首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP-activated protein kinase (AMPK) is an energy sensing/signalling intracellular protein which is activated by an increase in the cellular AMP:ATP ratio after ATP depletion. Once activated, AMPK inhibits fatty acid synthesis and the Akt-mTOR pathway, and activates the p53-p21 axis. All these molecular mechanisms are thought to play a key role in breast carcinogenesis. We investigated the genetic variability of four genes encoding AMPK (PRKAA1, PRKAA2, PRKAB1 and PRKAB2). Using a tagging approach and selecting SNPs we covered all the common genetic variation of these genes. We tested association of tagging SNPs in our four candidate genes with breast cancer (BC) risk in a study of 1340 BC cases and 2536 controls nested into the European Prospective Investigation into Cancer and Nutrition (EPIC). Given the relevance of AMPK on fatty acid synthesis and the importance of body fatness as a BC risk factor, we tested association of SNPs and body-mass index as well. We observed no statistically significant association between the SNPs in the PRKAs genes and BC risk and BMI after correction for multiple testing.  相似文献   

2.
Although the causes of prostate cancer are still unknown, numerous studies support the role of genetic factors in the development and progression of this disease. Single nucleotide polymorphisms (SNPs) in key angiogenesis genes have been studied in prostate cancer. In this review, we provide an overview of the current knowledge of the role of genetic variants in the angiogenesis pathway in prostate cancer risk and progression. Of the 17 prostate cancer genome-wide association studies (GWAS) conducted to date, only one identified disease-associated SNPs in a region of an angiogenesis pathway gene. An association was observed between aggressive disease and three intergenic SNPs (rs11199874, rs10749408 and rs10788165) in a region on chromosome 10q26 that encompasses FGFR2. The majority (27/32, 84.4%) of primary candidate gene studies reviewed had a small (n < 800, 20/32, 62.5%) to medium sample size (n = 800-2000, 7/32, 21.9%), whereas only five (15.6%) had a large sample size (n ≥ 2000). Results from the large studies revealed associations with risk and aggressive disease for SNPs in NOS2A, NOS3 and MMP-2 and risk for HIF1-α. Meta-analyses have so far been conducted on FGFR2, TGF-β, TNF-α, HIF1-α and IL10 and the results reveal an association with risk for SNPs in FGFR2 and TGF-β and aggressive disease for SNPs in IL-10. Thus, existing evidence from GWAS and large candidate gene studies indicates that SNPs from a limited number of angiogenesis pathway genes are associated with prostate cancer risk and progression.  相似文献   

3.
Dietary intake of marine fatty acids from fish may protect against prostate cancer development. We studied this association and whether it is modified by genetic variation in cyclooxygenase (COX)-2, a key enzyme in fatty acid metabolism and inflammation. We assessed dietary intake of fish among 1,499 incident prostate cancer cases and 1,130 population controls in Sweden. Five single nucleotide polymorphisms (SNPs) were identified and genotyped in available blood samples for 1,378 cases and 782 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by multivariate logistic regression. Multiplicative and additive interactions between fish intake and COX-2 SNPs on prostate cancer risk were evaluated. Eating fatty fish (e.g., salmon-type fish) once or more per week, compared to never, was associated with reduced risk of prostate cancer (OR: 0.57, 95% CI: 0.43-0.76). The OR comparing the highest to the lowest quartile of marine fatty acids intake was 0.70 (95% CI: 0.51-0.97). We found a significant interaction (p < 0.001) between salmon-type fish intake and a SNP in the COX-2 gene (rs5275: +6365 T/C), but not with the 4 other SNPs examined. We found strong inverse associations with increasing intake of salmon-type fish among carriers of the variant allele (OR for once per week or more vs. never = 0.28, 95% CI: 0.18-0.45; p(trend) < 0.01), but no association among carriers of the more common allele. Frequent consumption of fatty fish and marine fatty acids appears to reduce the risk of prostate cancer, and this association is modified by genetic variation in the COX-2 gene.  相似文献   

