首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background:

The significance of BRAF mutations, microsatelite instability (MSI) status and cyclin D1 expression in patients with metastatic colorectal cancer (mCRC) was evaluated.

Methods:

Primary tumours from 144 patients treated for mCRC were assessed for BRAF (V600E) mutation, MSI status and cyclin D1. The data were correlated with progression-free survival (PFS) and overall survival (OS).

Results:

BRAF mutations were detected in 10 (out of 22, 45%) patients with MSI-H tumours compared with 2 (out of 122, 1.6%) in those with microsatellite stable tumours (P<0.001). The presence of BRAF mutations was correlated with cyclin D1 overexpression (7 out of 26 patients, 58% vs 5 out of 118 patients, 14% P=0.001). Patients with BRAF-mutated primary tumours had a significantly decreased PFS (2.7 vs 9.8 months; P<0.001) and median OS (14 vs 30 months; P<0.001) than patients with wild-type (wt) tumours. Patients with MSI-H and BRAF-mutated tumours experienced significantly lower PFS (3.1 vs 11.4 months; P=0.008) and OS (14.5 vs 35.5 months; P=0.004) than patients with MSI-H and BRAF wt tumours. Similarly, BRAF mutations and cyclin D1 overexpression were correlated with decreased PFS (3.1 vs 8.6 months; P=0.03) and OS (17.8 vs 39.2 months; P=0.01).

Conclusion:

BRAF V600E mutations are associated with MSI-H status and cyclin D1 overexpression and characterize a subgroup of patients with poor prognosis.  相似文献   

2.
Hereditary non-polyposis colorectal cancer (HNPCC) is caused by mutations in one of the mismatch repair genes MLH1, MSH2, MSH6, or PMS2 and results in high-level microsatellite instability (MSI-high) in tumours of HNPCC patients. The MSI test is considered reliable for indicating mutations in MLH1 and MSH2, but is questioned for MSH6. Germline mutation analysis was performed in 19 patients with an MSI-high tumour and absence of MSH2 and/or MSH6 protein as determined by immunohistochemistry (IHC), without an MLH1 or MSH2 mutation, and in 76 out of 295 patients suspected of HNPCC, with a non-MSI-high colorectal cancer (CRC). All 295 non-MSI-high CRCs were analysed for presence of MSH6 protein by IHC. In 10 patients with an MSI-high tumour without MSH2 and/or MSH6 expression, a pathogenic MSH6 mutation was detected, whereas no pathogenic MSH6 mutation was detected in 76 patients with a non-MSI-high CRC and normal MSH6 protein expression. In none of the 295 CRCs loss of MSH6 protein expression was detected. The prevalence of a germline MSH6 mutation is very low in HNPCC suspected patients with non-MSI-high CRC. Microsatellite instability analysis in CRCs is highly sensitive to select patients for MSH6 germline mutation analysis.  相似文献   

3.
4.

Background:

KRAS codons 12 and 13 mutations predict resistance to anti-EGFR monoclonal antibodies (moAbs) in metastatic colorectal cancer. Also, BRAF V600E mutation has been associated with resistance. Additional KRAS mutations are described in CRC.

Methods:

We investigated the role of KRAS codons 61 and 146 and BRAF V600E mutations in predicting resistance to cetuximab plus irinotecan in a cohort of KRAS codons 12 and 13 wild-type patients.

Results:

Among 87 KRAS codons 12 and 13 wild-type patients, KRAS codons 61 and 146 were mutated in 7 and 1 case, respectively. None of mutated patients responded vs 22 of 68 wild type (P=0.096). Eleven patients were not evaluable. KRAS mutations were associated with shorter progression-free survival (PFS, HR: 0.46, P=0.028). None of 13 BRAF-mutated patients responded vs 24 of 74 BRAF wild type (P=0.016). BRAF mutation was associated with a trend towards shorter PFS (HR: 0.59, P=0.073). In the subgroup of BRAF wild-type patients, KRAS codons 61/146 mutations determined a lower response rate (0 vs 37%, P=0.047) and worse PFS (HR: 0.45, P=0.023). Patients bearing KRAS or BRAF mutations had poorer response rate (0 vs 37%, P=0.0005) and PFS (HR: 0.51, P=0.006) compared with KRAS and BRAF wild-type patients.

