首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biochemical pharmacology》2012,83(12):2016-2023
Although homodimerization of UGT1A proteins is well established, direct evidence for dimerization of UGT2B7, which is arguably the most important enzyme involved in human drug glucuronidation, is currently lacking. This study characterized UGT2B7 homodimerization by co-immunopreciptation and generated a UGT2B7 homology model that identified the dimerization domain. It was demonstrated that co-expressed, solubilized UGT2B7 proteins differentially tagged with hemagglutinin (UGT2B7-HA) and c-MYC (UGT2B7-cMYC) co-immunoprecipitated as active homodimers that catalyzed 4-methylumbelliferone glucuronidation. Substrate binding affinities (assessed as S50 values) of the tagged and co-expressed tagged proteins were essentially identical to that of native UGT2B7. Co-association was not observed in a ‘mixed’ UGT2B7-HA and UGT2B7-cMYC protein preparation. Generation of a UGT2B7 homology model established from plant and human templates was achieved using SYBYLX1.2 with all residues energy minimized using the Tripos Force Field. The UGT2B7 model allowed elucidation of a putative protein dimerization domain within the B′–C loop of each UGT2B7 monomer. The eighteen amino acid dimerization domain is present in all UGT2B enzymes and comprises a proposed dimerization signature motif (FPPSYVPVVMS). Stabilization of the dimer interface is maintained by the formation of two salt bridges, aromatic π–π stacking interactions, two S-aromatic (face) interactions, and the presence of ‘proline brackets’. The homology model further provides important insights into structure–function relationships of this enzyme and the mechanism responsible for the atypical glucuronidation kinetics for substrates of UGT2B7 and other human UGT enzymes.  相似文献   

2.
Two human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A1, catalyze the glucuronidation of many endo- and xenobiotics. Although UGT1A1 uniquely catalyzes the glucuronidation of the endobiotic, bilirubin, and UGT2B7 uniquely catalyzes the glucuronidation of morphine to both the 3-0 glucuronide and the 6-0 glucuronide, both catalyze the glucuronidation of the mixed opioid agonist/antagonist buprenorphine with high efficiency. Etonitazenyl, a mu opioid receptor antagonist, was found to inhibit competitively opioid, steroid, and other substrate glucuronidation reactions catalyzed by UGT2B7. Data showing several benzodiazepines and alternative substrates interacting competitively support previous work, which indicates a single binding domain within UGT2B7. Etonitazenyl also competitively inhibited the glucuronidation of buprenorphine catalyzed by UGT1A1. However, neither etonitazenyl nor buprenorphine inhibited bilirubin glucuronidation except at very high concentrations. Therefore, it is unlikely that buprenorphine therapy for opioid or other drug addiction would influence bilirubin glucuronidation and lead to hyperbilirubenmia. Anthraflavic acid and catechol estrogen glucuronidation, catalyzed by UGT1A1, was also not inhibited by etonitazenyl or buprenorphine. Reactions catalyzed by UGT1A6 were not affected by etonitazenyl. These studies indicate that UGT2B7 has one binding site and that UGT1A1 has two or more binding sites for xenobiotics and endobiotics.  相似文献   