4.
Circadian rhythms regulate several physiological functions and genes controlling the circadian rhythm were found to regulate cell proliferation, cell cycle and apoptosis. Few studies have investigated the role of those circadian genes in prostate cancer occurrence. We aim to investigate the relationship between circadian genes polymorphisms and prostate cancer risk based on data from the EPICAP study, a population-based case–control study including 1,515 men (732 cases / 783 controls) with genotyped data. Odds Ratios (ORs) for association between prostate cancer and circadian gene variants were estimated for each of the 872 single nucleotide polymorphisms (SNPs) in 31 circadian clock genes. We also used a gene-based and pathway-based approach with a focus on the pathway including 9 core circadian genes. Separate analyses were conducted by prostate cancer aggressiveness. The core-circadian pathway (p = 0.0006) was significantly associated to prostate cancer, for either low (p = 0.002) or high (p = 0.01) grade tumor. At the gene level, we observed significant associations between all prostate cancer and NPAS2 and PER1 after correcting for multiple testing, while only RORA was significant for aggressive tumors. At the SNP-level, no significant association was observed. Our findings provide additional evidence of a potential link between genetic variants in circadian genes and prostate cancer risk. Further investigation is warranted to confirm these findings and to better understand the biological pathways involved.  相似文献   

5.
A substantial subset of breast, colorectal, ovarian, endometrial and prostatic cancers displays markedly elevated expression of immunohistochemically detectable fatty acid synthase, a feature that has been associated with poor prognosis and that may be exploited in anti-neoplastic therapy. Here, using an RNA array hybridisation technique complemented by in situ hybridisation, we report that in prostate cancer fatty acid synthase expression is up-regulated at the mRNA level together with other enzymes of the same metabolic pathway. Contrary to the observations that in many cell systems (including androgen-stimulated LNCaP prostate cancer cells) fatty acid and cholesterol metabolism are co-ordinately regulated so as to supply balanced amounts of lipids for membrane biosynthesis, storage or secretion, no changes in the expression of genes involved in cholesterol synthesis were found. These findings point to selective activation of the fatty acid synthesis pathway and suggest a shift in the balance of lipogenic gene expression in a subgroup of prostate cancers.  相似文献   

6.
We have previously reported significant inverse associations between bladder cancer risk and dietary intake of vitamins B2, B6, B12, folate and protein in a hospital-based bladder cancer case-control study conducted in Spain (1,150 cases;1,149 controls). Because these dietary factors are involved in the one-carbon metabolism pathway, we evaluated associations between bladder cancer risk and 33 single nucleotide polymorphisms (SNPs) in 8 genes (CBS, CTH, MTHFR, MTR, MTRR, SHMT1, SLC19A1 and TYMS) and interactions with dietary variables involved in this pathway. Two SNPs in the CTH gene were significantly associated with bladder cancer risk. OR (95% CI) for heterozygous and the homozygous variants compared to homozygous wild-type individuals were: 1.37 (1.04-1.80) IVS3-66 A > C and 1.22 (1.02-1.45) IVS10-430 C > T. Because the CTH gene is important for glutathione synthesis, we examined interactions with the GSTM1 gene, which codes for glutathione S-transferase muu. Increased risk for individuals with the IVS10-430 CT or TT genotype was limited to those with the GSTM1 null genotype (p-interaction = 0.02). No other SNPs were associated with risk of bladder cancer. These findings suggest that common genetic variants in the one-carbon pathway may not play an important role in the etiology of bladder cancer. However, our results provide some evidence that variation in glutathione synthesis may contribute to risk, particularly among individuals who carry a deletion in GSTM1. Additional work is needed to comprehensively evaluate genomic variation in CTH and related genes in the trans-sulfuration pathway and bladder cancer risk.  相似文献   

7.
Toll-like receptors (TLRs) are key players in the innate immune system and initiate the inflammatory response to foreign pathogens such as bacteria, fungi and viruses. The proposed role of chronic inflammation in prostate carcinogenesis has prompted investigation into the association of common genetic variation in TLRs with the risk of this cancer. We investigated the role of common SNPs in a gene cluster encoding the TLR10, TLR6 and TLR1 proteins in prostate cancer etiology among 1,414 cancer cases and 1,414 matched controls from the Cancer Prevention Study II Nutrition Cohort. Twenty-eight SNPs, which included the majority of the common nonsynonymous SNPs in the 54-kb gene region and haplotype-tagging SNPs that defined 5 specific haplotype blocks, were genotyped and their association with prostate cancer risk determined. Two SNPs in TLR10 [I369L (rs11096955) and N241H (rs11096957)] and 4 SNPs in TLR1 [N248S (rs4833095), S26L (rs5743596), rs5743595 and rs5743551] were associated with a statistically significant reduced risk of prostate cancer of 29-38% (for the homozygous variant genotype). The association of these SNPs was similar when the analysis was limited to cases with advanced prostate cancer. Haplotype analysis and linkage disequilibrium findings revealed that the 6 associated SNPs were not independent and represent a single association with reduced prostate cancer risk (OR = 0.55, 95% CI: 0.33, 0.90). Our study suggest that a common haplotype in the TLR10-TLR1-TLR6 gene cluster influences prostate cancer risk and clearly supports the need for further investigation of TLR genes in other populations.  相似文献   