Conclusion:

Assessing KRAS codons 61/146 and BRAF V600E mutations might help optimising the selection of the candidate patients to receive anti-EGFR moAbs.  相似文献   

5.

Background:

The amplification of epidermal growth factor receptor (EGFR) in triple negative breast carcinomas (TNBC) suggests its potential therapeutic application, as for HER-2, using standardised methods of measurement. In this regard, we aimed to compare several methods for evaluating EGFR amplification along with potential mutations for suitability in clinical practice.

Methods:

Tissue sections of 138 TNBCs were used (1) to compare EGFR amplification and expression by silver in situ hybridisation (SISH) to qPCR and immunohistochemistry (IHC) and (2) to search for EGFR mutations, along with Kras, PI3K, Braf and HER-2 mutations and echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) translocation.

Results:

(1) Amplification of EGFR was observed in well-characterised TNBCs (up to 92%); (2) qPCR correlated with SISH with 94% specificity and 75.6% sensitivity; (3) IHC correlated with SISH with 97% sensitivity and 78% specificity; (4) no EGFR, Kras mutations or EML4-ALK translocations were found, but PI3K and Braf mutations were observed in 26% of cases; and (5) small, acentric circular extrachromosomal DNA similar to ‘double minutes'' in glioblastomas was observed in 18% of SISH sections.

Conclusions:

SISH and IHC are methods that are suitable in clinical practice to screen for EGFR amplification and overexpression, which are frequently observed in TNBC. Patients with TNBC are potential candidates for EGFR-targeted therapy combined with PI3K and Braf inhibitors.  相似文献   

6.
The fusion gene EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) was recently identified as a novel genetic alteration in non-small cell lung cancer (NSCLC). EML4-ALK translocations correlate with specific clinical and pathological features, in particular lack of EGFR and K-ras mutations, and may be associated with resistance to EGFR tyrosine-kinase inhibitors (TKIs). Here, we report a case of a patient with a concomitant EGFR mutation and ALK translocation resistant to erlotinib. Considering this report, ALK status should be investigated in unexplained cases of EGFR-TKI-resistance of EGFR mutated NSCLCs.  相似文献   

7.
8.
Mutations in the ERK pathway occur in approximately one-third of all human cancers and most often involve production of mutant RAS or BRAF. Several studies, including our own, have shown that mutations in the BRAF and RAS genes are generally mutually exclusive. This study was performed to determine the relative oncogenic potential of the BRAF and RAS oncogenes. BRAF(V600E)-, H-RAS(G12V)-, and N-RAS(Q61R)-transfected mouse embryonic fibroblasts (MEFs) that lack p53 (p53(-/-)) or contain mutations at codon 172 (p53(R172H) and p53(R172P)) were able to induce morphologically transformed foci in p53(-/-) and p53(R172H) MEFs but not in p53(R172P) MEFs. Interestingly, BRAF(V600E) was less potent than mutant H-RAS(G12V) or N-RAS(Q61R) was in cooperating with mutant p53 as the numbers and sizes of foci induced by BRAF(V600E) were significantly lower and smaller. In vitro growth characteristics and anchorage-independent growth of transfected MEFs corroborated the transformed phenotype, and in vivo tumorigenesis confirmed the results. These results indicate that mutant BRAF(V600E) is weakly oncogenic compared with mutant RAS and that they both cooperate with p53(-/-) and p53(R172H) but not with p53(R172P) in oncogenic transformation.  相似文献   

