首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents.  相似文献   

2.
This work describes the study of the mechanism of action and spectrum of activity of MR22388, a novel anti-cancer agent belonging to the tripentone series. MR22388 is highly cytotoxic (within the nanomolar range) against numerous cancer cell lines and studies of its cytotoxicity mechanisms show that it is a weak inhibitor of the polymerization of tubulin and that it induces apoptosis via the MAP kinase pathways. Further MR22388 is a very strong inhibitor of several kinases including the tyrosine kinase FLT3-ITD. FLT3-ITD is a mutated form of the tyrosine kinase receptor (RTK) FLT3, resulting in the constitutive activation of the kinase, occurring in about 25% of normal karyotypes’ Acute Myeloid Leukemia (AML) and is linked to a bad prognosis. Consecutively, MR22388 appears as a novel promising anticancer lead agent especially for AML therapy.  相似文献   

3.
The c‐MET receptor tyrosine kinase is the receptor for hepatocyte growth factor. Recently, activation of the c‐MET/hepatocyte growth factor signaling pathway was associated with poor prognosis in various solid tumors and was one of the mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib. But the link between c‐MET activation and the cytotoxic anticancer drug has not been fully examined. Here, we found that the enhanced expression and activation of c‐MET in cytotoxic anticancer agent‐resistant small‐cell lung cancer cells. Downregulation of c‐MET expression by siRNA against the c‐MET gene or inhibition of c‐MET activation by SU11274, a c‐MET inhibitor, in the resistant cells altered resistance to the cytotoxic anticancer agent. These results indicated that c‐MET overexpression might play an important role in acquired resistance to cytotoxic anticancer drugs. Furthermore, the number of c‐MET gene loci was increased in the resistant cells compared to the parental cells. In conclusion, increased c‐Met expression through an increase in the number of c‐MET gene loci is one of the mechanisms of acquired resistance to cytotoxic anticancer drugs. Our results add a new strategy, the targeting of c‐MET, for overcoming resistance to cytotoxic agents in small‐cell lung cancer.  相似文献   

4.
Guo W  Wu S  Liu J  Fang B 《Cancer research》2008,68(18):7403-7408
K-Ras mutations are frequently found in various cancers and are associated with resistance to treatment or poor prognosis. Similarly, poor outcomes have recently been observed in cancer patients with overexpression of protein kinase C iota (PKCiota), an atypical protein kinase C that is activated by oncogenic Ras protein and is required for K-Ras-induced transformation and colonic carcinogenesis in vivo. Thus far, there is no effective agent for treatment of cancers with K-Ras mutations or PKCiota overexpression. By synthetic lethality screening, we identified a small compound (designated oncrasin-1) that effectively kills various human lung cancer cells with K-Ras mutations at low or submicromolar concentrations. The cytotoxic effects correlated with apoptosis induction, as was evidenced by increase of apoptotic cells and activation of caspase-3 and caspase-8 upon the treatment of oncrasin-1 in sensitive cells. Treatment with oncrasin-1 also led to abnormal aggregation of PKCiota in the nucleus of sensitive cells but not in resistant cells. Furthermore, oncrasin-1-induced apoptosis was blocked by siRNA of K-Ras or PKCiota, suggesting that oncrasin-1 is targeted to a novel K-Ras/PKCiota pathway. The in vivo administration of oncrasin-1 suppressed the growth of K-ras mutant human lung tumor xenografts by >70% and prolonged the survival of nude mice bearing these tumors, without causing detectable toxicity. Our results indicate that oncrasin-1 or its active analogues could be a novel class of anticancer agents, which effectively kill K-Ras mutant cancer cells.  相似文献   

5.
6.
Expression of the receptor tyrosine kinase c‐MET (MET, mesenchymal‐epithelial transition factor) in many cancers, and its participation in multiple signal transduction pathways involved in malignant tumor growth, suggest a wide therapeutic potential for MET inhibition in human cancer. Here we describe the discovery and early clinical development of ARQ 197, a novel, selective, non–ATP‐competitive inhibitor of MET. Phase I studies demonstrate that ARQ 197 has a predictable pharmacokinetics and favorable safety profile, making it a potentially ideal partner for combination with cytotoxic chemotherapies and targeted anticancer agents. Results from phase I and phase II trials demonstrate preliminary evidence of anticancer activity. New data from a global phase II randomized trial comparing a combination of ARQ 197 plus erlotinib with erlotinib/placebo, in endothelial growth factor receptor inhibitor‐naïve patients with locally advanced/metastatic non–small cell lung cancer, demonstrate improvement in progression‐free and overall survival with combined therapy. Results were especially pronounced for patients with non–squamous lung cancer histologies, and in particular molecularly defined subgroups including KRAS mutations. These and other data from ARQ 197 clinical trials in hepatocellular, germ‐cell, pancreatic (in combination with gemcitabine), and colorectal (in combination with cetuximab and irinotecan) cancers further highlight the potential role of ARQ 197 in existing and emerging anticancer therapeutic regimens.  相似文献   

