首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This mass balance study investigated the metabolism and excretion of eribulin, a nontaxane microtubule dynamics inhibitor with a novel mechanism of action, in patients with advanced solid tumors. A single approximately 2 mg (approximately 80 μCi) dose of [1?C]eribulin acetate was administered as a 2 to 5 min bolus injection to six patients on day 1. Blood, urine, and fecal samples were collected at specified time points on days 1 to 8 or until sample radioactivity was ≤1% of the administered dose. Mean plasma eribulin exposure (627 ng · h/ml) was comparable with that of total radioactivity (568 ng Eq · h/ml). Time-matched concentration ratios of eribulin to total radioactivity approached unity in blood and plasma, indicating that unchanged parent compound constituted almost all of the eribulin-derived radioactivity. Only minor metabolites were detected in plasma samples up to 60 min postdose, pooled across patients, each metabolite representing ≤0.6% of eribulin. Elimination half-lives for eribulin (45.6 h) and total radioactivity (42.3 h) were comparable. Eribulin-derived radioactivity excreted in feces was 81.5%, and that of unchanged eribulin was 61.9%. Renal clearance (0.301 l/h) was a minor component of total eribulin clearance (3.93 l/h). Eribulin-derived radioactivity excreted in urine (8.9%) was comparable with that of unchanged eribulin (8.1%), indicating minimal excretion of metabolite(s) in urine. Total recovery of the radioactive dose was 90.4% in urine and feces. Overall, no major metabolites of eribulin were detected in plasma. Eribulin is eliminated primarily unchanged in feces, whereas urine constitutes a minor route of elimination.  相似文献   

2.
The metabolism and excretion of [(14)C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 muCi. Urine, feces, and plasma were collected at regular intervals for up to 7 days. The primary route of excretion of radioactivity was via the kidneys, with a mean value of 87% of the administered dose recovered in urine. Mean fecal excretion was 13% of the administered dose. Parent drug was the major radioactive component in plasma, urine, and feces, with only 16% of the dose excreted as metabolites (13% in urine and 3% in feces), indicating that sitagliptin was eliminated primarily by renal excretion. Approximately 74% of plasma AUC of total radioactivity was accounted for by parent drug. Six metabolites were detected at trace levels, each representing <1 to 7% of the radioactivity in plasma. These metabolites were the N-sulfate and N-carbamoyl glucuronic acid conjugates of parent drug, a mixture of hydroxylated derivatives, an ether glucuronide of a hydroxylated metabolite, and two metabolites formed by oxidative desaturation of the piperazine ring followed by cyclization. These metabolites were detected also in urine, at low levels. Metabolite profiles in feces were similar to those in urine and plasma, except that the glucuronides were not detected in feces. CYP3A4 was the major cytochrome P450 isozyme responsible for the limited oxidative metabolism of sitagliptin, with some minor contribution from CYP2C8.  相似文献   

3.
The excretion and metabolism of (+/-)-trans-3-(2-bromophenyl)octahydroindolizine hydrochloride (RWJ-22757) have been investigated in male and female CR Wistar rats. Radiolabeled [14C] RWJ-22757 was administered orally to each of the rats as a single 60 mg/kg suspension dose. Plasma (0-48 h), urine (0-168 h) and fecal (0-168 h) samples were collected and analyzed. There were no significant gender differences observed in the data. The estimated elimination half-life of the total radioactivity from plasma was 19 h while the estimated elimination half-life of RWJ-22757 was 15 h. Recoveries of total radioactivity in urine and feces were 58.4+/-5.8 and 42.4+/-6.3%, respectively. RWJ-22757 and a total of 11 metabolites were isolated in rat plasma, urine, and fecal extracts. The structures of four of these metabolites were tentatively identified. Unchanged RWJ-22757 accounted for < 4% of the dose in plasma and urine and 28% in feces; thus, indicating the drug was extensively metabolized and either not absorbed well or biliary excreted. Identified metabolites accounted for > 80% of the total radioactivity contained in the samples. The following pathways were used to describe the formation of the metabolites identified in rats: octahydroindolizine ring oxidation, phenyl hydroxylation, octahydroindolizine ring oxidation followed by ring opening to a carboxylic acid function and octahydroindolizine ring oxidation followed by ring opening and N-methylation.  相似文献   

