect x, mueff is 0.123 cm(-1) (Co-60) and 0.0934 cm(-1) (6 MV). For 100 cm2, x = 1.35 cm, and d = 5.65 cm beneath x, mueff is 0.072 cm(-1) (10 MV), and 0.0614 cm(-1) (18 MV). Ford, mueff decreases about 10% from 25 to 400 cm2. For a given FS, mueff decreases with d by 3%-5% for Co-60, and 3% for 6 MV, 10 MV and 18 MV, but depends on (d - x). For d, when x is large (8 cm), depending on energy and FS, mueff is 2%-4% less than when x is small (2 cm). These data were used in a treatment-planning computer to design compensator filters for a step phantom. Compensation was to within 10% in the compensation plane (CP). Above and below CP, computer-calculated ratios of doses with and without filters were 0.75-1.13. Chamber dose ratios with and without filters were 0.75-1.12.  相似文献   

9.
10.
A simple technique to determine the neutron and photon spectra of a clinical fast neutron beam is described. This technique involves making narrow beam attenuation measurements with a pair of ionization chambers and an iterative fitting program to analyze the data. A method is also described for determining the first-guess neutron spectrum for input into the iterative program. The results of the analysis yield spectra suitable for use in dose calculation algorithms and dosimetry protocols. Presented here is the first-known published photon spectrum from a clinical machine.  相似文献   

11.
The 18 MV photon beam characteristics of a Therac 20 Medical Linear Accelerator manufactured by Atomic Energy of Canada Ltd, are presented. Tissue phantom ratios (TRP's) and percent depth dose data are given; for a 10 x 10 cm field, the percent depth dose at a depth of 10 cm is 78.5 (SSD 100 cm). The relative dose factors (RDF'S) are given and are analyzed to elucidate the relative contributions from phantom scatter, collimator scatter, and backscatter from the top of the collimators into the monitor chambers. The effect of field size and depth on the penumbra is described. Crossplots of the beam at a depth of 5 cm indicate that the flattening filter could be improved; there are hot spots of 108% near the corners of 40 x 40 fields.  相似文献   

12.
Dose to water (Dw) determination in clinical high-energy photon beams with ionization chambers calibrated in terms of absorbed dose to water has been proposed as an alternative to ionization chamber dosimetry based on air kerma calibrations. Dw in the clinical beam is derived using a kappaQ factor that scales the absorbed dose calibration factor in the reference beam to the absorbed dose calibration factor in the user beam. In the present study kappaQ values were determined for the NE2571 chamber in a 5 MV and a 10 MV high-energy photon beam generated at the 15 MeV high-intensity electron linac of the University of Gent. A set of three NE2571 chambers was calibrated relative to the Gent sealed water calorimeter both in 60Co and in the linac beam at a depth of 5 cm and a source to detector distance of 100 cm. Two high-purity chemical water systems were used in the detection vessel of the calorimeter, H2-saturated and Ar-saturated pure water, which are both supposed to give a zero heat defect. TPR20(10) and %dd(10) have been evaluated as beam quality specifiers. Simulations using the BEAM/DOSXYZ Monte Carlo system were performed to evaluate potential corrections on the measured beam qualities. The average kappaQ values measured for the three NE2571 chambers in the 5 MV and 10 MV photon beams are 0.995 +/- 0.005 and 0.979 +/- 0.005 respectively. For the three chambers used, the maximum deviation of individual kappaQ values is 0.2%. The measured beam quality specifiers %dd(10) and TPR20(10) are 67.0 and 0.705 for the 5 MV beam and 75.0 and 0.759 for the 10 MV beam. Although our beam design is very different from those used by other investigators for the measurement of kappaQ values, the agreement with their results is satisfactory showing a slightly better agreement when %dd(10) is used as the beam quality specifier.  相似文献   