3.
Epirubicin is one of the most active agents for breast cancer. The formation of epirubicin glucuronide by liver UDP-glucuronosyltransferase (UGT) is its main inactivating pathway. This study aimed to investigate epirubicin glucuronidation in human liver microsomes, to identify the specific UGT isoform for this reaction, and to correlate epirubicin glucuronidation with other UGT substrates. Microsomes from human livers were used. UGTs specifically expressed in cellular systems, as well as two UGT2B7 variants, were screened for epirubicin glucuronidation. Epirubicin, morphine, and SN-38 glucuronides were measured by high-pressure liquid chromatography. The mean +/- S.D. formation rate of epirubicin glucuronide in human liver microsomes (n = 47) was 138 +/- 37 pmol/min/mg (coefficient of variation, 24%). This phenotype was normally distributed. We screened commercially available UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15 for epirubicin glucuronidation. Only UGT2B7 converted epirubicin to its glucuronide. No differences in epirubicin glucuronidation were found in HK293 cells expressing the two UGT2B7 variants at position 268. Catalytic efficiency (V(max)/K(m)) of epirubicin glucuronidation was 1.4 microl/min/mg, a value higher than that observed for morphine, a substrate of UGT2B7. Formation of epirubicin glucuronide was significantly related to that of morphine-3-glucuronide (r = 0.76, p < 0.001) and morphine-6-glucuronide (r = 0.73, p < 0.001). No correlation was found with SN-38, a substrate of UGT1A1 (r = 0.04). UGT2B7 is the major human UGT catalyzing epirubicin glucuronidation, and UGT2B7 is the candidate gene for this phenotype. The reported tyrosine to histidine polymorphism in UGT2B7 does not alter the formation rate of epirubicin glucuronide, and undiscovered genetic polymorphisms in UGT2B7 might change the metabolic fate of this important anticancer agent.  相似文献   

4.
UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3'-azido-3'-deoxythymidine (AZT), morphine, and codeine], were evaluated using recombinant UGTs and human liver microsomes (HLMs; n = 54). Of 11 different UGTs screened, UGT2B7 was the principal isoform mediating AZT glucuronidation, morphine-3-glucuronidation, and morphine-6-glucuronidation. Codeine was glucuronidated equally well by UGT2B4 and UGT2B7. Enzyme kinetic analysis of these activities typically showed higher apparent Km values for HLMs (pooled and individual) compared with UGT2B7. This difference was least (less than 2-fold higher Km) for AZT glucuronidation and greatest (3- to 6-fold higher Km) for codeine glucuronidation. Microsomal UGT2B7 protein content correlated well with AZT glucuronidation (rs = 0.77), to a lesser extent with morphine-3-glucuronidation (rs = 0.50) and morphine-6-glucuronidation (rs = 0.51), but very weakly with codeine glucuronidation (rs = 0.33). Livers were also genotyped for the UGT2B7*2 (H268Y) polymorphism. No effect of genotype on microsomal glucuronidation or UGT2B7 protein content was observed. In conclusion, although both AZT and morphine can serve as in vitro probe substrates for UGT2B7, AZT appears to be more selective than morphine. Codeine is not a useful UGT2B7 probe substrate because of significant glucuronidation by UGT2B4. The UGT2B7*2 polymorphism is not a determinant of glucuronidation of AZT, morphine, or codeine in HLMs.  相似文献   

5.
UDP-Glucuronosyltransferases (UGTs) are glycoproteins, localized in endoplasmic reticulum (ER) and nuclear membranes, which catalyze the confugation of a broad variety of lipophilic aglycon substrates with glucuronic acid using UDP-glucuronic acid (UDP-GlcUA) as the sugar donor. The major function of glucuronidation is to change hydrophobic compounds into hydrophilic derivatives, a process which facilitates their detoxification and excretion. However, it is also widely recognized that glucuronidation can result in compounds which are biologically active or demonstrate increased toxicity. UGTs, like other drug-metabolizing enzymes, have been postulated to be involved in controlling the steady state concentrations of nuclear receptor ligands for interactions with nuclear receptors [1,2]. One of the isoforms from the UGT2B subfamily, UGT2B7, has been found to be a major human UGT2B isoform, involved in the glucuronidation of a variety of endogenous compounds and xenobiotics. In this review, we included all available information from our studies and those of other investigators on a) the history of the identification and expression of UGT2B7 in human tissues, b) the substrate specificity of UGT2B7, c) the extrahepatic localization of UGT2B7 d) the nuclear localization of UGT2B7 and e) characterization of the UGT2B7 gene and promoter.  相似文献   