8.
Several candidate genes along androgen pathway have been suggested to affect prostate cancer risk but no single gene seems to be overwhelmingly important for a large fraction of the patients. In this study, we first screened for variants in candidate genes and then chose to explore the association between 18 variants and prostate cancer risk by genotyping DNA samples from unselected (n = 847) and familial (n = 121) prostate cancer patients and population controls (n = 923). We identified a novel single nucleotide polymorphism (SNP) in the CYP19A1 gene, T201M, with a mild significant association with prostate cancer [odds ratio (OR), 2.04; 95% confidence interval (95% CI), 1.03-4.03; P = 0.04]. Stratified analysis revealed that this risk was most apparent in patients with organ-confined (T(1)-T(2)) and low-grade (WHO grade 1) tumors (OR, 5.42; 95% CI, 2.33-12.6; P < 0.0001). In contrast, CYP17A1 -34T>C alteration was associated with moderate to poorly differentiated (WHO grade 2-3) organ-confined disease (OR, 1.42; 95% CI, 1.09-1.83; P = 0.007). We also tested a multigenic model of prostate cancer risk by calculating the joint effect of CYP19A1 T201M with five other common SNPs. Individuals carrying both the CYP19A1 and KLK3 -252A>G variant alleles had a significantly increased risk for prostate cancer (OR, 2.87; 95% CI, 1.10-7.49; P = 0.03). In conclusion, our results suggest that several SNPs along the androgen pathway, especially in CYP19A1 and CYP17A1, may influence prostate cancer development and progression. These genes may have different contributions to distinct clinical subsets as well as combinatorial effects in others illustrating that profiling and joint analysis of several genes along each pathway may be needed to understand genetic contributions to prostate cancer etiology.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) in genes involved in xenobiotics metabolism (XM) are suspected to play a role in breast cancer risk. However, previous findings based on a SNP by SNP approach need to be replicated taking into account the combined effects of multiple SNPs. We used a gene-set analysis method to study the association between breast cancer risk and genetic variation in XM genes (seen as a set of SNPs) and in the XM pathway (seen as a set of genes). We also studied the interaction between variants in XM genes and tobacco smoking. The analysis was conducted in a case–control study of 1,125 cases and 1,172 controls. Using a dedicated chip, genotyping data of 585 SNPs in 68 XM genes were available. Genetic variation in the whole XM pathway was significantly associated with premenopausal breast cancer risk (p = 0.008). This association was mainly driven by genetic variation in NAT2, CYP2C18, CYP2C19, AKR1C2 and ALDH1A3. The association between the XM gene pathway and breast cancer was observed among current and previous smokers, but not among never smokers (p = 0.013 for interaction between XM genes and tobacco smoking status). The association with breast cancer risk indicates that XM genes variants may play a role in breast carcinogenesis through their detoxification function of environmental pollutants, such as those contained in tobacco smoke.  相似文献   

10.
Evidence suggests that cells with a stemness phenotype play a pivotal role in oncogenesis, and prostate cells exhibiting this phenotype have been identified. We used two genome‐wide association study (GWAS) datasets of African descendants, from the Multiethnic/Minority Cohort Study of Diet and Cancer (MEC) and the Ghana Prostate Study, and two GWAS datasets of non‐Hispanic whites, from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and the Breast and Prostate Cancer Cohort Consortium (BPC3), to analyze the associations between genetic variants of stemness‐related genes and racial disparities in susceptibility to prostate cancer. We evaluated associations of single‐nucleotide polymorphisms (SNPs) in 25 stemness‐related genes with prostate cancer risk in 1,609 cases and 2,550 controls of non‐Hispanic whites (4,934 SNPs) and 1,144 cases and 1,116 controls of African descendants (5,448 SNPs) with correction by false discovery rate ≤0.2. We identified 32 SNPs in five genes (TP63, ALDH1A1, WNT1, MET and EGFR) that were significantly associated with prostate cancer risk, of which six SNPs in three genes (TP63, ALDH1A1 and WNT1) and eight EGFR SNPs showed heterogeneity in susceptibility between these two racial groups. In addition, 13 SNPs in MET and one in ALDH1A1 were found only in African descendants. The in silico bioinformatics analyses revealed that EGFR rs2072454 and SNPs in linkage with the identified SNPs in MET and ALDH1A1 (r2 > 0.6) were predicted to regulate RNA splicing. These variants may serve as novel biomarkers for racial disparities in prostate cancer risk.  相似文献   

