首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orphan receptor GPR55 is a novel cannabinoid receptor   总被引:11,自引:0,他引:11  
BACKGROUND: The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes. EXPERIMENTAL APPROACH: Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways. KEY RESULTS: We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1. CONCLUSIONS: These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s).  相似文献   

2.
3.
GPR88 is a novel orphan G protein-coupled receptor that is primarily located at the striatum. Genetic knockout studies reveal phenotypes of increased dopamine D2 receptor sensitivity in mice, suggesting that GPR88 receptors may be involved in the modulation of dopaminergic system. However, there is no study that examines the pharmacological effects of GPR88 receptor ligands in in vivo preparations. This study examined the effects of a GPR88 receptor agonist, (1R, 2R)-2-pyridin-2-yl-cyclopropane carboxylic acid ((2S, 3S)-2-amino-3-methyl-pentyl)-(4′-propylbiphenyl-4-yl)-amide (2-PCCA), on the motor activity in rats and on methamphetamine-induced hyperactivity and discriminative stimulus effects. 2-PCCA (0.1–3.2 mg/kg) dose-dependently decreased the locomotor activity in rats and, when studied in combination with 1.0 mg/kg methamphetamine, also dose-dependently decreased methamphetamine-induced hyperactivity. However, the dose of 2-PCCA that significantly attenuated methamphetamine-induced hyperactivity was also the dose that by itself markedly decreased the baseline locomotor activity. In rats discriminating 0.32 mg/kg methamphetamine, 2-PCCA (1–3.2 mg/kg) itself did not produce methamphetamine-like discriminative stimulus effects and, when studied in combination, did not alter the discriminative stimulus effects of methamphetamine. Together, these data have provided the first line of evidence that activation of GPR88 receptors does not alter the behavioral effects of methamphetamine. The potential implications of these findings are also discussed.  相似文献   

4.
We have explored in man the hypothesis that histamine released from dermal mast cells by neurotransmitters from afferent nerves contributes to vasodilatation of the axon reflex. The ability of substance P to release histamine from human skin in vivo, and the effects of a histamine H1-receptor antagonist on capsaicin-induced axon reflex flares were studied. Intradermal injections of substance P (50 pmol) produced a weal and flare response which was associated with increased histamine concentration in blood draining the site (mean plasma histamine concentration before injection 0.17 +/- 0.02 ng ml-1 (+/- s.e.mean), concentration one minute after injection 1.26 +/- 0.28 ng ml-1, n = 6). Terfenadine, an H1-receptor antagonist, had no effect on the flare response to intradermal injection of capsaicin at a dose which inhibited by more than 60% the flare response to exogenous histamine and to histamine released from dermal mast cells by substance P. Substance P releases histamine from human skin in vivo. However, whatever the nature of the neurotransmitter released from afferent nerves during the axon reflex, it does not produce vasodilatation through release of histamine from dermal mast cells. Histamine may still contribute to the flare by initiation of the reflex.  相似文献   

5.
Atrazine (ATR), 2-chloro-4-ethylamino-6-isopropylamino-s-triazine, has been implicated in numerous studies to act as an endocrine disruptor, specifically by altering estradiol signaling via increased aromatase activity. Fluorescence polarization (FP) was used to show that the binding equilibria between estrogen receptor-alpha or estrogen receptor-beta, and estradiol were not affected by ATR and its metabolites: ATR-desethyl (ADE), ATR-desisopropyl (ADI), ATR-desethyldesisopropyl (ADD) and terbuthylazine (TBZ). Therefore, ATR and its degradation products were studied to determine their ability to inhibit phosphodiesterase (PDE), the enzyme responsible for hydrolyzing the second messenger cAMP to 5'-AMP. Using FP, it was found that ATR inhibited PDE with an IC50 value of 1.8 microM. This was lower than the known PDE inhibitor isobutyl methylxanthine (IBMX), which had an IC50 value of 4.6 microM. The ATR degradation products ADE, ADI, ADD and TBZ were less effective than ATR at inhibiting PDE when assayed using FP. Classical competitive binding assays, using radiolabeled 14C-cAMP in conjunction with thin layer chromatography (TLC), were used to determine that ATR was a competitive inhibitor of PDE with an association constant of 85 microM.  相似文献   