6.
Hydrolysis of stevioside and rebaudioside A in the gastrointestinal tract after oral intake leads to the formation of steviol, the aglycone, which is absorbed into the circulation. Although in vivo studies have shown that steviol is cleared from the body via glucuronidation, the role of liver vs. intestine in steviol glucuronidation has not been well defined and related UDP-glucuronosyltransferases (UGTs) have not been identified. The present study investigated steviol glucuronidation and obtained kinetic parameters in liver and intestinal microsomes of human and rat, as well as in recombinant human UGT systems. Results suggest that organ specificity exists in the intrinsic clearance of the glucuronidation reaction. Steviol glucuronidation was primarily mediated by UGT2B7 at low concentration and UGT2B7 and UGT1A3 at high concentration. Inhibition studies with selected UGT2B7 substrates indicate that diclofenac displayed a relatively strong inhibition (Ki, 4.2 μM) against steviol glucuronidation in human liver microsomes. Taken together, the identification of the involvement of UGT2B7 in steviol glucuronidation would provide a mechanistic basis for the evaluation of the interaction between steviol and diclofenac. As metabolic clearance of botanical-derived products can be the objects (victims) of botanical–drug interactions, further studies are needed to investigate the in vivo relevance of such interactions.  相似文献   

7.
Clopidogrel is predominantly hydrolyzed to clopidogrel carboxylic acid (CCA) by carboxylesterase 1, and subsequently CCA is glucuronidated to clopidogrel acyl glucuronide (CAG) by uridine diphosphate‐glucuronosyltransferases (UGTs); however, the UGT isoenzymes glucuronidating CCA remain unidentified to date. In this study, the glucuronidation of CCA was screened with pooled human liver microsomes (HLMs) and 7 human recombinant UGT (rUGT) isoforms. Results indicated that rUGT2B7 exhibited the highest catalytical activity for the CCA glucuronidation as measured with a mean Vmax value of 120.9 pmol/min/mg protein, 3‐ to 12‐fold higher than that of the other rUGT isoforms tested. According to relative activity factor approach, the relative contribution of rUGT2B7 to CCA glucuronidation was estimated to be 58.6%, with the minor contributions (3%) from rUGT1A9. Moreover, the glucuronidation of CCA followed Michaelis‐Menten kinetics with a mean Km value of 372.9 μM and 296.4 μM for pooled HLMs and rUGT2B7, respectively, showing similar affinity for both. The formation of CAG was significantly inhibited by azidothymidine and gemfibrozil (well‐characterized UGT2B7 substrates) in a concentration‐dependent manner, or by fluconazole (a typical UGT2B7‐selective inhibitor) in a time‐dependent manner, for both HLMs and rUGT2B7, respectively. In addition, CCA inhibited azidothymidine glucuronidation (catalyzed almost exclusively by UGT2B7) by HLMs and rUGT2B7 in a concentration‐dependent manner, indicating that CCA is a substrate of UGT2B7. These results reveal that UGT2B7 is the major enzyme catalyzing clopidogrel glucuronidation in the human liver, and that there is the potential for drug‐drug interactions between clopidogrel and the other substrate drugs of UGT2B7.  相似文献   

8.
Objective A number of nonsteroidal anti-inflammatory drugs (NSAIDs) are subject to glucuronidation in humans, and UDP-glucuronosyltransferase (UGT) 2B7 is involved in the glucuronidation of many NSAIDs. The objective of this study was to identify a NSAID with potent inhibitory potential against UGT2B7 using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Methods A rapid screening method for detecting the inhibitory potential of various drugs against UGT2B7 was established using a LC-MS/MS system. The effects of nine NSAIDs (acetaminophen, diclofenac, diflunisal, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and salicylic acid) against UGT2B7-catalyzed 3′-azido-3′-deoxythymidine glucuronidation (AZTG) were investigated in human liver microsomes (HLM) and recombinant human UGT2B7. Results Mefenamic acid inhibited AZTG most potently, with an IC50 value of 0.3 μM, and its inhibition type was not competitive. The IC50 values for diclofenac, diflunisal, indomethacin, ketoprofen, naproxen, and niflumic acid against AZTG were 6.8, 178, 51, 40, 23, and 83 μM, respectively, while those for acetaminophen and salicylic acid were >100 μM. The IC50 values for NSAIDs against AZTG in recombinant human UGT2B7 were similar to those obtained in HLM. Conclusion The method established in this study is useful for identifying drugs with inhibitory potential against human UGT2B7. Among the nine NSAIDs investigated, mefenamic acid had the strongest inhibitory effect on UGT2B7-catalyzed AZTG in HLM. Thus, caution might be exercised when mefenamic acid is coadministered with drugs possessing UGT2B7 as a main elimination pathway.  相似文献   