11.
Insulin-like growth factor-I (IGF1) stimulates cell proliferation, decreases apoptosis, and has been implicated in cancer development. Epidemiological studies have shown elevated levels of circulating IGF1 to be associated with increased risk of prostate cancer. To what extent genetic variation in the IGF1 gene is related to prostate cancer risk is largely unknown. We performed a comprehensive haplotype tagging (HT) assessment of single nucleotide polymorphisms (SNPs) representing the common haplotype variation in the IGF1 gene. We genotyped 10 SNPs (9 haplotype tagging SNPs (htSNPs)) within Cancer Prostate in Sweden (CAPS), a case-control study of 2,863 cases and 1,737 controls, in order to investigate if genetic variation in the IGF1 gene is associated with prostate cancer risk. Three haplotype blocks were identified across the IGF1 gene and 9 SNPs were selected as haplotype tagging SNPs. Common haplotypes in the block covering the 3' region of the IGF1 gene showed significant global association with prostate cancer risk (p = 0.004), with one particular haplotype giving an odds ratio of 1.46 (95% CI = 1.15-1.84, p = 0.002). This haplotype had a prevalence of 5% in the study population. Our results indicate that common variation in the IGF1 gene, particularly in the 3' region, may affect prostate cancer risk. Further studies on genetic variations in the IGF1 gene in relation to prostate cancer risk as well as to circulating levels of IGF1 are needed to confirm this novel finding.  相似文献   

12.
13.
The EGFR pathway is a critical signaling pathway deregulated in many solid tumors. In addition to the initiation and progression of cancer, the EGFR pathway is also implicated in variable treatment responses and prognoses. Genetic variation in the form of Single Nucleotide Polymorphisms (SNPs) can affect the function/expression of the EGFR pathway genes. Here, we applied a systematic and comprehensive approach utilizing diverse public databases and in silico analysis tools to select putative functional genetic variations from 244 genes involved in the EGFR pathway. Our data comprises 649 SNPs. Three hundred sixty SNPs are predicted to have biological consequences (functional SNPs). These SNPs can be directly used in further studies to test their association with risk, treatment response and prognosis in cancer. To systematically cover the EGFR pathway, we also performed a network‐based analysis to further select putative functional SNPs from the genes whose protein products physically interact with the EGFR pathway proteins. We utilized protein–protein interaction information and focused on 14 proteins that have a high degree of connectivity (interacting with ≥10 proteins) with the EGFR pathway genes identified to have functional SNPs (f‐EGFR genes). Two of these proteins (FYN and LCK) had interactions with 17 of the f‐EGFR genes, yet both lacked any putative functional SNP. However, our analysis indicated the presence of potentially functional SNPs in 9 other highly interactive proteins. The genes and their SNPs identified in the network‐based analysis represent potential candidates for gene–gene and SNP–SNP interaction studies in cancer research. © 2009 UICC  相似文献   

14.
Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this study, we investigated the associations of genetic variants in alcohol‐metabolising genes with prostate cancer incidence and survival. We analysed data from 23,868 men with prostate cancer and 23,051 controls from 25 studies within the international PRACTICAL Consortium. Study‐specific associations of 68 single nucleotide polymorphisms (SNPs) in 8 alcohol‐metabolising genes (Alcohol Dehydrogenases (ADHs) and Aldehyde Dehydrogenases (ALDHs)) with prostate cancer diagnosis and prostate cancer‐specific mortality, by grade, were assessed using logistic and Cox regression models, respectively. The data across the 25 studies were meta‐analysed using fixed‐effect and random‐effects models. We found little evidence that variants in alcohol metabolising genes were associated with prostate cancer diagnosis. Four variants in two genes exceeded the multiple testing threshold for associations with prostate cancer mortality in fixed‐effect meta‐analyses. SNPs within ALDH1A2 associated with prostate cancer mortality were rs1441817 (fixed effects hazard ratio, HRfixed = 0.78; 95% confidence interval (95%CI):0.66,0.91; p values = 0.002); rs12910509, HRfixed = 0.76; 95%CI:0.64,0.91; p values = 0.003); and rs8041922 (HRfixed = 0.76; 95%CI:0.64,0.91; p values = 0.002). These SNPs were in linkage disequilibrium with each other. In ALDH1B1, rs10973794 (HRfixed = 1.43; 95%CI:1.14,1.79; p values = 0.002) was associated with prostate cancer mortality in men with low‐grade prostate cancer. These results suggest that alcohol consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression.  相似文献   