7.
ZD1839 ('Iressa') is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that inhibits EGFR signaling. Emerging evidence indicates that ZD1839 has clinical potential in lung cancer, but very little is known about the molecular characteristics of lung cancers that may determine sensitivity to ZD1839. We examined a panel of 19 lung cancer cell lines to investigate possible association between ZD1839 sensitivity and histological type, expression level and constitutive phosphorylation of EGFR and K-ras gene status. Our results indicate that neither expression level nor constitutive activation status of EGFR seems to predict sensitivity to ZD1839. In addition, ZD1839 sensitivity was not associated with expression of human epidermal growth factor receptor-2 (HER-2), another member of this tyrosine kinase receptor family nor with co-expression of EGFR and HER-2. Finally, no correlation was found between the presence of activating mutations of the K-ras gene, an important downstream mediator of the EGFR-transduced signals and the relative resistance to ZD1839. These findings warrant future study to clarify how ZD1839 inhibits lung cancer cell growth and to find a useful marker for prediction of sensitivity to this novel and promising agent for the treatment of lung cancers.  相似文献   

8.

Purpose

Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown elevated expression levels of TfR on cancer cells compared with normal cells. We previously designed a TfR-lytic hybrid peptide, which combines the TfR-binding peptide and a lytic peptide, and reported that it bound specifically to TfR and selectively killed cancer cells. Furthermore, the intravenous administration of TfR-lytic peptide in an athymic mouse model significantly inhibited tumor progression. To evaluate the immunogenicity of this peptide as a novel and potent anticancer agent, we investigated whether TfR-lytic hybrid peptide elicits cellular and humoral immune responses to produce antibodies. We also examined the toxicity of this peptide in syngeneic mice.

Methods

We performed hematologic and blood chemistry test and histological analysis and assessed hemolytic activity to check toxicity. To evaluate the immunogenicity, measurement of murine interferon-gamma and detection of TfR-lytic-specific antibody by ELISA were demonstrated.

Results

No T cell immune response or antibodies were detected in the group treated with TfR-lytic hybrid peptide. No hematologic toxicity, except for a decrease in leukocytes, was observed, and no remarkable influence on metabolic parameters and organs (liver, kidney, and spleen) was noted.

Conclusions

Therefore, TfR-lytic hybrid peptide might provide an alternative therapeutic option for patients with cancer.  相似文献   

9.
Dysregulated activation of the MET tyrosine kinase receptor is implicated in the development of solid tumors and can arise through several mechanisms, including gene amplification, overexpression of the receptor and/or its ligand hepatocyte growth factor (HGF), and the acquisition of activating mutations. The most common activating mutations cause exon 14 to be skipped during MET mRNA splicing. This in-frame deletion, known as MET exon 14, results in production of a shortened receptor that lacks a juxtamembrane domain but retains affinity for HGF. However, the negative regulatory function located within this protein sequence is lost, leading to receptor accumulation on the cell surface and prolonged activation by HGF. MET mutations causing exon 14 skipping appear to be true oncogenic drivers and occur in patients and tumors with distinct characteristics.Increasing evidence suggests that tumors carrying such mutations are sensitive to MET inhibition, raising the hope that selective MET inhibitors will provide patients with optimal anticancer activity with minimal toxicity.We discuss the prospects for selective MET inhibitors in the treatment of non-small cell lung cancer harboring MET exon 14 skipping.  相似文献   