9.
About 90% of gastric cancer (GC) cases appear in a sporadic setting. Nonetheless, in high incidence areas high familial aggregation rates have been recently described. Microsatellite instability (MSI) is thought to be an important molecular phenotype both in sporadic GC and in tumors of the HNPCC spectrum. The aim of this study was to assess the frequency of MSI in GC with familial aggregation. Five quasimonomorphic mononucleotide repeats (BAT-26, BAT-25, NR-24, NR-21 and NR-27) were analyzed in 250 GC patients. Seventy-five patients (30%) had at least one-first-degree family member affected by GC and 63 patients (25.2%) showed MSI. The frequency of MSI was significantly higher in patients with a positive family history of GC (38.7%) compared to patients with other tumor types within the family (15.7%) or with a negative oncological familial history (21.9%, P = 0.004). Within cases with a positive familial oncological history, the MSI frequency in families with GC only was similar to the one observed in families with GC and colon cancer (P = 0.96). Nonetheless, in families with GC and lung cancer, the frequency of MSI was significantly lower (5.6%, P = 0.007). MSI occurs in GCs with familial aggregation. Similar MSI rates have been observed in GC patients with other family members affected by GC or colon cancer. The same does not occur in families with other members affected by lung cancer. Our data seem to suggest that familial aggregation for either GC alone or gastric and colon cancer share common etiological factors in contrast to families with gastric and lung cancers. C. Pedrazzani and G. Corso are contributed equally.  相似文献   

10.

Background:

Heterotopic gastric-type epithelium, including gastric foveolar metaplasia (GFM) and gastric heterotopia (GH), is a common finding in duodenal biopsy specimens; however, there is still controversy regarding their histogenetic backgrounds.

Methods:

We analysed a total of 177 duodenal lesions, including 66 GFM lesions, 81 GH lesions, and 30 adenocarcinomas, for the presence of GNAS, KRAS, and BRAF mutations.

Results:

Activating GNAS mutations were identified in 27 GFM lesions (41%) and 23 GH lesions (28%). The KRAS mutations were found in 17 GFM lesions (26%) and 2 GH lesions (2%). A BRAF mutation was found in only one GFM lesion (2%). These mutations were absent in all 32 normal duodenal mucosa specimens that were examined, suggesting a somatic nature. Among the GFM lesions, GNAS mutations were more common in lesions without active inflammation. Analyses of adenocarcinomas identified GNAS and KRAS mutations in 5 (17%) and 11 lesions (37%), respectively. Immunohistochemically, all the GNAS-mutated adenocarcinomas diffusely expressed MUC5AC, indicating gastric epithelial differentiation.

Conclusions:

A significant proportion of GFM and GH harbours GNAS and/or KRAS mutations. The common presence of these mutations in duodenal adenoma and adenocarcinoma with a gastric epithelial phenotype implies that GFM and GH might be precursors of these tumours.  相似文献   

11.
KRAS mutational status has been shown to be a predictive biomarker of resistance to anti-EGFR monoclonal antibody (mAb) therapy in patients with metastatic colorectal cancer. We report the spectrum of KRAS mutation in 1506 patients with colorectal cancer and the identification and characterization of rare insertion mutations within the functional domain of KRAS. KRAS mutations are found in 44.5% (670/1506) of the patients. Two cases are found to harbor double mutations involving both codons 12 and 13. The frequencies of KRAS mutations at its codons 12, 13, 61, and 146 are 75.1%, 19.3%, 2.5%, and 2.7%, respectively. The most abundant mutation of codon 12 is G12D, followed by G12V and G12C while G13D is the predominant mutation in codon 13. Mutations in other codons are rare. The KRAS mutation rate is significantly higher in women (48%, 296/617) than in men (42.1%, 374/889, P = 0.023). Tumors on the right colon have a higher frequency of KRAS mutations than those on the left (57.3% vs. 40.4%, P < 0.0001). Two in-frame insertion mutations affect the phosphate-binding loop (codon 10–16) of KRAS are identified. One of them has never been reported before. Compared with wild-type protein, the insertion variants enhance the cellular accumulation of active RAS (RAS-GTP) and constitutively activate the downstream signaling pathway. NIH3T3 cells transfected with the insertion variants show enhanced anchorage-independent growth and in vivo tumorigenicity. Potentially these mutations contribute to primary resistance to anti-EGFR mAb therapy but the clinical implication requires further validation.  相似文献   