6.
This study was designed to elucidate the effects of hypertension and aging on nitric oxide (NO)-mediated relaxation response to acetylcholine in the rat aorta. NO-mediated relaxation response was assessed as the relaxation response to acetylcholine after treatment with cyclooxygenase inhibitor in KCl-precontracted aortic rings. The endothelium-dependent relaxation responses to acetylcholine were lower in aortic rings isolated from spontaneously hypertensive rats (SHRs) at ages 16-20 and 55-60 weeks compared with those seen in age-matched Wistar-Kyoto (WKY) rats. Aging induced a reduction of the relaxation response to acetylcholine in aortic rings from WKY rats but not from SHRs. Pretreatment with indomethacin enhanced the relaxation response to acetylcholine in only SHRs at ages 16-20 and 55-60 weeks, thereby cancelling the difference in the relaxation response between WKY rats and SHRs. Simultaneous administration of indomethacin and NG-nitro-L-arginine methyl ester abolished the relaxation response to acetylcholine in both strains. Thus NO-mediated relaxation response to acetylcholine was similar between WKY rats and SHRs at ages 16-20 and 55-60 weeks, respectively, and was attenuated with aging to the same degree in both strains. In conclusion, NO-mediated relaxation response to acetylcholine in the aorta is attenuated with aging but not impaired by hypertension.  相似文献   

7.
8.
The behavioural disturbances produced by acute exposure to ethanol have been related to changes in function of the opioid systems in the CNS. However, evidence in the literature is conflicting. The present report concerns the possible role of the enkephalinergic system in the mediation of acute ethanol effects. We used rats to study the ability of a selective opioid delta receptor antagonist (ICI 154129) to prevent the effect of ethanol on pain sensitivity, body temperature, sensorimotor performance and level of consciousness. Furthermore, in vitro receptor binding was measured to investigate whether or not ethanol, within a non-lethal concentration range, would change the binding parameters of the delta receptor ligand [3H][D-ala2, D-Leu5]enkephalin. ICI 154129 did not significantly influence the effects of ethanol in the behavioural experiments. Ethanol did not significantly change the binding parameters whether saturation or competition was measured in the receptor binding experiments. Thus, there was no evidence that the enkephalinergic system mediated the acute ethanol effects.  相似文献   

9.
In previous studies using Fos expression as a marker of neuronal activation, we showed that nitrous oxide (N(2)O) activates bulbospinal noradrenergic neurons in rats and that destruction of these neuronal pathways leads to loss of N(2)O antinociceptive action. Based on previous rat studies it has been proposed that these noradrenergic neurons are activated through opioid receptors through the release of endogenous opioid ligands in the periaqueductal gray. Using mice with a disrupted preproenkephalin gene (Penk2 -/-) and the opioid receptor antagonist naltrexone, we investigated the role of enkephalinergic mechanisms and opioid receptor activation in the behavioral and bulbospinal neuron responses to N(2)O in mice. The antinociceptive response to N(2)O was investigated using the tail-flick, hot-plate, and von Frey assays, the sedative/hypnotic response was measured using rotarod and loss of righting reflex, and bulbospinal neuronal activation was assessed with pontine Fos immunostaining. No differences were observed between wild-type and Penk2 -/- mice for the antinociceptive, sedative/hypnotic, and pontine neuronal activation effects of N(2)O. Similarly, naltrexone did not block N(2)O-induced antinociception, sedation, or hypnosis. We conclude that neither enkephalin nor opioid receptors participate in either the antinociceptive or the sedative/hypnotic actions of N(2)O in mice.  相似文献   