4.
This study determined the disposition of irinotecan hydrochloride trihydrate (CPT-11) after i.v. infusion of 125 mg/m(2) (100 microCi) [(14)C]CPT-11 in eight patients with solid tumors. Mean +/- S.D. recovery of radioactivity in urine and feces was 95.8 +/- 2.7% (range 92.2-100.3%, n = 7) of dose. Radioactivity in blood, plasma, urine, and feces was determined for at least 168 h after dosing. Fecal excretion accounted for 63.7 +/- 6.8 (range 54.2-74.9%, n = 7) of dose, whereas urinary excretion accounted for 32.1 +/- 6.9% (range 21.7-43.8%; n = 7) of dose. One patient with a biliary T-tube excreted 30.1% of dose in bile, 14.2% in feces, and 48.2% in urine. Quantitative radiometric HPLC revealed that CPT-11 was the major excretion product in urine, bile, and feces. Aminopentane carboxylic acid (APC) and SN-38 glucuronide (SN-38G) were the most significant metabolites in urine and bile, whereas SN-38 and NPC, a primary amine metabolite, were relatively minor excretion products. SN-38 and APC were the most significant metabolites in feces. The relatively higher amount of SN-38 in feces compared with bile is presumably due to hydrolysis of SN-38G to SN-38 by enteric bacterial beta-glucuronidases. There was close correspondence between quantitative fluorescence HPLC and mass balance findings. CPT-11 was the major circulating component in plasma (55% of the mean radiochemical area under the curve), and CPT-11, SN-38, SN-38G, and APC accounted for 93% of the mean radiochemical AUC. These results show that the parent drug and its three major metabolites account for virtually all CPT-11 disposition, with fecal excretion representing the major elimination pathway.  相似文献   

5.
Summary The metabolism of tritiated peruvoside was investigated in 4 subjects, one of whom had a biliary fistula. The serum half life of radioactivity and urinary, fecal and biliary excretion were measured. Similar amounts of radioactivity were excreted in urine after oral and intravenous administration. The total excretion in 48 h was similar in all subjects (32.9% to 37.1% of dose administered). No unchanged drug was detected in the urine by GLC/MS/MID. Two metabolites, A and B, appeared in the excreta, B being cardio-inactive. Although large amounts of radioactivity were excreted in bile, no evidence was found of enterohepatic recirculation of the drugSupported by Deutsche Forschungsgemeinschaft  相似文献   

6.
The disposition and metabolism of 14C-labeled fluconazole (100 microCi) was determined in three healthy male subjects after administration of a single oral capsule containing 50 mg of drug. Blood samples, total voided urine, and feces were collected at intervals after dosing for up to 12 days post-dose. Pharmacokinetic analysis of fluconazole concentrations showed a mean plasma half-life of 24.5 hr. Mean apparent plasma clearance and apparent volume of distribution were 0.23 ml/min/kg and 0.5 liter/kg, respectively. There was no evidence of any significant concentrations of metabolites circulating either in plasma or blood cells. Mean total radioactivity excreted in urine and feces represented 91.0 and 2.3%, respectively, of the administered dose. Mean excretion of unchanged drug in urine represented 80% of the administered dose; thus, only 11% was excreted in urine as metabolites. Only two metabolites were present in detectable quantities, a glucuronide conjugate of unchanged fluconazole and a fluconazole N-oxide, which accounted for 6.5 and 2.0% of urinary radioactivity, respectively. No metabolic cleavage products of fluconazole were detected.  相似文献   