10.
目的:研究K-ras多肽的致敏树突状细胞(DC)活化的特异性细胞毒性T 淋巴细胞(CTL)对胰腺癌的体内外杀伤作用。方法:联合应用粒细胞- 巨噬细胞集落刺激因子和白细胞介素-4 诱导培养外周血DC。表达K-ras突变体的胰腺癌细胞株全瘤、单纯K-ras突变体多肽和K-ras突变体表位肽阳离子纳米颗粒分别致敏DC。致敏DC刺激T 淋巴细胞得到肿瘤抗原特异的细胞毒性T 淋巴细胞(CTL)。 Patu 8988、SW1990细胞系制备荷瘤裸鼠模型评价CTL 体内抗肿瘤活性。结果:负载全瘤抗原的DC其诱导产生的CTL 对胰腺癌有较好的抑制,负载单纯K-ras(12-Val )突变体多肽、K-ras(12-Val )突变体表位肽阳离子纳米颗粒的DC其诱导产生的CTL 对表达K-ras(12-Val )突变体阳性(Patu 8988)的胰腺癌有较特异的抑制作用,而对K-ras(12-Val )突变体阴性(SW1990)的胰腺癌的抑制作用与对照组比较无显著性差异。结论:负载肿瘤抗原的DC诱导的CTL 可显著提高对荷瘤裸鼠的生存时间,抑制肿瘤的生长速度,并显示其可增加抗肿瘤特异性。   相似文献   

11.
There is an unmet clinical need for molecularly directed therapies available for metastatic colorectal cancer. Comprehensive genomic profiling has the potential to identify actionable genomic alterations in colorectal cancer. Through comprehensive genomic profiling we prospectively identified 6 RET fusion kinases, including two novel fusions of CCDC6-RET and NCOA4-RET, in metastatic colorectal cancer (CRC) patients. RET fusion kinases represent a novel class of oncogenic driver in CRC and occurred at a 0.2% frequency without concurrent driver mutations, including KRAS, NRAS, BRAF, PIK3CA or other fusion tyrosine kinases. Multiple RET kinase inhibitors were cytotoxic to RET fusion kinase positive cancer cells and not RET fusion kinase negative CRC cells. The presence of a RET fusion kinase may identify a subset of metastatic CRC patients with a high response rate to RET kinase inhibition. This is the first characterization of RET fusions in CRC patients and highlights the therapeutic significance of prospective comprehensive genomic profiling in advanced CRC.  相似文献   

12.
The EGFR is a protein that belongs to the ErbB family of tyrosine kinase receptors. The EGFR is often overexpressed in human carcinomas. Amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain occur in patients with cancer. In cervical cancer, the expression level of the EGFR protein appears to directly associate with human papillomavirus infection. Our previous research demonstrated that in the cervical cancer cell lines, CALO and INBL, the EGFR is non-phosphorylated. The aim of the current study was to analyze the catalytic activity of the isolated EGFR and the presence of mutations in the control region αC. Catalytic activity was assessed by a universal in vitro kinase assay using polyGluTyr as a substrate, and the proteins were visualized by western blotting. For mutation analysis, DNA from CALO and INBL cell lines was isolated, and PCR was used to amplify the exons corresponding to the helix αC in the EGFR. The PCR products were visualized by agarose gel electrophoresis. The bands were isolated using a Zymoclean Gel DNA Recovery kit and directly sequenced. The EGFR, which was isolated and analyzed using the in vitro kinase assay, had catalytic activity. The receptor contained some mutations in the helix αC of the catalytic domain in both cell lines. The observed changes in the amino acid sequence may induce a different spatial arrangement and, therefore, a different conformation, which may confer different activities to this receptor. Thus, it was concluded that non-phosphorylated EGFR has catalytic activity, and it bears some amino acid changes in the helix αC of the catalytic domain in the CALO and INBL cells. These results suggest that the EGFR may function as an activator of other ErbB family receptors in these cervical cancer cells.  相似文献   

13.
Blocking oncogenic Ras signaling for cancer therapy.   总被引:44,自引:0,他引:44  
The Ras gene product is a monomeric membrane-localized G protein of 21 kd that functions as a molecular switch linking receptor and nonreceptor tyrosine kinase activation to downstream cytoplasmic or nuclear events. Each mammalian cell contains at least three distinct ras proto-oncogenes encoding closely related, but distinct proteins. Activating mutations in these Ras proteins result in constitutive signaling, thereby stimulating cell proliferation and inhibiting apoptosis. Oncogenic mutations in the ras gene are present in approximately 30% of all human cancers. K-ras mutations occur frequently in non-small-cell lung, colorectal, and pancreatic carcinomas; H-ras mutations are common in bladder, kidney, and thyroid carcinomas; N-ras mutations are found in melanoma, hepatocellular carcinoma, and hematologic malignancies. The ras-signaling pathway has attracted considerable attention as a target for anticancer therapy because of its important role in carcinogenesis. In this review, the physiologic and biochemical properties of the Ras proteins, their mechanism of cell signaling, and their relation to human cancer will be discussed. Novel cancer therapeutic approaches based on the inhibition of Ras-mediated signaling, including inhibition of Ras processing, inhibition of Ras protein synthesis, and blockage of downstream Ras effectors, will be discussed.  相似文献   

14.