12.
Gastric cancer (GC) is a major cause of global cancer mortality. Previous genomic studies have reported that several RTK-RAS pathway components are amplified in GC, with individual tumours often amplifying one component and not others (“mutual exclusivity”). Here, we sought to validate these findings for three RTK/RAS components (FGFR2, HER2, KRAS) using fluorescence in situ hybridisation (FISH) on a series of gastric tumours, cell lines and patient-derived xenografts. Applying dual-colour FISH on 137 gastric tumours (89 FFPE surgical resections and 48 diagnostic biopsies), we observed FGFR2 amplification in 7.3% and HER2 amplification in 2.2% of GCs. GCs exhibiting FGFR2 amplification were associated with high tumour grade (p = 0.034). In FISH positive tumours, striking differences in copy number levels between cancer cells in the same tumour were observed, suggesting intra-tumour heterogeneity. Using a multicolour FISH assay allowing simultaneous detection of FGFR2, HER2, and KRAS amplifications, we confirmed that these components exhibited a mutually exclusive pattern of gene amplification across patients. The FISH data were also strongly correlated with Q-PCR levels and at the protein level by immunohistochemistry. Our data confirm that RTK/RAS components are mutually exclusively amplified in GC, and demonstrate the feasibility of identifying multiple aneuploidies using a single FISH assay. Application of this assay to GC samples, particularly diagnostic biopsies, may facilitate enrollment of GC patients into clinical trials evaluating RTK/RAS directed therapies. However, the presence of intra-tumour heterogeneity may require multiple biopsy samples to be obtained per patient before a definitive diagnosis can be attained.  相似文献   

13.
The impact of KRAS mutations on cetuximab sensitivity in epidermal growth factor receptor fluorescence in situ hybridisation-positive (EGFR FISH+) metastatic colorectal cancer patients (mCRC) has not been previously investigated. In the present study, we analysed KRAS, BRAF, PI3KCA, MET, and IGF1R in 85 mCRC treated with cetuximab-based therapy in whom EGFR status was known. KRAS mutations (52.5%) negatively affected response only in EGFR FISH+ patients. EGFR FISH+/KRAS mutated had a significantly lower response rate (P=0.04) than EGFR FISH+/KRAS wild type patients. Four EGFR FISH+ patients with KRAS mutations responded to cetuximab therapy. BRAF was mutated in 5.0% of patients and none responded to the therapy. PI3KCA mutations (17.7%) were not associated to cetuximab sensitivity. Patients overexpressing IGF1R (74.3%) had significantly longer survival than patients with low IGF1R expression (P=0.006), with no difference in response rate. IGF1R gene amplification was not detected, and only two (2.6%) patients, both responders, had MET gene amplification. In conclusion, KRAS mutations are associated with cetuximab failure in EGFR FISH+ mCRC, even if it does not preclude response. The rarity of MET and IGF1R gene amplification suggests a marginal role in primary resistance. The potential prognostic implication of IGF1R expression merits further evaluation.  相似文献   

14.

Background:

Activating mutation of KRAS and BRAF are focused on as potential prognostic and predictive biomarkers in patients with colorectal cancer (CRC) treated with anti-EGFR therapies. This study investigated the clinicopathological features and prognostic impact of KRAS/BRAF mutation in advanced and recurrent CRC patients.

Method:

Patients with advanced and recurrent CRC treated with systemic chemotherapy (n=229) were analysed for KRAS/BRAF genotypes by cycleave PCR. Prognostic factors associated with survival were identified by univariate and multivariate analyses using the Cox proportional hazards model.

Results:

KRAS and BRAF mutations were present in 34.5% and 6.5% of patients, respectively. BRAF mutated tumours were more likely to develop on the right of the colon, and to be of the poorly differentiated adenocarcinoma or mucinous carcinoma, and peritoneal metastasis. The median overall survival (OS) for BRAF mutation-positive and KRAS 13 mutation-positive patients was 11.0 and 27.7 months, respectively, which was significantly worse than that for patients with wild-type (wt) KRAS and BRAF (40.6 months) (BRAF; HR=4.25, P<0.001, KRAS13; HR=2.03, P=0.024). After adjustment for significant features by multivariate Cox regression analysis, BRAF mutation was associated with poor OS (HR=4.23, P=0.019).

