首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cerebellum plays an important role in the visual guidance of movement. In order to understand the anatomical basis of visuomotor control, we studied the projection of pontine visual cells onto the cerebellar cortex of monkeys. Wheat germ agglutinin horseradish peroxidase was injected into the dorsolateral pons of two monkeys. Retrogradely labelled cells were mapped in the cerebral cortex and superior colliculus, and orthogradely labelled fibers in the cerebellar cortex. The largest number of retrogradely labelled cells in the cerebral cortex was in a group of medial extrastriate visual areas. The major cerebellar target of these dorsolateral pontine cells is the dorsal paraflocculus. There is a weaker projection to the uvula, paramedian lobe, and Crus II, and a sparse but definite projection to the ventral paraflocculus. There are virtually no projections to the flocculus. There are sparse ipsilateral pontocerebellar projections to these same regions of cerebellar cortex. In nine monkeys, we made small injections of the tracer into the cerebellar cortex and studied the location of retrogradely filled cells in the pontine nuclei and inferior olive. Injections into the dorsal paraflocculus or rostral folia of the uvula retrogradely labelled large numbers of cells in the dorsolateral region of the contralateral pontine nuclei. Labelled cells were found ipsilaterally, but in reduced numbers. Injections outside of these areas in ventral paraflocculus or paramedian lobule labelled far fewer cells in this region of the pons. We conclude that the principal source of cerebral cortical visual information arises from a medial group of extrastriate visual areas and is relayed through cells in the dorsolateral pontine nuclei. The principal target of pontine visual cells is the dorsal paraflocculus. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The projections of the rat area postrema were analysed using anterograde and retrograde axonal transport techniques. Discrete injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the area postrema produced anterograde labeling in specific medullary and pontine nuclei. In the medulla, anterograde labeling was present in the internal solitary zone and dorsal division of the medial solitary nucleus, both of which also contained a small number of retrogradely labeled perikarya. Prominent projections to the dorsal motor nucleus of the vagus were seen only if the WGA-HRP injections in the area postrema invaded dorsal solitary nuclei. In the pons, anterograde labeling was present in the parabrachial nuclei, the dorsolateral tegmental nucleus, and the pericentral division of the dorsal tegmental nucleus. By far the major pontine projection was to the dorsolateral region of the middle one-third of the rostrocaudal extent of the parabrachial nuclei. Retrograde fluorescent tracing studies indicated that most area postrema neurons take part in this parabrachial projection. The area postrema projection to the parabrachial nuclei was bilaterally distributed, whereas that from the dorsal solitary nuclei was primarily ipsilateral. The external solitary zone, immediately subadjacent to the area postrema, neither received area postrema projections nor participated in the projections to the parabrachial nuclei. Fluorescent retrograde double labeling studies confirmed the bilateral nature of the area postrema projection to the parabrachial nuclei. In addition, because no doubly labeled neurons were observed it appears that individual area postrema neurons project to either side but not both sides of the dorsal pons. Thus, numerous neuronal pathways exist for the transfer of blood-borne information (that cannot cross the blood-brain barrier) from the area postrema to other brain regions.  相似文献   