13.
A method is described for determining an effective, depth dose consistent bremsstrahlung spectra for high-energy photon beams using depth dose curves measured in water. A simple, analytical model with three parameters together with the nominal accelerating potential is used to characterise the bremsstrahlung spectra. The model is used to compute weights for depth dose curves from monoenergetic photons. These monoenergetic depth doses, calculated with the convolution method from Monte Carlo generated point spread functions (PSF), are added to yield the pure photon depth dose distribution. The parameters of the analytical spectrum model are determined using an iterative technique to minimise the difference between calculated and measured depth dose curves. The influence from contaminant electrons is determined from the difference between the calculated and the measured depth dose.  相似文献   

14.
The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10 x 10 to 40 x 40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10 x 10 cm2 and 40 x 40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases.  相似文献   

15.
Dose to the patient outside of the treatment field is important when evaluating the outcome of radiotherapy treatments. However, determining out-of-field doses for any particular treatment plan currently requires either time-consuming measurements or calculated estimations that may be highly uncertain. A Monte Carlo model may allow these doses to be determined quickly, accurately, and with a great degree of flexibility. MCNPX was used to create a Monte Carlo model of a Varian Clinac 2100 accelerator head operated at 6 MV. Simulations of the dose out-of-field were made and measurements were taken with thermoluminescent dosimeters in an acrylic phantom and with an ion chamber in a water tank to validate the Monte Carlo model. Although local differences between the out-of-field doses calculated by the model and those measured did exceed 50% at some points far from the treatment field, the average local difference was only 16%. This included a range of doses as low as 0.01% of the central axis dose, and at distances in excess of 50 cm from the central axis of the treatment field. The out-of-field dose was found to vary with field size and distance from the central axis, but was almost independent of the depth in the phantom except where the dose increased substantially at depths less than dmax. The relationship between dose and kerma was also investigated, and kerma was found to be a good estimate of dose (within 3% on average) except near the surface and in the field penumbra. Our Monte Carlo model was found to well represent typical Varian 2100 accelerators operated at 6 MV.  相似文献   

16.
This study quantifies the dose prediction errors (DPEs) in dynamic IMRT dose calculations resulting from (a) use of an intensity matrix to estimate the multi-leaf collimator (MLC) modulated photon fluence (DPE(IGfluence) instead of an explicit MLC particle transport, and (b) handling of tissue heterogeneities (DPE(hetero)) by superposition/convolution (SC) and pencil beam (PB) dose calculation algorithms. Monte Carlo (MC) computed doses are used as reference standards. Eighteen head-and-neck dynamic MLC IMRT treatment plans are investigated. DPEs are evaluated via comparing the dose received by 98% of the GTV (GTV D 98%), the CTV D 95%, the nodal D 90%, the cord and the brainstem D 02%, the parotid D 50%, the parotid mean dose (D (Mean)), and generalized equivalent uniform doses (gEUDs) for the above structures. For the MC-generated intensity grids, DPE(IGfluence) is within +/- 2.1% for all targets and critical structures. The SC algorithm DPE(hetero) is within +/- 3% for 98.3% of the indices tallied, and within +/- 3.4% for all of the tallied indices. The PB algorithm DPE(hetero) is within +/- 3% for 92% of the tallied indices. Statistical equivalence tests indicate that PB DPE(hetero) requires a +/- 3.6% interval to state equivalence with the MC standard, while the intervals are < 1.5% for SC DPE(hetero) and DPE(IGfluence). Overall, these results indicate that SC and MC IMRT dose calculations which use MC-derived intensity matrices for fluence prediction do not introduce significant dose errors compared with full Monte Carlo dose computations; however, PB algorithms may result in clinically significant dose deviations.  相似文献   