15.

Background:

Recently, numerous prostate cancer risk loci have been identified, some of which show association in specific populations. No study has yet investigated whether these single nucleotide polymorphisms (SNPs) are associated with prostate cancer in the Ashkenazi Jewish (AJ) population.

Methods:

A total of 29 known prostate cancer risk SNPs were genotyped in 963 prostate cancer cases and 613 controls of AJ ancestry. These data were combined with data from 1241 additional Ashkenazi controls and tested for association with prostate cancer. Correction for multiple testing was performed using the false discovery rate procedure.

Results:

Ten of twenty-three SNPs that passed quality control procedures were associated with prostate cancer risk at a false discovery rate of 5%. Of these, nine were originally discovered in studies of individuals of European ancestry. Based on power calculations, the number of significant associations observed is not surprising.

Conclusion:

We see no convincing evidence that the genetic architecture of prostate cancer in the AJ population is substantively different from that observed in other populations of European ancestry.  相似文献   

16.
A key player in prostate cancer development and progression is the androgen receptor (AR). Tumor-associated lipogenesis can protect cancer cells from carcinogenic- and therapeutic-associated treatments. Increased synthesis of fatty acids and cholesterol is regulated by androgens through induction of several genes in androgen-responsive cancer cells. Acetyl-CoA-carboxylase-α (ACCA) is a key enzyme in the regulation of fatty acids synthesis. Here we show that AR binds in vivo to intron regions of human ACCA gene. We also show that the level of ACCA protein in LNCaP depends on AR expression and that DHT treatment increases ACCA expression and fatty acid synthesis. Inhibition of ACCA by TOFA (5-tetradecyl-oxy-2-furoic acid) decreases fatty acid synthesis and induces caspase activation and cell death in most PCa cell lines. Our data suggest that TOFA can kill cells via the mitochondrial pathway since we found cytochrome c release after TOFA treatment in androgen sensitive cell lines. The results also imply that the pro-apoptotic effect of TOFA may be mediated via a decrease of neuropilin-1(NRP1) and Mcl-1expression. We have previously reported that Mcl-1 is under AR regulation and plays an important role in resistance to drug-induced apoptosis in prostate cancer cells, and NRP1 is known to regulate Mcl-1 expression. Here, we show for the first time that NRP1 expression is under AR control. Taken together, our data suggest that TOFA is a potent cell death inducing agent in prostate cancer cells.  相似文献   

17.
BACKGROUND: Chronic inflammation may be a risk factor for prostate cancer. Previously, we found significant associations between single nucleotide polymorphisms (SNPs) and haplotypes in Toll-like receptor (TLR) 4 and the risk of prostate cancer. TLR6, TLR1, and TLR10 are also involved in the pathogen-mediated inflammation pathway. A Swedish study observed associations between sequence variants in the TLR6-TLR1-TLR10 gene cluster and the risk of prostate cancer. We assessed if genetic polymorphisms of this gene cluster were associated with the risk of prostate cancer in a U.S. population. METHODS: In a nested case-control design within the Health Professionals Follow-Up Study, we identified 700 participants with prostate cancer who were diagnosed after they had provided a blood specimen in 1993 and by January 31, 2000. Controls were 700 age-matched men without prostate cancer who had had a prostate-specific antigen test. We genotyped 19 common (>5%) haplotype-tagging SNPs chosen from the SNPs discovered in a resequencing study spanning TLR6, TLR1, and TLR10 to test for the association between sequence variants cluster and prostate cancer. RESULTS: Neither individual SNPs nor common haplotypes in the three gene regions were associated with altered risk of prostate cancer or subgroups of aggressive prostate cancer. No effect modification was observed for age, body mass index, or family history of prostate cancer, except that TLR6_3649 showed nominally significant interaction with family history at the P < 0.05 level. CONCLUSION: Inherited sequence variants of the innate immune gene cluster TLR6-TLR1-TLR10 were not appreciably associated with the risk of prostate cancer in this cohort.  相似文献   