7.
The in vivo metabolism and excretion of RWJ-333369 [1,2-ethanediol, 1-(2-chlorophenyl)-, 2-carbamate, (S)-], a novel neuromodulator, were investigated in mice, rats, rabbits, and dogs after oral administration of (14)C-RWJ-333369. Plasma, urine, and feces samples were collected, assayed for radioactivity, and profiled for metabolites. In almost all species, the administered radioactive dose was predominantly excreted in urine (>85%) with less than 10% in feces. Excretion of radioactivity was rapid and nearly complete at 96 h after dosing in all species. Unchanged drug excreted in urine was minimal (<2.3% of the administered dose) in all species. The primary metabolic pathways were O-glucuronidation (rabbit > mouse > dog > rat) of RWJ-333369 and hydrolysis of the carbamate ester followed by oxidation to 2-chloromandelic acid. The latter metabolite was subsequently metabolized in parallel to 2-chlorophenylglycine and 2-chlorobenzoic acid (combined hydrolytic and oxidative pathways: rat > dog > mouse > rabbit). Other metabolic pathways present in all species included chiral inversion in combination with O-glucuronidation and sulfate conjugation (directly and/or following hydroxylation of RWJ-333369). Species-specific pathways, including N-acetylation of 2-chlorophenylglycine (mice, rats, and dogs) and arene oxidation followed by glutathione conjugation of RWJ-333369 (mice and rats), were more predominant in rodents than in other species. Consistent with human metabolism, multiple metabolic pathways and renal excretion were mainly involved in the elimination of RWJ-333369 and its metabolites in animal species. Unchanged drug was the major plasma circulating drug-related substance in the preclinical species and humans.  相似文献   

8.
The pharmacokinetics and biotransformation of the antiretroviral agent nevirapine (NVP) after autoinduction were characterized in eight healthy male volunteers. Subjects received 200-mg NVP tablets once daily for 2 weeks, followed by 200 mg twice daily for 2 weeks. Then they received a single oral dose (solution) of 50 mg containing 100 microCi of [(14)C]NVP. Biological fluids were analyzed for total radioactivity, parent compound (HPLC/UV), and metabolites (electrospray liquid chromatography/mass spectroscopy and liquid chromatography/tandem mass spectroscopy). Mean recovery of radioactivity was 91.4%, with 81.3% excreted in urine and 10.1% recovered in the feces over a period of 10 days. Circulating radioactivity was evenly distributed between whole blood and plasma. At maximum plasma concentration, parent compound accounted for approximately 75% of the circulating radioactivity. Mean plasma elimination half-lives for total radioactivity and NVP were 21.3 and 20.0 h, respectively. Several metabolites were identified in urine including 2-hydroxynevirapine glucuronide (18.6%), 3-hydroxynevirapine glucuronide (25.7%), 12-hydroxynevirapine glucuronide (23.7%), 8-hydroxynevirapine glucuronide (1.3%), 3-hydroxynevirapine (1.2%), 12-hydroxynevirapine (0.6%), and 4-carboxynevirapine (2.4%). Greater than 80% of the radioactivity in urine was made up of glucuronidated conjugates of hydroxylated metabolites of NVP. Thus, cytochrome P-450 metabolism, glucuronide conjugation, and urinary excretion of glucuronidated metabolites represent the primary route of NVP biotransformation and elimination in humans. Only a small fraction of the dose (2.7%) was excreted in urine as parent compound.  相似文献   

9.
The disposition and metabolic fate of cibenzoline (CBZ) following single oral 153-mg doses of 14C-CBZ succinate were studied in five healthy adult males. The mean maximum plasma radioactivity of 386 ng eq/ml occurred at 2.4 hr after administration. The mean half-life, determined from the 14C plasma concentration and urinary excretion rate data, was 13.1 and 14.8 hr, respectively. The mean maximum CBZ concentration was 196 ng/ml at 1.2 hr post-dose. The mean half-life, determined from the plasma concentration and urinary excretion rate data, was 7.2 and 7.3 hr, respectively. The mean total clearance of radioactivity and CBZ was 300 ml/min and 1224 ml/min, respectively, due to elimination via both renal and nonrenal pathways. The only unconjugated metabolite in the plasma was 4,5-dehydrocibenzoline which, together with other unidentified metabolites, is presumed responsible for the longer observed half-life for total radioactivity. Approximately 75% of the dose was recovered in the urine in the first 24 hr after dosing, 80% of which was present at CBZ and known metabolites. After 6 days, a mean of 85.7% of the dose was excreted in urine and 13.2% in feces. The predominant excreted compound was CBZ (55.7% of the dose) in the 0-72 hr urine. Although several metabolites were identified in urine samples, none were found in substantial amounts relative to the parent drug. Two of these substances showed slight antiarrhythmic activity, whereas the 4,5-dehydro metabolite, representing approximately 4% of radioactivity in urine, was inactive.  相似文献   