Conclusion:

Presence of mutated BRAF is one of the most powerful prognostic factors for advanced and recurrent CRC. The KRAS13 mutation showed a trend towards poor OS in patients with advanced and recurrent CRC.  相似文献   

15.

Background

Mutations in KRAS, BRAF, PIK3CA and PTEN expression have been in focus to predict the effect of epidermal growth factor receptor-blocking therapy in colorectal cancer (CRC). Here, information on these four aberrations was collected and combined to a Quadruple index and used to evaluate the prognostic role of these factors in CRC.

Patients

We analysed the mutation status in KRAS, BRAF and PIK3CA and PTEN expression in two separate CRC cohorts, Northern Sweden Health Disease Study (NSHDS; n=197) and Colorectal Cancer in Umeå Study (CRUMS; n=414). A Quadruple index was created, where Quadruple index positivity specifies cases with any aberration in KRAS, BRAF, PIK3CA or PTEN expression.

Results

Quadruple index positive tumours had a worse prognosis, significant in the NSHDS but not in the CRUMS cohort (NSHDS; P=0.003 and CRUMS; P=0.230) in univariate analyses but significance was lost in multivariate analyses. When analysing each gene separately, only BRAF was of prognostic significance in the NSHDS cohort (multivariate HR 2.00, 95% CI: 1.16–3.43) and KRAS was of prognostic significance in the CRUMS cohort (multivariate HR 1.48, 95% CI: 1.02–2.16). Aberrations in PIK3CA and PTEN did not add significant prognostic information.

Conclusions

Our results suggest that establishment of molecular subgroups based on KRAS and BRAF mutation status is important and should be considered in future prognostic studies in CRC.  相似文献   

16.
17.

Background

Zebrafish have been used as a vertebrate model to study human cancers such as melanoma, rhabdomyosarcoma, liver cancer, and leukemia as well as for high-throughput screening of small molecules of therapeutic value. However, they are just emerging as a model for human brain tumors, which are among the most devastating and difficult to treat. In this study, we evaluated zebrafish as a brain tumor model by overexpressing a human version of oncogenic KRAS (KRASG12V).

Methods

Using zebrafish cytokeratin 5 (krt5) and glial fibrillary acidic protein (gfap) gene promoters, we activated Ras signaling in the zebrafish central nervous system (CNS) through transient and stable transgenic overexpression. Immunohistochemical analyses were performed to identify activated pathways in the resulting brain tumors. The effects of the MEK inhibitor U0126 on oncogenic KRAS were evaluated.

Results

We demonstrated that transient transgenic expression of KRASG12V in putative neural stem and/or progenitor cells induced brain tumorigenesis. When expressed under the control of the krt5 gene promoter, KRASG12V induced brain tumors in ventricular zones (VZ) at low frequency. The majority of other tumors were composed mostly of spindle and epithelioid cells, reminiscent of malignant peripheral nerve sheath tumors (MPNSTs). In contrast, when expressed under the control of the gfap gene promoter, KRASG12V induced brain tumors in both VZs and brain parenchyma at higher frequency. Immunohistochemical analyses indicated prominent activation of the canonical RAS-RAF-ERK pathway, variable activation of the mTOR pathway, but no activation of the PI3K-AKT pathway. In a krt5-derived stable and inducible transgenic line, expression of oncogenic KRAS resulted in skin hyperplasia, and the MEK inhibitor U0126 effectively suppressed this pro-proliferative effects. In a gfap-derived stable and inducible line, expression of oncogenic KRAS led to significantly increased mitotic index in the spinal cord.

Conclusions

Our studies demonstrate that zebrafish could be explored to study cellular origins and molecular mechanisms of brain tumorigenesis and could also be used as a platform for studying human oncogene function and for discovering oncogenic RAS inhibitors.

Electronic supplementary material

The online version of this article (doi:10.1186/s12943-015-0288-2) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background:

Our aim was to investigate the prognostic and predictive value of the oncogenic MAPKK-like protein T-cell-originated protein kinase (TOPK) stratified by KRAS and BRAF mutations in patients with sporadic, hereditary and metastatic colorectal cancer (CRC) treated with anti-EGFR therapy.