9.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans.  相似文献   

10.
The stereoselective glucuronidation of propranolol (PL) in human and cynomolgus monkey liver microsomes, and the roles of human hepatic UDP-glucuronosyltransferase (UGT) isoforms involved in the enantiomeric glucuronidation of PL using recombinant UGT enzymes were investigated. In Michaelis-Menten plots, R- and S-PL glucuronidation by human liver microsomes showed sigmoidal kinetics whereas the kinetics of enantiomeric PL glucuronidation by cynomolgus monkey liver microsomes was monophasic. The Km, Vmax and CLint values of cynomolgus monkey liver microsomes were generally higher than the S50, Vmax and CLmax values of human liver microsomes in R- and S-PL glucuronidation. The glucuronidation of R- and S-PL was catalyzed by at least 3 UGT isoforms: UGT1A9, UGT2B4 and UGT2B7. Michaelis-Menten plots for R- and S-PL glucuronidation by UGT1A9 were monophasic, whereas the kinetics of UGT2B7 showed sigmoidal curves. Enantiomeric R-PL glucuronidation by UGT2B4 showed sigmoidal kinetics, whereas S-PL glucuronidation displayed monophasic kinetics. UGT1A9 showed remarkable stereoselectivity in Vmax and CLint values of R-PL < S-PL. These findings demonstrate that the profiles of enantiomeric PL glucuronidation in human and cynomolgus monkey liver microsomes are largely different and suggest that the human hepatic UGT isoforms UGT1A9, UGT2B4 and UGT2B7 play distinctive roles in enantiomeric PL glucuronidation.  相似文献   

11.
Objective We characterized the kinetics of indomethacin glucuronidation by recombinant UDP-glucuronosyltransferase (UGT) isozymes and human liver microsomes (HLM) and identified the human UGT isozymes involved. Methods Indomethacin glucuronidation was investigated using HLM and recombinant human UGT isozymes. Human UGTs involved in indomethacin glucuronidation were assessed in kinetic studies, chemical inhibition studies, and correlation studies. Results Among the UGT isozymes investigated, UGT1A1, 1A3, 1A9, and 2B7 showed glucuronidation activity for indomethacin, with UGT1A9 possessing the highest activity, followed by UGT2B7. Glucuronidation of indomethacin by recombinant UGT1A9 and 2B7 showed substrate inhibition kinetics with K m values of 35 and 32 μM, respectively. The glucuronidation of indomethacin was significantly correlated with morphine 3OH-glucuronidation (r = 0.69, p < 0.05) and 3′-azido-3′-deoxythymidine glucuronidation (r = 0.82, p < 0.05), a reaction mainly catalyzed by UGT2B7. Propofol inhibited indomethacin glucuronidation in HLM with an IC50 value of 248 μM, which is between the IC50 value in recombinant UGT1A9 (106 μM) and UGT2B7 (> 400 μM). Conclusions These findings suggest that UGT2B7 plays a predominant role in indomethacin glucuronidation in the human liver and that UGT1A9 is partially involved.  相似文献   