10.
The distribution of bendazac in the plasma and some rat tissues was studied after single oral administration of 14C bendazac L-lysine salt. The drug is distributed in varying amounts in the liver, kidneys, spleen, muscle, plasma and lens. In these tissues, the drug kinetics is similar, except for the lens where elimination of the drug is slower. More than 80% of the radioactivity administered is excreted through the urine and feces. Fecal excretion is due to the high biliary excretion.  相似文献   

11.
The metabolic fate of 2-ethylhexyl diphenyl phosphate (EHDPP) was studied in male rats. Orally administered 14C-EHDPP was rapidly absorbed and about 80% of the radioactivity was excreted in the urine and feces in the first 24 h. By 7 days, 48% and 52% of the radioactivity was recovered in urine and feces, respectively. Since biliary excretion was low (6% for 2 days), urine seems to be the major excretion route of EHDPP. Radioactivity was widely distributed in all tissues examined. At 2 h, the concentration was relatively high in blood, liver kidney and adipose tissue. The elimination of radioactivity from adipose tissue and liver was somewhat delayed, but almost all the radioactivity was eliminated by 7 days. The major metabolites in the urine were diphenyl phosphate (DPP) and phenol. p-Hydroxyphenyl phenyl phosphate (OH-DPP) and monophenyl phosphate (MPP) were also identified as minor metabolites.  相似文献   

12.
[(3R)-4-(4-Chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopentaindol-3-yl]acetic acid (MK-0524) is a potent orally active human prostaglandin D(2) receptor 1 antagonist that is currently under development for the prevention of niacin-induced flushing. The metabolism and excretion of [(14)C]MK-0524 in humans were investigated in six healthy human volunteers following a single p.o. dose of 40 mg (202 microCi). [(14)C]MK-0524 was absorbed rapidly, with plasma C(max) achieved 1 to 1.5 h postdose. The major route of excretion of radioactivity was via the feces, with 68% of the administered dose recovered in feces. Urinary excretion averaged 22% of the administered dose, for a total excretion recovery of approximately 90%. The majority of the dose was excreted within 96 h following dosing. Parent compound was the primary radioactive component circulating in plasma, comprising 42 to 72% of the total radioactivity in plasma for up to 12 h. The only other radioactive component detected in plasma was M2, the acyl glucuronic acid conjugate of the parent compound. The major radioactive component in urine was M2, representing 64% of the total radioactivity. Minor metabolites included hydroxylated epimers (M1/M4) and their glucuronic acid conjugates, which occurred in the urine as urea adducts, formed presumably during storage of samples. Fecal radioactivity profiles mainly comprised the parent compound, originating from unabsorbed parent and/or hydrolyzed glucuronic acid conjugate of the parent compound. Therefore, in humans, MK-0524 was eliminated primarily via metabolism to the acyl glucuronic acid conjugate, followed by excretion of the conjugate into bile and eventually into feces.  相似文献   

13.
Abstract

Experiments were conducted in four groups of rats to determine the absorption, distribution, metabolism, and excretion (ADME) patterns following oral administration of [hexyl-1-14C] N-octylbicycloheptene dicarboximide (MGK 264).

Ten rats (five males and five females) were used in each of the four experiments. Fasted rats were administered fhexyl-1-14C] MGK 264 at a single oral dose of 100 mg/kg, at a single oral dose of 1000 mg/kg, and at a daily oral dose of 100 mg/kg of nonradiolabeled compound for 14 days followed by a single dose of 14C-labeled compound at 100 mg/kg. Rat blood kinetics were determined in the fourth group following a single oral dose of 100 mg/kg. Each animal was administered 18-30 μCi radioactivity.