Methods:

Immunohistochemistry (IHC) for TOPK was performed on four study groups. Group 1 included two subgroups of 543 and 501 sporadic CRC patients used to test the reliability of TOPK expression by IHC. In Group 2, representing an additional 222 sporadic CRCs, the prognostic effect of TOPK stratified by KRAS and BRAF was assessed. The prognostic effect of TOPK was further analysed in Group 3, representing 71 hereditary Lynch syndrome-associated CRC patients. In Group 4, the predictive and prognostic value of TOPK was analysed on 45 metastatic patients treated with cetuximab or panitumumab stratified by KRAS and BRAF gene status.

Results:

In both sporadic CRC subgroups (Group 1), associations of diffuse TOPK expression with clinicopathological features were reproducible. Molecular analysis of sporadic CRCs in Group 2 showed that diffuse TOPK expression was associated with KRAS and BRAF mutations (p<0.001) and with poor outcome in patients with either mutation in univariate and multivariate analysis (P=0.017). In hereditary patients (Group 3), diffuse TOPK was linked to advanced pT stage. In metastatic patients treated with anti-EGFR therapy (Group 4), diffuse TOPK expression was linked to dismal outcome despite objective response to treatment (P=0.01).

Conclusions:

TOPK expression is an unfavourable prognostic indicator in sporadic patients with KRAS or BRAF mutations and also in patients with metastatic disease experiencing a response to anti-EGFR therapies. The inhibition of TOPK, which could benefit 30–40% of CRC patients, may represent a new avenue of investigation for targeted therapy.  相似文献   

19.
BackgroundMicrosatellite instability (MSI) remains a focus of interest in cancer research, but the characteristics of MSI in gastric cancer (GC) are ambiguous.MethodsIn this retrospective study, we analyzed the prevalence of MSI and the expression of programmed death-ligand 1 (PD-L1) and cluster of differentiation 8 (CD8) cells in Chinese GC patients. A total of 393 GC patients admitted to two centers from January 2010 to December 2017 were enrolled.ResultsThe prevalence of MSI in this cohort was 3.4% and most frequently occurred in females, patients aged between 59 and 69 years, and patients at a lower clinical stage. All MSI GCs had CD8 expression but lacked PD-L1 expression, indicating that MSI was related to CD8 expression but irrelevant to PD-L1 expression. However, there was no significant difference in the expression of CD8/PD-L1 between MSI GC and microsatellite stable (MSS) GC. Kaplan-Meier survival curves revealed that patients with MSI had a significantly longer overall survival (OS) than patients with MSS.ConclusionsIn Chinese GC patients, MSI frequently occurred in females, patients aged between 59 and 69, and patients with lower clinical stages. Patients with MSI-High (MSI-H) and MSI-Low (MSI-L) had a longer OS than patients with MSS. MSI was related to CD8 expression but irrelevant to PD-L1 expression.  相似文献   

20.

Background:

KRAS mutation testing is required to select patients with metastatic colorectal cancer (CRC) to receive anti-epidermal growth factor receptor antibodies, but the optimal KRAS mutation test method is uncertain.

Methods:

We conducted a two-site comparison of two commercial KRAS mutation kits – the cobas KRAS Mutation Test and the Qiagen therascreen KRAS Kit – and Sanger sequencing. A panel of 120 CRC specimens was tested with all three methods. The agreement between the cobas test and each of the other methods was assessed. Specimens with discordant results were subjected to quantitative massively parallel pyrosequencing (MPP). DNA blends were tested to determine detection rates at 5% mutant alleles.

Results:

Reproducibility of the cobas test between sites was 98%. Six mutations were detected by cobas that were not detected by Sanger, and five were confirmed by MPP. The cobas test detected eight mutations which were not detected by the therascreen test, and seven were confirmed by MPP. Detection rates with 5% mutant DNA blends were 100% for the cobas and therascreen tests and 19% for Sanger.

Conclusion:

The cobas test was reproducible between sites, and detected several mutations that were not detected by the therascreen test or Sanger. Sanger sequencing had poor sensitivity for low levels of mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号