3.
To study the convergence of medial prefrontal cortex and mamillary body projections to the medial pontine nuclei, light and electron microscopic, neuroanatomical, tract-tracing experiments were performed. Injections of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP), biotin conjugated to dextran (BD), or rhodamine conjugated to dextran (RD) were made individually or in combinations into the cerebral cortex, hypothalamus, or pons. In addition, injections of WGA-HRP into the medial prefrontal cortex and electrolytic lesions of the mamillary body were made to study the synaptology of afferent projections to the pontine nuclei. In the light microscopic studies, injections of WGA-HRP into the rostromedial pontine nuclei produced dense, retrograde labeling both in the dorsal peduncular area of the medial prefrontal cortex and in the medial mamillary nucleus, pars medialis. Injections of the anterograde tracers BD and RD into the medial prefrontal cortex and the medial mamillary nuclei, respectively, resulted in partially overlapping terminal fields in the rostromedial pontine nuclei. In the electron microscopic studies, injections of WGA-HRP into the dorsal peduncular area and electrolytic lesions of the mamillary body produced anterogradely labeled axon terminals and degenerating axon terminals that synapsed on the same dendrites or neuronal somata in the rostromedial pontine nuclei. The results demonstrate that the medial prefrontal cortex and the medial mamillary nuclei have partially overlapping projections to the rostromedial pontine nuclei and implicate precerebellar relay nuclei in the integration of limbic and/or autonomic functions mediated by convergent projections from the cerebral cortex and the hypothalamus. J. Comp. Neurol. 398:347–358, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
We have explored basic rules guiding the early development of topographically organized projections, employing the rat corticopontine projection as a model system. Using anterograde in vivo tracing with 1,1′, dioctadecyl-3,3,3′,3′ -tetramethylindocarbocyanine perchiorate (DiI), we studied the distribution of labelled fibers in the pontine nuclei in relation to cortical site of origin during the first postnatal week. Labelled corticopontine fibers enter the pontine nuclei in distinct, sharply defined zones. The putative terminal fibers typically occupy lamella-like subspaces. Related to changes in cortical site of origin, we describe mediolateral, internal to external, and caudorostral distribution gradients in the pontine nuclei. Fibers originating in the anterolateral cortex occupy an internal central core, while implantations at increasing distance from the anterolateral cortex produce (1) more externally located lamellae, and (2) a caudal to rostral shift in fiber location. Previous investigations have shown that pontocerebellar neurons migrate into the ventral pons in a temporal sequence (Altman and Bayer [1987] J. Comp. Neurol. 257:529). The earliest arriving neurons occupy the central core and later arriving neurons settle in more externally and rostrally located subspaces. We hypothesize that the earliest arriving corticopon tine fibers grow into the then only available zone of pontocerebellar neurons (central core), attracted by a diffusible chemotropic cue. Later arriving fibers grow into correspondingly later and more externally and rostrally located contingents of pontocerebellar neurons. Thus, we propose that the topographical organization in the early postnatal corticopontine projections determined by simple temporal and spatial gradients operative within source cerebra cortex and target region (pontine nuclei). © 1995 Wiley-Liss, Inc.  相似文献   

5.
Focal projections of cat auditory cortex to the pontine nuclei   总被引:1,自引:0,他引:1  
The pontine nuclei (PN) receive projections from the auditory cortex (AC) and they are a major source of mossy fibers to the cerebellum. However, they have not been studied in detail using sensitive neuroanatomical tracers, and whether all AC areas contribute to the corticopontine (CP) system is unknown. We characterized the projection patterns of 11 AC areas with WGA-HRP. We also compared them with their corticothalamic and corticocollicular counterparts. A third objective was to analyze the structure of the CP axons and their terminals with BDA. Both tracers confirm that all AC areas projected to lateral, central, and medial ipsilateral pontine divisions. The strongest CP projections were from nontonotopic and polymodal association areas. Preterminal fibers formed single terminal fields having many boutons en passant as well as terminal endings, and there was a specific morphological pattern for each pontine target, irrespective of their areal origin. Thus, axons in the medial division had a simpler terminal architecture (type 1 terminal plexus); both the central and lateral pons received more complex endings (type 2 terminal plexus). Auditory CP topographical distribution resembled visual and somatosensory CP projections, which preserve retinotopy and somatotopy in the pons, respectively. However, the absence of pontine tonotopy suggests that the AC projection topography is unrelated to tonotopy. CP input to the medial and central pons coincides with the somatosensory and visual cortical inputs, respectively, and such overlap might subserve convergence in the cerebellum. In contrast, lateral pontine input may be exclusively auditory.  相似文献   