12.
Glucosidation of hyodeoxycholic acid by UDP-glucuronosyltransferase 2B7   总被引:1,自引:0,他引:1  
Previous studies have shown that several endogenous compounds, such as bilirubin and certain bile acids, are glucosidated in human liver. In this work, we have identified human UDP-glucuronosyltransferase 2B7 (UGT2B7) as the isoform that catalyzes the glucosidation of hyodeoxycholic acid (HDCA). The glucosidation by UGT2B7 was specific for HDCA and was not observed with the other bile acids examined, lithocholic acid, chenodeoxycholic acid, and ursodeoxycholic acid. The kinetics of HDCA glucuronidation and glucosidation by UGT2B7 were characterized. The K(m) values for glucuronidation and glucosidation of HDCA were 11.6 and 17.9 microM, respectively, with V(max) values of 4.15 nmol/min/mg protein for glucuronidation and 3.28 nmol/min/mg for glucosidation. At a fixed concentration of HDCA, the apparent K(m) for UDP-glucuronic acid was 89 microM with a V(max) of 3.53 nmol/min/mg. The corresponding parameters for UDP-glucose were 442 microM and 1.98 nmol/min/mg, respectively. UGT2B7 catalyzed the addition of the glucose and glucuronic acid moieties to an hydroxyl group on HDCA and also possessed some capacity to use UDP-xylose as sugar donor. The two polymorphic variants of UGT2B7, UGT2B7(*)1 and UGT2B7(*)2 could both glucosidate HDCA. This is the first report that identifies UGT2B7 as the enzyme responsible for the glucosidation of the bile acid, HDCA.  相似文献   

13.
Mefenamic acid, a non-steroidal anti-inflammatory drug (NSAID), is used commonly to treat menorrhagia. This study investigated the glucuronidation kinetics of flufenamic, mefenamic and niflumic acid using human kidney cortical microsomes (HKCM) and recombinant UGT1A9 and UGT2B7. Using HKCM Michaelis-Menten (MM) kinetics were observed for mefenamic (K(m)(app) 23 microM) and niflumic acid (K(m)(app) 123 microM) glucuronidation, while flufenamic acid exhibited non-hyperbolic (atypical) glucuronidation kinetics. Notably, the intrinsic renal clearance of mefenamic acid (CL(int) 17+/-5.5 microL/minmg protein) was fifteen fold higher than that of niflumic acid (CL(int) 1.1+/-0.8 microL/minmg protein). These data suggest that renal glucuronidation of mefenamic acid may result in high intrarenal exposure to mefenamic acyl-glucuronide and subsequent binding to renal proteins. Diverse kinetics were observed for fenamate glucuronidation by UGT2B7 and UGT1A9. Using UGT2B7 MM kinetics were observed for flufenamic (K(m)(app) 48 microM) and niflumic acid (K(m)(app) 135 microM) glucuronidation and atypical kinetics with mefenamic acid. Similarity in K(m)(app) between HKCM and UGT2B7 suggests that UGT2B7 may be the predominant renal UGT isoform catalysing niflumic acid glucuronidation. In contrast, UGT1A9 glucuronidation kinetics were characterised by negative cooperativity with mefenamic (S(50) 449 microM, h 0.4) and niflumic acid (S(50) 7344 microM, h 0.4) while atypical kinetics were observed with flufenamic acid. Additionally, potent inhibition of the renal glucuronidation of the UGT substrate 'probe' 4-methylumbelliferone by flufenamic, mefenamic and niflumic acid was observed. These data suggest that inhibitory metabolic interactions may occur between fenamates and other substrates metabolised by UGT2B7 and UGT1A9 in human kidney.  相似文献   