Background  

Aberrant ErbB receptor signaling is associated with various types of malignancies. γ-Tocotrienol is a member of the vitamin E family of compounds that displays potent anticancer activity that is associated with suppression in ErbB receptor phosphorylation and mitogenic signaling. Erlotinib and gefitinib are tyrosine kinase inhibitors that block ErbB1 receptor activation, whereas trastuzumab is a monoclonal antibody that has been designed to specifically inhibit ErbB2 receptor activation. However, the clinical effectiveness of these agents have been disappointing because of cooperation between different ErbB family members that can rescue cancer cells from agents directed against a single ErbB receptor subtype. It was hypothesized that targeting multiple ErbB receptor subtypes with combined treatment of γ-tocotrienol and ErbB receptor inhibitors would provide greater anticancer effects than monotherapy targeting only a single ErbB receptor subtype.  相似文献   

15.
Microsatellite instability (MSI) is caused by defective mismatch repair in 15–20% of colorectal cancers (CRCs). Higher mutation loads in tumors with mismatch repair deficiency can predict response to pembrolizumab, an anti-programmed death 1 (PD-1) immune checkpoint inhibitor. We analyzed the mutations in 113 CRCs without MSI (MSS) and 29 CRCs with MSI-High (MSI-H) using the 50-gene AmpliSeq cancer panel. Overall, MSI-H CRCs showed significantly higher mutations than MSS CRCs, including insertion/deletion mutations at repeat regions. MSI-H CRCs showed higher incidences of mutations in the BRAF, PIK3CA, and PTEN genes as well as mutations in the receptor tyrosine kinase families. While the increased mutations in BRAF and PTEN in MSI-H CRCs are well accepted, we also support findings of mutations in the mTOR pathway and receptor tyrosine kinase family genes. MSS CRCs showed higher incidences of mutations in the APC, KRAS and TP53 genes, confirming previous findings. NGS assays may be designed to detect driver mutations for targeted therapeutics and to identify tumors with high mutation loads for potential treatment with immune checkpoint blockade therapies. Further studies may be warranted to elucidate potential targeted therapeutics against mutations in the mTOR pathway and the receptor tyrosine kinase family in MSI-H CRCs as well as the benefit of anti-PD-1 immunotherapy in hypermutated MSS CRCs or other cancers.  相似文献   

16.
Fibroblast growth factor receptor 2 (FGFR2)-targeted therapy has attracted considerable attention as novel anticancer agents in gastric cancer (GC). However, intrinsic or acquired drug resistance has emerged as a major challenge to their clinical use. In this study, we demonstrated that several receptor tyrosine kinase (RTK), including EGFR, HER3 and MET, activations contributed to AZD4547 (a selective FGFR2 inhibitor) hyposensitivity in FGFR2 amplified GC cells. The rescue effect was abrogated by inhibiting these RTKs with their targeted tyrosine kinase inhibitors (TKIs). In addition, synergy in growth inhibition was observed when the GC cells were treated with a combination of AZD4547 and cetuximab (an EGFR monoclonal antibody) both in vitro and in vivo. More importantly, tissue microarray analysis revealed that these resistance-conferring RTKs were highly expressed in FGFR2 positive GC patients. Taken together, these observations demonstrated RTKs including EGFR, HER3 and MET activations as novel mechanisms of hyposensitivity to AZD4547. It will be clinically valuable to investigate the involvement of RTK-mediated signaling in intrinsicor acquired resistance to FGFR2 TKIs in GC. A combination targeted therapeutic strategy may be recommended for treating FGFR2 amplified GC patients with these RTK activations.  相似文献   