6.
G H Hoddevik 《Brain research》1975,95(2-3):291-307
Horseradish peroxidase (HRP) was injected into cerebellar cortex of the paramedian lobule in 12 cats, and the ensuing distribution of labeled cells in the pontine nuclei was mapped in some detail. The cells in the pontine gray which give origin to fibers to the paramedian lobule lie together, in part in groups, and in part in columns. The columns are situated both medial and ventrolateral to the peduncle, as well as in the dorsolateral pontine nucleus. The projection is bilateral with a clearcut contralateral preponderance, except in the lateralmost region in the dorsolateral nucleus, which projects mainly ipsilaterally. The column medial to the peduncle projects in a topographical pattern to the paramedian lobule. The dorsal part of this column projects to the rostral folia of the paramedian lobule, while successively more ventral parts in the column project to more caudal paramedian lobules. Within the other columns only a faint sign of a topographical organization is found. The location of the pontine columns projecting onto the paramedian lobule largely corresponds to the pontine terminal areas of fibers from the sensory cerebral cortex (SmI and SmII). The corresponding topography in these parts of the corticopontine and pontocerebellar pathways is suitable for a somatotopical impulse transmission from the sensory cortex to the paramedian lobule, in agreement with the results of physiological investigations. Furthermore, a correlation of the pontine areas projecting onto the paramedian lobule with the terminal areas of pontine afferents shows that the pons may be a relay station in mediating influences from other parts of the cortex (MsI, visual and acoustic), the cerebellar nuclei and the colliculi to the paramedian lobule.  相似文献   

7.
The present study shows that 3–5 days following leions of the dentate and interposed nuclei in normal adult rats degenerating axons and axon terminals can be detected in the contralateral pontine gray. The degenerating axon terminals form Gray's type I axo-dendritic contacts with fine intermediate dendrites measuring between 0.8–2.4 μm. The present study also investigates, by electron microscopy, the synaptic rearrangement of the sensorimotor corticopontine projections following neonatal left cerebellar hemispherectomy19. Following neonatal left cerebellar hemispherectomy, the right sensorimotor and adjacent cortex (SMC) presents a very dense ipsilateral and a modest amount of contralateral corticopontine projections in contrast with a predominantly ipsilateral corticopontine projection seen in the normal adult rat. As with the ipsilateral corticopontine projection seen in the normal adult animal, the bilateral corticopontine projections seen in the experimental animals form contacts with dendrites suggestive of Gray's type I synapses. While the corticopontine projections in normal control animals form synapses with fine dendrites measuring 0.2–1.2 μm the corticopontine projections in the experimental animals form synaptic relations with fine dendrites and with intermediate dendrites measuring 0.2–2.4 μm. As the normal cerebellopontine fibers from the dentate and interposed nuclei also form axo-dendritic synapses on fine and intermediate dendrites and the contacts formed are also of Gray's type I synapses, it is possible that some of the newly formed corticopontine fibers in the experimental animals might have replaced the cerebellopontine fibers synapsing on intermediate dendrites. Synaptic rearrangement appears to take place as suggested by the presence of synaptic complexes in which one axon terminal contacts two of more dendrites or two or more axon terminals contact one dendrite. Such complexes are frequently seen to undergo degeneration following the right SMC lesion in the experimental animals. Other complex synaptic structures are also present in both the right and left pontine gray in the experimental animals. They are not seen to undergo degeneration following the right SMC lesions. Occasional features of neuronal reaction could still be seen both sides of the pontine gray for as long as 3–6 months after the neonatal cerebellar lesions.  相似文献   

8.
The projections to the basis pontis from cytoarchitectonically defined subregions of the superior (SPL) and inferior (IPL) parietal lobules were investigated in 14 rhesus monkeys by using the anterograde tracing techniques of autoradiography and horseradish peroxidase histochemistry. The results of our study confirm and complement available information regarding the parietopontine projections. The projections are found in clusters distributed in lamellae approximately concentric to the peduncle. They are directed most heavily towards the peripeduncular and lateral nuclei of the pons. There are also lesser, but nevertheless substantial projections to other nuclei including the intrapeduncular, ventral, dorsolateral, extreme dorsolateral, and dorsal nuclei. The dorsomedial, paramedian, and NRTP nuclei receive only minor projections. The SPL projections are relatively widespread with respect to the more focussed IPL projections. The IPL projections are, in general, situated more laterally and at more rostral levels of the pontine nuclei than are those of the SPL. The sulcal cortex of the SPL (area PEa) favors the dorsolateral, extreme dorsolateral, and ventral nuclei compared to the light projections to these nuclei from the convexity of the SPL. The sulcal cortex of the IPL, area POa, differs from the gyral cortex in favoring the ventral and extreme dorsolateral nuclei. The rostral IPL differs from the caudal IPL in that the intrapeduncular nucleus receives projections only from rostral regions, while the lateral nucleus receives projections preferentially from caudal regions. The pontine projections from the medial SPL, area PGm, are unique in the parietal lobe in that they include the paramedian nucleus. Projections arising from multimodal regions located caudally in the SPL (areas PEa and PGm) and IPL (areas PG and Opt) are more strongly represented and more laterally placed within the pontine nuclei than projections arising from more rostral, unimodal, posterior parietal regions. The heavy projections to the pontine nuclei from the posterior parietal cortex, and particularly from those caudal parietal regions that have prominent associative and limbic connections, seem to suggest that the corticopontocerebellar pathways permit a cerebellar contribution not only to the coordination of movement, but also to the modulation and integration of higher function.  相似文献   