10.
AIMS: Following intravenous administration of its prodrug, L-758,298, we assessed the pharmacodynamics of L-754,030, a novel and highly selective NK1 receptor antagonist, by examining systemic haemodynamics and the blood flow responses to intra-arterial substance P infusion. METHODS: Sixteen healthy male volunteers participated in a double-blind, randomised, placebo controlled crossover trial of L-758 298. Forearm blood flow was measured using venous occlusion plethysmography during intrabrachial substance P infusion (0.125-128 pmol min-1 ). In part 1, eight subjects received substance P infusions before and during placebo, 0.25 mg, 1 mg or 5 mg of L-758 298. In part 2, eight subjects received substance P infusions 24 h after placebo or 1.43 mg of L-758 298. RESULTS: L-758 298 caused dose dependent inhibition of substance P induced vasodilatation (P<0.001). Placebo adjusted differences (95% CI) in baseline forearm blood flow, mean arterial pressure and heart rate showed no relevant changes with 5 mg of L-758 298 (>1400-fold shift in substance P response): 0.00 (-0.49 to +0.49) ml 100 ml-1 min-1, 1. 0 (-3.2 to +5.2) mmHg and 1.9 (-5.9 to +9.7) beats min-1, respectively. Twenty-four hours after 1.43 mg of L-758,298, there was approximately 34-fold shift in response to substance P induced vasodilatation (P<0.008) at plasma L-754 030 concentrations of 2-3 ng ml-1. L-758 298 was generally well tolerated without serious adverse events. CONCLUSIONS: Substance P induced forearm vasodilatation is mediated by the endothelial cell NK1 receptor in man but endogenous substance P does not appear to contribute to the maintenance of peripheral vascular tone or systemic blood pressure.  相似文献   

11.
12.
The orexin system plays a pivotal role in the regulation of the sleep/wake state. Almorexant is a selective, orally available dual orexin receptor antagonist. This study evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) interactions between almorexant (200 mg p.o.) and alcohol (0.6 g/L i.v. ethanol clamp for 5 h) using various cognitive and psychomotor performance tests in healthy subjects (n=20; 10 males and 10 females) in a 4-way crossover study. No effect of almorexant on ethanol PK was observed. The effects of ethanol on the PK of almorexant were limited, its exposure (AUC) increased by 21%; the median difference in tmax was 1.2 h; t1/2 and Cmax of almorexant were unchanged. Almorexant showed decreases in adaptive tracking performance, saccadic peak velocity, and subjective alertness as assessed by visual analog scale (VAS) of Bond and Lader, but had no or small effects on smooth pursuit eye movements, body sway, VAS for alcohol intoxication, and a memory test. Almorexant administered together with ethanol showed additive effects for adaptive tracking performance, saccadic peak velocity, subjective alertness and, possibly, calmness, but not on body sway, smooth pursuit, VAS for alcohol intoxication, or memory testing. To conclude, administration of almorexant together with ethanol was associated with additive effects for some of the measured cognitive and psychomotor performance tests. No indications of synergistic effects of almorexant and ethanol for any measured variable were observed.  相似文献   

13.
14.
We have studied the effect of the 5-HT(2A) receptor antagonists on apomorphine-induced aggressive behaviour in male Wistar rats. In acute behavioural experiments with apomorphine-pretreated (1.0 mg/kg, s.c., once daily, 2 weeks) animals, risperidone (0.5 and 1.0 mg/kg) inhibited aggressive behaviour, but ketanserin and ritanserin (0.5-5. 0 mg/kg) had no effect on the latency and intensity of aggressive behaviour. Concomitant risperidone (0.5 mg/kg) and haloperidol (0.03 and 0.3 mg/kg) administration blocked aggressive behaviour completely. In conclusion, our experiments confirm that inhibition of the apomorphine-induced aggressive behaviour is elicited by drugs with dopamine (DA) but not with 5-HT(2A) antagonistic activity. Moreover, it may be concluded that the serotonin 5-HT(2A) receptor subtype does not alter the DA-mediated behaviour.  相似文献   

15.
The human cytomegalovirus has found smart ways to exploit the chemokine network in order to subvert immune attack. Chemokines trigger the arrest and firm adhesion of inflammatory cells to the vascular wall. Scavenging of chemokines by viral decoy receptors, such as US28, might prevent arrest of leukocytes to the vascular wall and impair an antiviral immune response. We determined the effect of chemokine scavenging by endothelium-expressed signaling mute US28 (US28R129A) on static monocyte adhesion. Despite the chemokine scavenging capacity of US28R129A, expression of this construct by endothelial cells was insufficient to disrupt leukocyte adhesion to cytokine-activated monolayers. Our results suggest that the concentrations of chemokines that trigger firm leukocyte adhesion are too high to be efficiently scavenged by viral chemokine decoy receptors like US28. From the results of this experimental model a role for US28 in viral immune evasion by chemokine scavenging would appear therefore unlikely.  相似文献   