17.
18.
The current study presents the reference photon dosimetry data (RPDD) and reference phase space data (RPSD) for the 6 MV photon beam from Varian 2100 series linear accelerators. The RPDD provide the basic photon dosimetry data, typically collected during the initial commissioning of a new linear accelerator, including output factors, depth dose data, and beam profile data in air and in water. The RPSD provide the full phase space information, such as position, direction, and energy for each particle generated inside the head of any particular linear accelerator in question. The dosimetric characteristics if the 6 MV photon beam from the majority of the aforementioned accelerators, which are unaltered from the manufacturer's original specifications, can be fully described with these two data sets within a clinically acceptable uncertainty (approximately +/-2 %). The current study also presents a detailed procedure to establish the RPDD and RPSD using measured data and Monte Carlo calculations. The RPDD were constructed by compiling our own measured data and the average data based on the analysis of more than 50 sets of measured data from the Radiological Physics Center (RPC) and 10 sets of clinical dosimetry data obtained from 10 different institutions participating in the RPC's quality assurance monitoring program. All the measured data from the RPC and the RPC-monitored institutions were found to be within a statistically tight range (i.e., 1sigma approximately 1% or less) for each dosimetric quantity. The manufacturer's standard data, except for in-air off-axis factors that are available only from the current study, were compared with the RPDD, showing that the manufacturer's standard data could also be used as the RPDD for the photon beam studied in this study. The RPSD were obtained from Monte Carlo calculations using the BEAMnrc/ DOSXYZnrc code system with 6.2 MeV (a spread of 3% full width at half maximum) and 1.0 mm full width at half maximum as the values of the energy and radial spread of a Gaussian electron pencil beam incident on the target, respectively. The RPSD were capable of generating Monte Carlo data that agreed with the RPDD within the acceptance criteria adopted in the current study (e.g., 1% or 1 mm for depth dose). A complete set of the RPDD and RPSD from the current study is available from the RPC website (http://rpc.mdanderson.org) or via mass storage media such as DVD or CD-ROM upon request.  相似文献   

19.
A method for deriving the electron and photon energy spectra from electron beam central axis percentage depth dose (PDD) curves has been investigated. The PDD curves of 6, 12 and 20 MeV electron beams obtained from the Monte Carlo full phase space simulations of the Varian linear accelerator treatment head have been used to test the method. We have employed a 'random creep' algorithm to determine the energy spectra of electrons and photons in a clinical electron beam. The fitted electron and photon energy spectra have been compared with the corresponding spectra obtained from the Monte Carlo full phase space simulations. Our fitted energy spectra are in good agreement with the Monte Carlo simulated spectra in terms of peak location, peak width, amplitude and smoothness of the spectrum. In addition, the derived depth dose curves of head-generated photons agree well in both shape and amplitude with those calculated using the full phase space data. The central axis depth dose curves and dose profiles at various depths have been compared using an automated electron beam commissioning procedure. The comparison has demonstrated that our method is capable of deriving the energy spectra for the Varian accelerator electron beams investigated. We have implemented this method in the electron beam commissioning procedure for Monte Carlo electron beam dose calculations.  相似文献   

20.
For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. These relatively large areas of electronic disequilibrium make accurate dosimetry as well as dose calculation more difficult, and this is exacerbated in regions of tissue heterogeneity. Tissue heterogeneity was considered insignificant in the brain where stereotactic radiosurgery was first used. However, as this technique is expanded to the head and neck and other body sites, dose calculations need to account for dose perturbations in and beyond air cavities, lung, and bone. In a previous study we have evaluated EBT Gafchromic film (International Specialty Products, Wayne, NJ) for dosimetry and characterization of the Cyberknife radiation beams and found that it was comparable to other common detectors used for small photon beams in solid water equivalent phantoms. In the present work EBT film is used to measure dose in heterogeneous slab phantoms containing lung and bone equivalent materials for the 6 MV radiation beams of diameter 7.5 to 40 mm produced by the Cyberknife (Accuray, Sunnyvale, CA). These measurements are compared to calculations done with both the clinically utilized Raytrace algorithm as well as the newly developed Monte Carlo based algorithm available on the Cyberknife treatment planning system. Within the low density material both the measurements and Monte Carlo calculations correctly model the decrease in dose produced by a loss of electronic equilibrium, whereas the Raytrace algorithm incorrectly predicts an enhancement of dose in this region. Beyond the low density material an enhancement of dose is correctly calculated by both algorithms. Within the high density bone heterogeneity the EBT film measurements represent dose to unit density tissue in bone and agree with the Monte Carlo results when corrected to dose to unit density tissue in bone. We conclude that EBT film is an appropriate dosimeter for measuring dose in heterogeneous materials and these measurements agree with Monte Carlo calculations of dose as implemented in the Cyberknife treatment planning system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号