9.
The anterograde and retrograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) was used to study the anatomical organization of descending projections from the mamillary body (MB) to the mesencephalon and pons at light and electron microscopic levels. Injections of WGA-HRP into the medial mamillary nucleus resulted in dense anterograde and retrograde labeling in the ventral tegmental nucleus, while injections in the lateral mamillary nucleus resulted in dense anterograde labeling in the dorsal tegmental nucleus pars dorsalis and dense anterograde and retrograde labeling in the pars ventralis of the dorsal tegmental nucleus. Anterogradely labeled fibers in the mamillotegmental tract diverged from the principal mamillary tract in an extensive dorsocaudally oriented swath of axons which extended to the dorsal and ventral tegmental nuclei, and numerous axons turned sharply ventrally and rostrally to terminate topographically in the dorsomedial nucleus reticularis tegmenti pontis and rostromedial pontine nuclei. The anterograde labeling in these two precerebellar relay nuclei was distributed near the midline such that projections from the lateral mamillary nucleus terminated mainly dorsomedial to the terminal fields of projections from the medial mamillary nucleus. In the dorsal and ventral tegmental nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites and to a lesser extent with neuronal somata. A few labeled terminals contained pleomorphic vesicles and formed symmetric synaptic junctions with dendrites and neuronal somata. Labeled axon terminals were also frequently found in synaptic contact with retrogradely labeled dendrites and neuronal somata in the dorsal and ventral tegmental nuclei. These findings indicate that neurons in the dorsal and ventral tegmental nuclei are reciprocally connected with MB projection neurons. In the nucleus reticularis tegmenti pontis and medial pontine nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites. The present study demonstrates that projections from the medial and lateral nuclei of the MB are topographically organized in the mesencephalon and pons. The synaptic morphology of mamillotegmental projections suggests that they may have excitatory influences primarily on the distal dendrites of neurons in these brain regions.  相似文献   

10.
The projections from the pontine nuclei and the necleus reticularis tegmenti pontis (N.r.t.) onto the flocculus, uvula, and the paramedian lobule were studied with retrograde transport of horseradish peroxidase n the rhesus monkey. The main findings are as follows: There is a conspicuous tendency for labeled cells to occur in numerous discrete clusters in the pontine nuclei after injections of these parts of the cerebellum. There appears to be very limited overlap between pontine cell groups projecting to the flocculus, the uvula, and the paramedian lobule, respectively. The flocculus appears to receive a substantial projection from the pontine nuclei. The projection is almost totally crossed (3% ipsilateral), and arises mainly laterally in the rostral half of the pons but in addition from a minor group dorsomedially. The flocculus receives a bilateral projection (slight contralateral preponderance) from medial and dorsomedial parts of the NRT. The number of labeled cells in the NRT was 13% of the number in the pontine nuclei. the uvula is amply supplied from the pontine nuclei. The projection takes origin throughout the rostrocaudal extent of the pons, from one medial and one dorsolateral region. Labeled cells are found in greatest number dorsolaterally in the rostral half of the pons. In the caudal N.r.t., one medial and one lateral cell group were labeled after injection of the uvula. The number of labeled cells in the N.r.t. was only 4% of the number in the pontine nuclei. Findings with regard to the paramedian lobule confirm and extend earlier observations in the monkey (Brodal, '79, '80). The present results are discussed in relation to HRP studies of the pontocerebellar projection in lower animals. Several possible species differences are noted--for example, with regard to projections to the flocculus. There is some evidence that the pontocerebellar projection is more precisely organized in the monkey than in lower animals.  相似文献   