14.
Flurbiprofen is a nonsteroidal anti-inflammatory drug used as a racemic mixture. Although glucuronidation is one of its elimination pathways, the role of UDP-glucuronosyltransferase (UGT) in this process remains to be investigated. Thus, the kinetics of the stereoselective glucuronidation of racemic (R,S)-flurbiprofen by recombinant UGT isozymes and human liver microsomes (HLMs) were investigated, and the major human UGT isozymes involved were identified. UGT1A1, 1A3, 1A9, 2B4, and 2B7 showed glucuronidation activity for both (R)- and (S)-glucuronide, with UGT2B7 possessing the highest activity. UGT2B7 formed the (R)-glucuronide at a rate 2.8-fold higher than that for (S)-glucuronide, whereas the other UGTs had similar formation rates. The glucuronidation of racemic flurbiprofen by HLMs also resulted in the formation of (R)-glucuronide as the dominant form, which occurred to a degree similar to that by recombinant UGT2B7 (2.1 versus 2.8). The formation of (R)-glucuronide correlated significantly with morphine 3-OH glucuronidation (r = 0.96, p < 0.0001), morphine 6-OH glucuronidation (r = 0.91, p < 0.0001), and 3'-azido-3'-deoxythymidine glucuronidation (r = 0.85, p < 0.0001), a reaction catalyzed mainly by UGT2B7, in individual HLMs. In addition, the formation of both glucuronides correlated significantly (r = 0.99, p < 0.0001). Mefenamic acid inhibited the formation of both (R)- and (S)-glucuronide in HLMs with similar IC(50) values (2.0 and 1.7 muM, respectively), which are close to those in recombinant UGT2B7. In conclusion, these findings suggest that the formation of (R)- and (S)-glucuronide from racemic flurbiprofen is catalyzed by the same UGT isozyme, namely UGT2B7.  相似文献   

15.
The predominant metabolic pathway of gemcabene in humans is glucuronidation. The principal human UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of gemcabene were determined in this study. Glucuronidation of gemcabene was catalyzed by recombinant UGT1A3, recombinant UGT2B7, and recombinant UGT2B17, as well as by human liver microsomes (HLM). Gemcabene glucuronidation in recombinant UGTs and HLM followed non-Michaelis-Menten kinetics consistent with homotropic activation, but pharmacokinetics in humans were linear over the dose range tested (total plasma C(max), 0.06-0.88 mM). Gemcabene showed similar affinity (S(50)) for recombinant UGTs (0.92-1.45 mM) and HLM (1.37 mM). S-Flurbiprofen was identified as a more selective inhibitor of recombinant UGT2B7-catalyzed gemcabene glucuronidation (>23-fold lower IC(50)) when compared with recombinant UGT1A3- or recombinant UGT2B17-catalyzed gemcabene glucuronidation. The IC(50) for S-flurbiprofen inhibition of gemcabene glucuronidation was similar in HLM (60.6 microM) compared with recombinant UGT2B7 (27.4 microM), consistent with a major role for UGT2B7 in gemcabene glucuronidation in HLM. In addition, 5,6,7,3',4',5'-hexamethoxyflavone inhibited recombinant UGT1A3 and recombinant UGT2B17-catalyzed gemcabene glucuronidation (with 4-fold greater potency for recombinant UGT1A3) but did not inhibit gemcabene glucuronidation in HLM, suggesting that UGT1A3 and UGT2B17 do not contribute significantly to gemcabene glucuronidation. Reaction rates for gemcabene glucuronidation from a human liver bank correlated well (r(2)=0.722, P<0.0001; n=24) with rates of glucuronidation of the UGT2B7 probe substrate 3'-azido-3'-deoxythymidine. In conclusion, using the three independent experimental approaches typically used for cytochrome P450 reaction phenotyping, UGT2B7 is the major enzyme contributing to gemcabene glucuronidation in human liver microsomes.  相似文献   