Urine and feces were collected for all groups at predetermined time intervals. Seven days after dose administration, the rats were euthanized and selected tissues and organs were harvested. Samples of urine, feces, and tissues were subsequently analyzed for 14C content.

In the blood kinetics study, radioactivity peaked at approximately 4 h for the males and 6 h for the females. The decline of radioactivity from blood followed a monophasic elimination pattern. The half-life of blood radioactivity was approximately 8 h for males and 6 h for females.

Female rats excreted 71.45-73.05% of the radioactivity in urine and 20.87-25.28% in feces, whereas male rats excreted 49.49-63.49% of the administered radioactivity in urine and 31.76-46.67% in feces. Total tissue residues of radioactivity at 7 days ranged from 0.13 to 0.43% of the administered dose for all dosage regimens. The only tissues with 14C residues consistently higher than that of plasma were the liver, stomach, intestines, and carcass. The total mean recovered radioactivity of the administered dose in the studies ranged between 93.1 and 97.4%. No parent compound was detected in the urine.

Four major metabolites and one minor metabolite were isolated from the urine by high-performance liquid chromatography (HPLC) and identified by gas chromatography/mass spectometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The four major metabolites were shown to be carboxylic acids produced by either ω-1 oxidation or β-oxidation of the side chain and oxidation of the norbornene ring double bond. The minor metabolite was the carboxylic acid of the intact norbornene ring.

The gender of the animals affected the rate, route of excretion, and metabolic profile. The urinary excretion rate was faster in females than in males and the amount excreted was also greater in female rats.  相似文献   

14.
The metabolism and disposition of tri-p-cresyl phosphate (TPCP) were studied in the rat after a single oral administration of [methyl-14C] TPCP. At a dosage of 7.8 mg/kg, most of the administered radioactivity was excreted in the urine (41%) and feces (44%) in 7 days. For 3 days, the expiratory excretion as 14CO2 amounted to 18% of the radioactivity, but was reduced to 3% by treatment of the animal with neomycin. In separate rats, the biliary excretion amounted to 28% of the dose in 24 hr. At a dose of 89.6 mg/kg, the radioactivity was excreted in urine (12%) and feces (77%) in 7 days, and the expired air (6%) in 3 days. At 24, 72, and 168 hr after oral administration, the concentration of radioactivity was relatively high in adipose tissue, liver, and kidney. The major urinary metabolites were p-hydroxybenzoic acid, di-p-cresyl phosphate (DCP), and p-cresyl p-carboxyphenyl phosphate (1coDCP). The biliary metabolites were DCP, 1coDCP, and the oxidized triesters, di-p-cresyl p-carboxyphenyl phosphate (1coTPCP), and p-cresyl di-p-carboxyphenyl phosphate (2coTPCP). The main fecal metabolite was TPCP, and the others were similar to those of bile. Following oral administration, TPCP was absorbed from the intestine, distributed to the fatty tissues, and moderately metabolized to a variety of products of oxidation and dearylation of TPCP, which were then excreted in the urine, feces, bile, and expired air. The intestinal microflora appeared to play an important role in degrading biliary metabolites to 14CO2 through the enterohepatic circulation in rats.  相似文献   

15.
The alkylating agent bendamustine is currently in phase III clinical trials for the treatment of hematological malignancies and breast, lung, and gastrointestinal tumors. Renal elimination mainly as the parent compound is thought to be the primary route of excretion. Because polar biliary conjugates were expected metabolites of bendamustine, three cysteine S-conjugates were synthesized, purified by quantitative high-performance liquid chromatography (HPLC), and characterized by NMR spectroscopy and mass spectrometry (MS). HPLC assays with MS, as well as fluorescence detection of bile, urine, and plasma after single-dose intravenous infusion of 140 mg/m(2) bendamustine in five subjects with cholangiocarcinoma, indicated the existence of these phase II metabolites, which were identified as cysteine S-conjugates by comparison with the previously characterized synthetic reference standards. The sum of the three cysteine S-conjugates of bendamustine was determined in human bile and urine to be 95.8 and 26.0%, respectively, expressed as mean percentage of the sum of the parent compound and identified metabolites. The percentage of administered dose recovered in urine as cysteine S-conjugates ranged from 0.9 to 4.1%, whereas the total percentage of the administered dose excreted in urine as the parent drug and seven metabolites ranged from 3.8 to 16.3%. The identification of cysteine S-conjugates provide evidence that a major route of bendamustine metabolism in humans involves conjugation with glutathione. Results indicate the importance of phase II conjugation in the elimination of bendamustine, besides phase I metabolism and hydrolytic degradation, and require further investigation.  相似文献   