11.
The origin, course and distribution of cerebellopontine fibers was studied in the opossum by employing the Nauta-Gygax and Fink-Heimer techniques. Our results substantiate and extnd those of Brodal, Destombes, Lacerda and Angaut ('72) concerning the existence of cerebellopontine projections and provide evidence for a hitherto unreported fastigial projection to the basilar pons. Destruction of the caudal, medial division of the fastigial nucleus elicits bilateral degeneration in a restricted area of the medial pontine nucleus. This small terminal field is located in the angle between the medial lemniscus and the pyramidal tract and is found throughout the caudal three-fifths of the pons. The degenerating fibers do not course within the descending brachium conjunctivum, but reach the pons by filtering through the reticular formation from the uncinate fasciculus. Lesions that involve either the interpositus anterior or the dentate nucleus produce degeneration within the contralateral descending brachium conjunctivum and basilar pons. Terminal fields are located within the median, medial (paramedian nucleus of cat), peduncular, ventral and lateral nuclei. The heaviest degeneration is in the medial nucleus. Although cerebellar and cortical projections have different targets in the basilar pons, there is some overlap. Fastigial and preorbital fibers have partial overlap in the dorsal part of the medial nucleus, whereas the peduncular and lateral nuclei are the areas of overlap between the interpositus anterior and dentate projections with those from forelimb (and probably face) cortical areas. This overlap is particularly obvious in the caudal part of the lateral nucleus and occurs between fibers from limb motor-sensory cortex and those arising mainly within the anterior interpositus nucleus. There is no pontine overlap between cerebellar and visual or auditory cortical projections.  相似文献   

12.
The efferent connections of the cerebral cortex to paramedial tegmental and basilar pons were studied in the monkey by using the retrograde and orthograde capabilities of the horseradish peroxidase (HRP) technique. Six capuchin monkeys (Cebus apella) received transcannular pontine HRP gel implants to retrogradely label the cells of origin of corticopontine projections. Four additional capuchin monkeys, one rhesus (Macaca mulatta), and one cynomolgus (Macaca fascicularis) monkey, received HRP gel implants in premotor (area 6), frontal eye field (FEF, area 8), superior (area 5), and inferior (area 7) parietal lobules to orthogradely label the course and termination of corticopontine projections, and thus to confirm the retrograde studies. The brains were processed according to the tetramethylbenzidine (TMB) protocol of Mesulam ('78) and studied with darkfield microscopy. Premotor (area 6) frontal cortex and FEF (area 8) were found to be the main sources of cortical inputs to the ipsilateral paramedian basilar pons, whereas FEF, dorsal prefrontal convexity, and dorsal medial prefrontal (granular frontal association) cortex were the main sources of bilateral projections to the paramedian pontine tegmentum. The medial portion of the nucleus reticularis tegmenti pontis (NRTP), considered to be a tegmental extension of the basilar pontine gray, also received its principal cortical input from the frontal lobe. Parietal cortex, on the other hand, was observed to project to lateral NRTP and lateral basilar pons. Although the possibility exists of convergence of frontal and parietal eye field efferents in the NRTP, the frontal eye field and prefrontal cortex appear to be the principal source of cortical projections to the paramedian pontine tegmentum, which contains the physiologically defined PPRF (paramedian pontine reticular formation), an important preoculomotor center. The results are discussed primarily with regard to their significance for potential cortical influence on the oculomotor system.  相似文献   

13.
We examined whether the dorsolateral pontine cholinergic cells project to the paramedian reticular nucleus (PRN) of the caudal medulla. In 3 cats, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the PRN and we noted cells in the dorsolateral pons that contained the HRP reaction product, cells that were immunolabeled for choline acetyltransferase (ChAT), and cells that contained the HRP reaction product and were ChAT positive. We found cholinergic projections from the pedunculopontine tegmental and laterodorsal tegmental nuclei to the PRN. This finding is consistent with studies indicating a cholinoceptive region in the medial medulla mediating suppression of muscle tone. Our results demonstrate that this medullary region has monosynaptic input from pontine neurons implicated in generating the atonia of rapid eye movement sleep.  相似文献   