16.
AIMS: UGT1A1 and UGT2B7 are enzymes that commonly contribute to drug glucuronidation. Since genetic factors have been suggested to contribute to variability in activities and expression levels of these enzymes, a quantitative assessment of the influence of the major genotypes (UGT1A1*28 or UGT2B7*2) on enzyme activities was conducted. METHODS: Using a bank of microsomal samples from 59 human livers, the effect of UGT1A1*28 or UGT2B7*2 polymorphisms were investigated on rates of estradiol 3-glucuronidation (a marker of UGT1A1 enzyme activity) or zidovudine glucuronidation (a marker of UGT2B7 enzyme activity) and levels of immunoreactive protein for each enzyme. Glucuronidation rates for both enzymes were measured at K(m)/S(50) and 10 times K(m)/S(50) concentrations. RESULTS: UGT1A1 and UGT2B7 enzyme activities varied up to 16-fold and sixfold, respectively. Rates at K(m)/S(50) concentration closely correlated with rates at 10 times K(m)/S(50) concentration for both enzymes (but not at 1/10th K(m) for UGT2B7). Enzyme activities correlated with relative levels of immunoreactive protein for UGT1A1 and UGT2B7. Furthermore, rates of zidovudine glucuronidation correlated well with rates of glucuronidation of the UGT2B7 substrate gemcabene, but did not correlate with UGT1A1 enzyme activities. For the UGT1A1*28 polymorphism, consistent with levels of UGT1A1 immunoreactive protein, mean UGT1A1 activity was 2.5- and 3.2-fold lower for TA(6)/TA(7) (P < 0.05) and TA(7)/TA(7) (P < 0.001) genotypes in comparison with the TA(6)/TA(6) genotype. CONCLUSIONS: Relative to the observed 16-fold variability in UGT1A1 activity, these data indicate only a partial (approximately 40%) contribution of the UGT1A1*28 polymorphism to variability of interindividual differences in UGT1A1 enzyme activity. For the UGT2B7*2 polymorphism, genotype had no influence on immunoreactive UGT2B7 protein or the rate of 3'-azido-3'-deoxythymidine glucuronidation.  相似文献   

17.
O-Glucuronidation of 5-hydroxyrofecoxib is the major biotransformation pathway of rofecoxib in human, rat, and dog. The glucuronide conjugate is also involved in the reversible metabolism of rofecoxib in rat and human. Atypical bimodal phenomena were observed in their plasma concentration-time curves with a large variability among different human subjects. It is unclear which family members of human UDP-glucuronosyltransferases (UGT) are involved in the formation of the glucuronide. O-Glucuronidation of 5-hydroxyrofecoxib by human liver microsomes and eight cDNA-expressed human UGT isoforms were investigated. Human liver microsomes formed 5-hydroxyrofecoxib glucuronide with apparent V(max) value of 1736 pmol/min/mg of protein and K(m) value of 44.2 microM. Eight individual cDNA-expressed human UGT isozymes (1A1, 1A3, 1A4, 1A6, 1A8, 1A9, 2B7, and 2B15) were evaluated for glucuronidation of 5-hydroxyrofecoxib. Among them UGT2B15 exhibited the highest metabolism rate with apparent V(max) value of 286 pmol/min/mg of protein and K(m) value of 16.1 microM, whereas UGT2B7 showed apparent V(max) value of 47.1 pmol/min/mg of protein and K(m) value of 41.6 microM. These results indicated that human UGT2B15 has the highest level of activity for catalyzing the glucuronidation of 5-hydroxyrofecoxib. Because polymorphisms have been identified in human UGT2B7, 2B15 genes and O-glucuronidation of 5-hydroxyrofecoxib plays a major role in biotransformation of rofecoxib, it is possible that human UGT2B7 and 2B15 polymorphisms for O-glucuronidation of 5-hydroxyrofecoxib are responsible for the high variability in bimodal patterns in human plasma concentration-time curves.  相似文献   