16.
To investigate the pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe, the pharmacokinetic parameters were determined by using 14C-[6]-shogaol (labeled compound) and [6]-shogaol (non-labeled compound). When the labeled compound was orally administered to rats, the maximum plasma concentration (C max) and the area under the curve (AUC) of plasma radioactivity concentration increased in a dose-dependent manner. When the labeled compound was orally administered at a dose of 10 mg/kg, 20.0 ± 1.8% of the radioactivity administered was excreted into urine, 64.0 ± 12.9% into feces, and 0.2 ± 0.1% into breath. Thus, more of the radioactivity was excreted into feces than into urine, and almost no radioactivity was excreted into breath. Furthermore, when the labeled compound was orally administered at a dose of 10 mg/kg, cumulative biliary radioactivity excretion over 48 h was 78.5 ± 4.5% of the radioactivity administered, and cumulative urinary radioactivity excretion over 48 h was 11.8 ± 2.7%, showing that about 90% of the dose administered orally was absorbed from the digestive tract and most of the fecal excretion was via biliary excretion. On the other hand, when the non-labeled compound [6]-shogaol was orally administered, the plasma concentration and biliary excretion of the unchanged form were extremely low. When these results are combined with those obtained with the labeled compound, it would suggest that [6]-shogaol is mostly metabolized in the body and excreted as metabolites.  相似文献   

17.
The absorption, metabolism, and excretion of imidafenacin [KRP-197/ONO-8025, 4-(2-methyl-1H-imidazol-1-yl)-2,2-diphenylbutanamide], a new antimuscarinic drug developed for treatment of overactive bladder, were assessed in six healthy male subjects after a single oral administration of 0.25 mg of [(14)C]imidafenacin (approximately 46 microCi). The highest radioactivity in the plasma was observed at 1.5 h after administration. The apparent terminal elimination half-life of the total radioactivity was 72 h. Approximately 65.6 and 29.4% of the administered radioactivity were recovered in the urine and feces, respectively, within 192 h after administration. The metabolite profiling by high-performance liquid chromatography-radiodetector and liquid chromatography/tandem mass spectrometry demonstrated that the main component of radioactivity was unchanged imidafenacin in the 2-h plasma. The N-glucuronide conjugate (M-9) was found as the major metabolite and the oxidized form of the 2-methylimidazole moiety (M-2) and the ring-cleavage form (M-4) were detected as the minor metabolites in the 2-h plasma, but M-4 was found to be the main component in the 12-h plasma. Unchanged imidafenacin, M-9, M-2, and other oxidized metabolites were excreted in the urine, but the unchanged imidafenacin and M-9 were not found in the feces. Two unique metabolites were found in the urine and feces, which were identified as the interchangeable cis- and trans-isomers of 4,5-dihydrodiol forms of the 2-methylimidazole moiety. These findings indicate that imidafenacin is rapidly and well absorbed (at least 65% of dose recovered in urine) after oral administration, circulates in human plasma as the unchanged form, its glucuronide, and other metabolites, and is then excreted in urine and feces as the oxidized metabolites of 2-methylimidazole moiety.  相似文献   