14.
The afferent and efferent connections of the cerebellar interpositus complex were studied in a capuchin monkey (Cebus apella) that had received a transcannular horseradish peroxidase implant into the caudal portion of the anterior interpositus nucleus and posterior interpositus nucleus. While the heaviest anterogradely labeled ascending projections were observed to the contralateral ventral posterolateral nucleus of the thalamus, pars oralis (VPLo), efferent projections were also observed to the contralateral ventrolateral thalamic nucleus (VLc) and central lateral (CL) nucleus of the thalamic intralaminar complex, magnocellular (and to a lesser extent parvicellular) red nucleus, nucleus of Darkschewitsch, zona incerta, nucleus of the posterior commissure, lateral intermediate layer and deep layer of the superior colliculus, dorsolateral periaqueductal gray, contralateral nucleus reticularis tegmenti pontis and basilar pontine nuclei (especially dorsal and peduncular), and dorsal (DAO) and medial (MAO) accessory olivary nuclei, ipsilateral lateral (external) cuneate nucleus (LCN) and lateral reticular nucleus (LRN), and to a lesser extent the caudal medial vestibular nucleus (MVN) and caudal nucleus prepositus hypoglossi (NPH), and dorsal medullary raphe. The heaviest retrograde labeling was corticonuclear Purkinje cells in the paramedian cerebellar cortex lateral to the vermis of lobules IV-VIII. Otherwise, retrogradely labeled sources of afferents were predominantly contralateral in the dorsal, dorsomedial, paramedian, and peduncular sectors of the basilar pons, NRTP, and dorsal accessory (DAO) and medial accessory (MAO) of olivary nuclei, but were predominantly ipsilateral in the LCN, LRN, and in the medullary reticular formation along the roots of the hypoglossal (XII) cranial nerve. It appeared that the connections with the contralateral dorsal basilar pons, NRTP, DAO and MAO, and ipsilateral LCN and LRN are reciprocal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The cerebellum receives visual mossy fiber input from the cerebral cortex via visual cells in the pons. We identified the regions of cat cerebellum that receive cerebral visual input by injecting orthograde tracers among physiologically identified visual pontine cells. Cerebellar labeling following these injections indicates that the contralateral paraflocculus and the rostral folium of the uvula (vermal lobule IX) receive the heaviest projection from cortically activated pontine visual cells. Lighter visual input reaches much of the rest of the contralateral posterior lobe. A second experiment combined, in the same animal, orthograde tracing of the visual corticopontine pathway with retrograde tracing of the pontocerebellar projection. The results of this experiment confirm that the paraflocculus and uvula receive more cortical visual input than do other regions of the cerebellum. This experiment also shows that uvula-projecting and paraflocculus-projecting cells occupy different parts of the ventromedial pons. Uvula-projecting cells cluster immediately adjacent to the ventral and medial borders of the pyramidal tract and near the midline. Paraflocculus-projecting cells lie ventral and medial to the pyramidal tract but displaced from its border. There are few paraflocculus-projecting cells near the midline.  相似文献   

16.
This study was undertaken to determine the origin of projections from the basilar pontine nuclei (BPN) and nucleus reticularis tegmentis pontis (NRTP) to the posterior vermal lobules VI-IX of the rat cerebellum. We describe the topographical organization of this component of the pontocerebellar projection, and the congruence of the cells of origin in the basilar pons with some of the major pontine afferent systems including the corticopontine and tectopontine projections. Horseradish peroxidase (HRP) was injected into the midline cerebellar vermal zones of Long-Evans hooded rats. The more sensitive chromogens, tetramethyl benzidine and benzidine dihydrochloride, were used to reveal the location of labeled neurons. With injections located near the midline, groups of labeled cells were observed bilaterally within the BPN. The basic trend of the projections noted was: lobule VIa receives a nonfocal projection from nearly all subdivisions of the BPN throughout its rostrocaudal extent, as well as a substantial input from NRTP. Lobules VIb-c receive input from NRTP, the rostral pons, and from the ventral, lateral, and medial groups of the middle BPN. A combination of lateral, medial, and dorsolateral groups of cells in the middle BPN project to lobule VII, in addition to projections from limited groups of cells in the rostral BPN. Lobule VIII receives afferents from the caudal aspect of the pontine gray. Lobules IXa-b receive afferents from the medial and peduncular groups in the middle BPN, whereas lobule IXc receives inputs from a medial group and a small lateral cluster of cells in the caudal aspect of the BPN. Pontine neurons projecting to the posterior vermis originate from areas which appear to receive descending inputs from visual, auditory, and somatosensory regions of the cerebral cortex. However, a large number of pontine and NRTP neurons projecting to lobules VI and VII are located within the terminal fields of tectal neurons, perhaps indicating a stronger input from the tectum rather than visual and auditory cerebral cortical regions.  相似文献   