18.
Collective evidence suggests that cyclooxygenase 2 (COX2) plays a role in prostate cancer risk. Cyclooxygenase 2 is the major enzyme that converts arachidonic acid to prostaglandins, which are potent mediators of inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the enzymatic activity of COX2 and long-term use of NSAIDs appears to modestly lower the risk of prostate cancer. We investigated whether common genetic variation in COX2 influences the risk of advanced prostate cancer. Nine single-nucleotide polymorphisms (SNPs) in COX2 were genotyped among 1012 men in our case-control study of advanced prostate cancer. Gene-environment interactions between COX2 polymorphisms and NSAID use were also evaluated. Information on NSAID use was obtained by questionnaire. Three SNPs demonstrated nominally statistically significant associations with prostate cancer risk, with the most compelling polymorphism (rs2745557) associated with a lower risk of disease (odds ratio (OR) GC vs GG=0.64; 95% confidence interval (CI): 0.49-0.84; P=0.002). We estimated through permutation analysis that a similarly strong result would occur by chance 2.7% of the time. Nonsteroidal anti-inflammatory drug use was associated with a lower risk of disease in comparison to no use (OR=0.67; 95% CI: 0.52-0.87). No significant statistical interaction between NSAID use and rs2745557 was observed (P=0.12). Our findings suggest that variation in COX2 is associated with prostate cancer risk.  相似文献   

19.
Centrosome amplification has been detected in premalignant lesions and in situ tumors in the breast and in over 70% of invasive breast tumors, and has been associated with aneuploidy and tumor development. Based on these observations, the contribution of commonly inherited genetic variation in candidate genes related to centrosome structure and function to breast cancer risk was evaluated in an association study. Seven-hundred and 82 single nucleotide polymorphisms (SNPs) from 101 centrosomal genes were analyzed in 798 breast cancer cases and 843 controls from the Mayo Clinic Breast Cancer Study to assess the association between these SNPs (both individually and combined) and risk of breast cancer in this population. Eleven SNPs out of 782 from six genes displayed associations with breast cancer risk (P < 0.01). Haplotypes in five genes also displayed significant associations with risk. A two SNP combination of rs10145182 in NIN and rs2134808 in the TUBG1 locus (P-interaction = 0.00001), suggested SNPs in mediators of microtubule nucleation from the centrosome contribute to breast cancer. Evaluation of the simultaneous significance of all SNPs in the centrosome pathway suggested that the centrosome pathway is highly enriched (P = 4.76 × 10−50) for SNPs that are associated with breast cancer risk. Collections of weakly associated genetic variants in the centrosome pathway, rather than individual highly significantly associated SNPs, may account for a putative role for the centrosome pathway in predisposition to breast cancer.  相似文献   

20.

Purpose

Although case–control studies have evaluated the role of variant inflammatory-related loci in prostate cancer, their impact is virtually unknown among men of African descent. To address this, we evaluated the impact of inflammatory cytokine single nucleotide polymorphisms (SNPs) on prostate cancer risk for men of African descent.

Methods

Forty-four SNPs in inflammatory cytokine-associated genes were evaluated among 814 African-American and Jamaican men (279 prostate cancer cases and 535 controls) using Illumina’s Golden gate genotyping system. Individual SNP effects were evaluated using logistic regression analysis.

Results

Four SNPs were modestly associated with prostate cancer after adjusting for age. In the total population, inheritance of the IL1R2 rs11886877 AA, IL8RB rs11574752 AA, TNF rs1800629 GA + AA, and TNF rs673 GA genotypes modestly increased prostate cancer risk by 1.45 to 11.7-fold relative to the referent genotype. Among U.S. men, age-adjusted dominant, recessive and additive genetic models for the IL1R2 rs11886877 locus were linked to an increase in prostate cancer susceptibility. However, these main effects did not persist after adjusting for multiple hypothesis testing.

Conclusion

Our preliminary data does not strongly support the hypothesis that inflammatory-related sequence variants influence prostate cancer risk among men of African descent. However, further evaluation is needed to assess whether other variant inflammatory-related genes may contribute to prostate cancer risk and disease progression in larger and ethnically diverse multi-center studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号