17.
The epidermal growth factor receptor (EGFR) tyrosine kinase signaling pathways regulate cellular activities. The EGFR tyrosine kinase inhibitors (EGFR‐TKIs) repress the EGFR pathway constitutively activated by somatic EGFR gene mutations and have drastically improved the prognosis of non‐small‐cell lung cancer (NSCLC) patients. However, some problems, including resistance, remain to be solved. Recently, combination therapy with EGFR‐TKIs and cytotoxic agents has been shown to improve the prognosis of NSCLC patients. To enhance the anticancer effects of EGFR‐TKIs, we examined the cross‐talk of the EGFR pathways with ataxia telangiectasia‐mutated (ATM) signaling pathways. ATM is a key protein kinase in the DNA damage response and is known to phosphorylate Akt, an EGFR downstream factor. We found that the combination of an ATM inhibitor, KU55933, and an EGFR‐TKI, gefitinib, resulted in synergistic cell growth inhibition and induction of apoptosis in NSCLC cell lines carrying the sensitive EGFR mutation. We also found that KU55933 enhanced the gefitinib‐dependent repression of the phosphorylation of EGFR and/or its downstream factors. ATM inhibition may facilitate the gefitinib‐dependent repression of the phosphorylation of EGFR and/or its downstream factors, to exert anticancer effects against NSCLC cells with the sensitive EGFR mutation.  相似文献   

18.
Constitutive activation of the RET receptor tyrosine kinase underlies the genesis and progression of multiple endocrine neoplasia type 2 (MEN 2), a dominantly inherited cancer predisposition. Importantly, although kinase activation represents a common theme in neoplasias, not all activating mutations are functionally equivalent. Consistent with this, we ascertained a patient with classical features of MEN 2B, but lacking either of the classical mutations in RET (M918T or A883F). Instead, the patient harbors a novel pair of germ line missense mutations in cis at codons 804 and 805. We evaluated the potential physiochemical effects of these substitutions in silico, predicting both to be moderately deleterious in isolation, but severely deleterious in combination. Consistent with this postulate, we show that the identified tandem mutations (V804M/E805K) are biologically active, transforming cells in culture and that their transforming capacity in combination is distinctly synergistic. Furthermore, the V804M/E805K tandem lesion confers resistance to the small molecule receptor tyrosine kinase inhibitor, PP1, suggesting a mode of action distinct from that known for classical MEN 2B mutations. To address this question, we used homology molecular modeling in silico to model the active site of RET. We predict that RET804 constitutes a critical gatekeeper residue that, when mutated in combination with RET805, induces a conformational change in the hinge region that locks the active site in a position permissive for ATP hydrolysis. Our findings have implications both in the clinic and in the successful development of novel kinase-targeted anticancer drugs.  相似文献   

19.
Somatic tyrosine kinase (TK) domain mutations of the epidermal growth factor receptor (EGFR) gene are associated with sensitivity of non-small cell lung cancer (NSCLC) to tyrosine kinase inhibitors (TKI's), however their incidence in distinct populations is not clarified. We sequenced exons 18-21 of the EGFR TK domain from 60 Greek and Czech patients, enrolled in an adjuvant chemotherapy trial following total resection for stages I-IIIa disease. Somatic mutations were found in 9/60 patients (15.0%), several being novel. EGFR mutations were more common in Stage I tumors (p = 0.023), they were also more common in women and never smokers; however, no other significant association of clinicopathological features with mutations was found. Median TTP and OS of patients with and without mutations were 13.2 and 40 months compared to 22.9 and 43.2 months, respectively. These differences were not statistically significant. K-ras (5/60, 8%) and EGFR mutations were found to be mutually exclusive. We identified a wide spectrum of somatic EGFR TK mutations reporting a relatively high incidence (15%) in NSCLC patients of Greek and Czech origin. As ethnicity seems to be a factor for the origin of these mutations, further studies in distinct populations are warranted.  相似文献   

20.
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) occurs in non-small cell lung cancer (NSCLC) patients who initially respond to TKI treatment but whose cancer then progresses. Recent studies have shown that Notch signal is associated with drug resistance. However, the exact mechanism of Notch during acquisition of resistance to EGFR-TKI in human lung cancer remains unclear. In the present study, we showed that the expression of Notch-1 was highly upregulated in EGFR-TKI acquired resistant lung cancer cells. More importantly, Notch-1 contributed to the acquisition of the epithelial–mesenchymal transition (EMT) phenotype, which was critically associated with acquired resistance to EGFR-TKI. Silencing of Notch-1 using siRNA resulted in mesenchymal–epithelial transition (MET), which was associated with impaired invasion and anchorage-independent growth of lung cancer and resensitisation to gefitinib in acquired resistant NSCLC cells. Finally, gefitinib treatment of Balb/c nu/nu with acquired resistant lung cancer xenografts in combination with Notch inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester (DAPT) resulted in effective tumour growth retardation, with decreased proliferative activity and increased apoptotic activity. Collectively, these data suggest that Notch-1 might play a novel role in acquired resistance to gefitinib, which could be reversed by inhibiting Notch-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号