17.
Retinorecipient regions of the ventral lateral geniculate nucleus of the thalamus and the superior colliculus of the midbrain are linked by reciprocal axonal projections. In this study we have investigated the ultrastructural characteristics, the distribution, and the postsynaptic targets of the terminals of axons projecting to the ventral lateral geniculate nucleus from the superior colliculus. Horseradish peroxidase was injected into the superior colliculi of adult albino rats, and the Hanker-Yates method was used to visualize anterogradely and retrogradely transported peroxidase in the ventral lateral geniculate nuclei 24 hours following the injection. Labelled terminals were found in the lateral and ventrolateral parts of the external division of the ipsilateral ventral lateral geniculate nucleus. The labelled terminals were confined to areas of simple, nonglomerular neuropil. They were 0.45-1.5 micron in diameter; contained small, dark mitochondria and spherical synaptic vesicles; and established Gray type I (asymmetrical) synaptic contacts with the dendritic shafts, dendritic spines, and occasionally cell bodies of cells with the ultrastructural characteristics of projection cells. A few labelled terminals established synaptic contact with retrogradely labelled cells. Thus, in the rat, the projection from the superior colliculus gives rise to a uniform population of axon terminals in the nonglomerular neuropil of the lateral portion of the ventral lateral geniculate nucleus, which synapse with, and are probably excitatory to, geniculocollicular and other projection cells.  相似文献   

18.
The projection of basilar pontine neurons to the cerebellar hemispheres was studied in pigmented rats by means of the retrograde transport of horseradish peroxidase. Injections of horseradish peroxidase were restricted to the lateral aspects of the lobulus simplex (11 cases), crus I (26 cases), crus II (23 cases), and paramedian lobule (18 cases). The main focus of labeled neurons following lobulus simplex injections of horseradish peroxidase was located in the ventral pons, at rostral levels. Interestingly, the majority of labeled cells were distributed ipsilateral to the injection site. After crus I injections, however, labeled neurons were most evident contralaterally, although labeled ipsilteral cells were conspicuous rostrally. The majority of labeled cells were characteristically distributed along the medial, ventral, and lateral perimeters of the pontine gray. This pattern of labeling contrasts with that in cases of crus II injections, in which the main focus of labeled somata occupied more central regions of medial and ventral portions of the pons. Similarly, the pattern of labeling following injections into the paramedian lobule largely avoided the medial and lateral perimeters of the pontine gray, while numerous labeled somata occupied the central region of the pons. In addition to the pontine regions described above, labeled cells were observed in various cases in the dorsal peduncular region, the lateral and dorsolateral areas, and the nuclear reticularis tegmenti pontis (NRTP) where three separate zones of labeling could be discerned in various cases. Several general organizational features were derived from these studies. Although specific quantitation procedures were not applied, the number of ipsilaterally labeled neurons was impressive in some cases, as was the mirror-image location of certain ipsi- and contra-lateral cell clusters. It was also noted that certain, similarly located clusters of labeled pontine neurons were present in cases in which injections were made into different cerebellar lobules, at least raising the possibility that some pontine neurons might give rise to divergent projections to multiple cerebellar locations. Moreover, it was evident that the location of certain clusters of labeled neurons was congruent with terminal zones of various pontine afferent systems, particularly those of the sensorimotor cortex. Combining the latter finding with the preceeding notion regarding pontocerebellar divergence suggests a mechanism by which sensorimotor information might be transmitted to several different cerebellar locations.  相似文献   