18.
Despite the important role of UDP-glucuronosyltransferases (UGT) in the metabolism of drugs, environmental chemicals and endogenous compounds, the structural features of these enzymes responsible for substrate binding and selectivity remain poorly understood. Since UGT2B7 and UGT2B15 exhibit distinct, but overlapping, substrate selectivities, UGT2B7-UGT2B15 chimeras were constructed here to identify substrate binding domains. A UGT2B7-15-7 chimera that incorporated amino acids 61-194 of UGT2B15 glucuronidated the UGT2B15 substrates testosterone and phenolphthalein, but not the UGT2B7 substrates zidovudine and 11alpha-hydroxyprogesterone. Derived apparent K(m) values for testosterone and phenolphthalein glucuronidation by UGT2B7-15((61-194))-7 were similar in magnitude to those determined for UGT2B15. Moreover, glucuronidation of the non-selective substrate 4-methylumbelliferone (4MU) by UGT2B7-15((61-194))-7 and UGT2B15 followed Michaelis-Menten and weak substrate inhibition kinetics, respectively, whereas 4MU glucuronidation by UGT2B7 exhibited sigmoidal kinetics characteristic of autoactivation. Six UGT2B7-15-7 chimeras that incorporated smaller domains of UGT2B15 were subsequently generated. Of these, UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 glucuronidated 4MU, but activity towards the other substrates investigated here was not detected. Like UGT2B7, the UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 chimeras exhibited sigmoidal 4MU glucuronidation kinetics. The sigmoidal 4MU kinetic data were well modelled using both the Hill equation and the expression for a two-site model that assumes the simultaneous binding of two substrate molecules at equivalent sites. It may be concluded that residues 61-194 of UGT2B15 are responsible for substrate binding and for conferring the unique substrate selectivity of UGT2B15, while residues 158-194 of UGT2B7 appear to facilitate the binding of multiple 4MU molecules within the active site.  相似文献   

19.
Carvedilol ((+/-)-1-carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol) is metabolized primarily into glucuronide conjugates. In the present study, we identified the human UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of carvedilol by thin-layer chromatography using microsomes from human liver or insect cells expressing recombinant UGT isoforms. We observed two forms of carvedilol glucuronides, namely G1 and G2, in hepatic microsomes. The glucuronidation of carvedilol was catalyzed by at least three recombinant UGT isoforms: UGT1A1, UGT2B4, and UGT2B7. UGT2B4 formed both G1 and G2, whereas UGT1A1 and UGT2B7 were responsible for the formation of glucuronide G2 and G1, respectively. The enzyme kinetics for carvedilol glucuronidation by UGT1A1, UGT2B4, and UGT2B7 in addition to human liver microsomes were examined by Lineweaver-Burk analysis. The values of Km and Vmax for human liver microsomes were 26.6 microM and 106 pmol/min/mg protein for G1, and 46.0 microM and 44.5 pmol/min/mg protein for G2, respectively. The Km values for UGT1A1, UGT2B4, and UGT2B7 for G1 and G2 (22.1-55.1 microM) were comparable to those of the liver microsomes, whereas the Vmax values were in the range of 3.33 to 7.88 pmol/min/mg protein. The Km and Vmax/Km values for UGT2B4 and UGT2B7 for G1 were similar, whereas UGT2B4 had lower Km and higher Vmax/Km values for G2 compared with those of UGT1A1. These results suggest that G1 formation is catalyzed by UGT2B4 and UGT2B7, whereas G2 is formed by UGT2B4 and UGT1A1. These three hepatic UGT isoforms may have important roles in carvedilol metabolism.  相似文献   

20.
Xie S  You L  Zeng S 《Die Pharmazie》2007,62(8):625-629
Flavonoids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems and flowers, as well as in tea and red wine. They are prominent components of citrus fruits and other food sources, are consumed regularly with the human diet, and have been shown to have many biological functions, including antioxidant and chelating properties. This study suggests features of the flavonoid structure necessary for it to act as a substrate of human UGT2B7. Generally speaking, flavonol has higher glucuronidation activity than flavones and isoflavones. Differences in C3' position have an important effect on UGT2B7 glucuronidation activity, and the various substituents have different influences on glucuronidation activity. For flavonol, the bulky group at C4' can enhance glucuronidation activity. Increasing the number of hydroxyl groups of flavonoids will increase their glucuronidation activity towards UGT2B7, while conjugation of glycon will weaken the activity, and hydroxyl position can also have an important role in activity. The high glucuronidation efficiency observed with many flavonoids suggests that the contribution of UGT2B7 to the metabolism of flavonoids may be significant. The results suggest that we should not only pay attention to glucuronidation activity, but should also attach importance to the regioselectivity of glucuronidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号