18.
Salicylate (88.9 mg/kg, po) decreased the blood level of radioactivity emanating from [14C]warfarin (1 mg/kg, iv and po) during the 24 hr following drug administration, reduced the area under the blood radioactivity vs time curve, and shortened the half-life for elimination of radioactivity from the blood. During the first 6 hr after drug administration, salicylate increased the biliary excretion of radioactivity, which resulted in enhanced fecal excretion of warfarin and its metabolites. Salicylate administration initially increased and later decreased the amount of radioactivity in the liver, and increased the proportion of warfarin metabolites to unchanged warfarin in this organ. It did not affect the proportion of unchanged warfarin to metabolites in the blood, bile and urine, or the total amount of radioactivity excreted during 48 hr in the urine and feces. In vitro, salicylate decreased the binding of [14C]warfarin to rat serum proteins in a linear manner. It is concluded that, in the rat, salicylate competes with warfarin for serum protein binding sites, thereby facilitating its uptake by the liver. Second, through a combination of its choleretic action and effect on membrane transport, salicylate enhances the biliary excretion of warfarin and its metabolites, thus accounting for the decreased concentration in the blood and lowered antiboagulant action.  相似文献   

19.
Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor (PPAR) activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. This study describes the in vivo and in vitro comparative metabolism of [(14)C]muraglitazar in rats, dogs, monkeys, and humans by quantitative and qualitative metabolite profiling. Metabolite identification and quantification methods used in these studies included liquid chromatography/mass spectrometry (LC/MS), LC/tandem MS, LC/radiodetection, LC/UV, and a newly described mass defect filtering technique in conjunction with high resolution MS. After oral administration of [(14)C]muraglitazar, absorption was rapid in all species, reaching a concentration peak for parent and total radioactivity in plasma within 1 h. The most abundant component in plasma at all times in all species was the parent drug, and no metabolite was present in greater than 2.5% of the muraglitazar concentrations at 1 h postdose in rats, dogs, and humans. All metabolites observed in human plasma were also present in rats, dogs, or monkeys. Urinary excretion of radioactivity was low (<5% of the dose) in all intact species, and the primary route of elimination was via biliary excretion in rats, monkeys, and humans. Based on recovered doses in urine and bile, muraglitazar showed a very good absorption in rats, monkeys, and humans. The major drug-related components in bile of rats, monkeys, and humans were glucuronides of muraglitazar and its oxidative metabolites. The parent compound was a minor component in bile, suggesting extensive metabolism of the drug. In contrast, the parent drug and oxidative metabolites were the major components in feces, and no glucuronide conjugates were found, suggesting that glucuronide metabolites were excreted in bile and hydrolyzed in the gastrointestinal tract. The metabolites of muraglitazar resulted from both glucuronidation and oxidation. The metabolites in general had greatly reduced activity as PPARalpha/gamma activators relative to muraglitazar. In conclusion, muraglitazar was rapidly absorbed, extensively metabolized through glucuronidation and oxidation, and mainly eliminated in the feces via biliary excretion of glucuronide metabolites in all species studied. Disposition and metabolic pathways were qualitatively similar in rats, dogs, monkeys, and humans.  相似文献   

20.
The metabolism and excretion of a potent and selective substance P receptor antagonist, CP-122,721, have been studied in beagle dogs following oral administration of a single 5 mg kg(-1) dose of [(14)C]CP-122,721. Total recovery of the administered dose was on average 89% for male dogs and 95% for female dogs. Approximately 94% of the radioactivity recovered in urine and feces was excreted in the first 72 h. Male bile duct-cannulated dogs excreted a mean of approximately 56% of the dose in bile, approximately 11% in feces, and approximately 25% in urine. The sum of radioactivity in bile and urine indicates >80% of the [(14)C]CP-122,721-derived radioactivity was absorbed by the gastrointestinal tract. CP-122,721 was extensively metabolized in dogs, and only a small amount of parent CP-122,721 was excreted as unchanged drug. There were no significant gender-related quantitative/qualitative differences in the excretion of metabolites in urine or feces. The major metabolic pathways of CP-122,721 were O-demethylation, aromatic hydroxylation, and indirect glucuronidation. The minor metabolic pathways included: Aliphatic oxidation at the piperidine moiety, O-dealkylation of the trifluoromethoxy group, and N-dealkylation with subsequent sulfation and/or oxidative deamination. In addition, the novel cleaved product 5-trifluoromethoxy salicylic acid (TFMSA) was identified in plasma. These results suggest that dog is the most relevant animal species in which the metabolism of CP-122,721 can be studied for extrapolating the results to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号