19.
Afferent and efferent connections of the fastigial oculomotor region (FOR) were studied in macaque monkeys by using axonal transport of wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP). When injected HRP is confined to the FOR, retrogradely labeled cells appear in lobules VIc and VII of the ipsilateral vermis and in group b of the contralateral medial accessory olive (MAO). In reference to the maps of topographical organization, the extent of the effective site in the fastigial nucleus (FN) could be assessed from the distributions of labeled Purkinje cells (P cells) in the vermis and labeled olivary neurons in the MAO. In contrast to the unilateral nature of the P-cell and climbing-fiber projections, those from the other brainstem regions to the FOR were bilateral. Following the injection of HRP into the FOR, the largest number of retrogradely labeled cells appeared in the pontine nuclei. Although the number of labeled cells was greater on the contralateral side in both the peduncular and dorsomedial pontine nuclei (DMPN), the number of each side was virtually identical in the dorsolateral pontine nucleus (DLPN). In the nucleus reticularis tegmenti pontis (NRTP), labeled cells were located only in its medial and dorsolateral portions bilaterally. In the vestibular complex, labeled cells appeared in the superior (SVN), medial (MVN), and inferior vestibular nuclei (IVN) bilaterally. The lateral vestibular nucleus (LVN), including y group and the ventrolateral vestibular nucleus, were free of labeled cells. Labeled cells appeared also in the perihypoglossal nucleus (PHN) bilaterally. In the pontine raphe (PR) and paramedian pontine reticular formation (PPRF), labeled cells appeared bilaterally in the caudal third of the area between the oculomotor and abducens nuclei. Labeled cells appeared also in the mesencephalic and medullary reticular formation. Tracing of anterogradely labeled axons demonstrated that most fibers from the FOR decussated within the cerebellum and entered the brainstem via the contralateral uncinate fasciculus. Some crossed fibers ascended with the contralateral brachium conjunctivum and terminated in the midbrain tegmentum. A small contingent of fibers advanced further to the thalamus. In the mesodiencephalic junction, labeled terminals were found contralaterally in the rostral interstitial nucleus of medial longitudinal fasciculus (riMLF) and a medial portion of FOrel's H Field. They appeared also in the central mesencephalic reticular formation (cMRF), the periaqueductal gray (PAG), the posterior commissure nucleus, and the superior colliculus. The oculomotor and trochlear nuclei, the red nucleus, and the interstitial nucleus of Cajal were free of labeled terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Our previous study has indicated that accommodative responses can be evoked with weak currents applied to a circumscribed area of the superior colliculus in the cat. We investigated efferent projections from this area with biocytin in the present study. The accommodation area in the superior colliculus was identified by systematic microstimulation in each of five anesthetized cats. Accommodative responses were detected by an infrared optometer. After mapping the superior colliculus, biocytin was injected through a glass micropipette into the accommodation area, where accommodative responses were elicited with low-intensity microstimulation. In addition, accommodative responses to stimulation of the superior colliculus were compared before and after an injection of muscimol, an agonist of inhibitory neurotransmitter, into the pretectum. Following the injection of biocytin, in the ascending projections, labeled terminals were seen mainly in the caudal portion of the nucleus of the optic tract, the nucleus of the posterior commissure, the posterior pretectal nucleus, the olivary pretectal nucleus, the mesencephalic reticular formation at the level of the oculomotor nucleus, and the lateral posterior nucleus of the thalamus on the ipsilateral side. Less dense terminals were seen in the anterior pretectal nucleus, the zona incerta, and the centromedian nucleus of the thalamus. In the descending projections, labeled terminals were observed mainly in the paramedian pontine reticular formation, the nucleus raphe interpositus, and the dorsomedial portion of the nucleus reticularis tegmenti pontis on the contralateral side. Less dense terminals were also seen in the nucleus of the brachium of the inferior colliculus, the cuneiform nucleus, the medial part of the paralemniscal tegmental field, and the dorsolateral division of the pontine nuclei on the ipsilateral side. Following the injection of muscimol into the pretectum, including the nucleus of the optic tract, the posterior pretectal nucleus, and the nucleus of the posterior commissure, accommodative responses evoked by microstimulation of the superior colliculus were reduced to 33–55% of the value before the injections. These findings suggest that the accommodation area in the superior colliculus projects to the oculomotor nucleus through the ipsilateral pretectal area, especially the nucleus of the optic tract, the nucleus of posterior commissure, and the posterior pretectal nucleus, and also projects to the pupilloconstriction area (the olivary pretectal nucleus), the vergence-related area (the mesencephalic reticular formation), and the active visual fixation-related area (the nucleus raphe interpositus). © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号