16.
Kinin receptors are involved in the genesis of inflammatory pain. However, there is controversy concerning the mechanism by which B(1) and B(2) kinin receptors mediate inflammatory hypernociception. In the present study, the role of these receptors on inflammatory hypernociception in mice was addressed. Mechanical hypernociception was detected with an electronic pressure meter paw test in mice and cytokines were measured by ELISA. It was observed that in na?ve mice a B(2) (d-Arg-Hyp(3), d-Phe(7)-bradykinin) but not a B(1) kinin receptor antagonist (des-Arg(9)-[Leu(8)]-bradykinin, DALBK) inhibited bradykinin- and carrageenin-induced hypernociception. Bradykinin-induced hypernociception was inhibited by indomethacin (5 mg/kg) and guanethidine (30 mg/kg), while not affected by IL-1ra (10 mg/kg) or antibody against keratinocyte-derived chemokine (KC/CXCL-1, 500 ng/paw) or in TNFR1 knockout mice. By contrast, in previously lipopolysaccharide (LPS)-primed mouse paw, B(1) but not B(2) kinin receptor antagonist inhibited bradykinin hypernociception. Furthermore, B(1) kinin receptor agonist induced mechanical hypernociception in LPS-primed mice, which was inhibited by indomethacin, guanethidine, antiserum against TNF-alpha or IL-1ra. This was corroborated by the induction of TNF-alpha and IL-1beta release by B(1) kinin receptor agonist in LPS-primed mouse paws. Moreover, B(1) but not B(2) kinin receptor antagonist inhibited carrageenin-induced hypernociception, and TNF-alpha and IL-1beta release as well, in LPS-primed mice. These results suggest that in na?ve mice the B(2) kinin receptor mediates inflammatory hypernociception dependent on prostanoids and sympathetic amines, through a cytokine-independent mechanism. On the other hand, in LPS-primed mice, the B(1) kinin receptor mediates hypernociception by a mechanism dependent on TNF-alpha and IL-1beta, which could stimulate prostanoid and sympathetic amine production.  相似文献   

17.
There have been proposals that the tachykinin receptor classification should be extended to include a novel receptor, the "neurokinin-4" receptor (NK-4R), which has a close homology with the human NK-3 receptor (hNK-3R). We compared the pharmacological and molecular biological characteristics of the hNK-3R and NK-4R. Binding experiments, with (125)I-[MePhe(7)]-NKB binding to HEK 293 cell membranes transiently expressing the hNK-3R (HEK 293-hNK-3R) or NK-4R (HEK 293-NK-4R), and functional studies (Ca(2+) mobilization in the same cells) revealed a similar profile of sensitivity to tachykinin agonists and antagonists for both receptors; i.e., in binding studies with the hNK-3R, MePhe(7)-NKB > NKB > senktide > NKA = Substance P; with the NK-4R, MePhe(7)-NKB > NKB = senktide > Substance P = NKA; and with antagonists, SB 223412 = SR 142801 > SB 222200 > SR 48968 > CP 99994 for both hNK-3R and NK-4R. Thus, the pharmacology of the two receptors was nearly identical. However, attempts to isolate or identify the NK-4R gene by using various molecular biological techniques were unsuccessful. Procedures, including nested polymerase chain reaction studies, that used products with restriction endonuclease sites specific for either hNK-3R or NK-4R, failed to demonstrate the presence of NK-4R in genomic DNA from human, monkey, mouse, rat, hamster, or guinea pig, and in cDNA libraries from human lung, brain, or heart, whereas the hNK-3R was detectable in the latter libraries. In view of the failure to demonstrate the presence of the putative NK-4R it is thought to be premature to extend the current tachykinin receptor classification.  相似文献   

18.

Rationale

Whereas cannabinoid CB1 receptors have long been known to contribute to the rewarding effects and dependence liability of many drugs of abuse, recent studies have implicated the involvement of cannabinoid CB2 receptors.

Objective

Here, we evaluated the role of CB2 receptors in the rewarding properties of nicotine, as assessed in the conditioned place preference (CPP) paradigm and mecamylamine-precipitated withdrawal in nicotine dependent mice.

Methods

Using complementary pharmacological and genetic approaches, we investigated the involvement of CB2 receptors in nicotine- and cocaine-induced CPP in mice and mecamylamine-precipitated withdrawal in nicotine-dependent mice. We also determined whether deletion of CB2 receptors affects nicotine-induced hypothermia and hypoalgesia.

Results

Nicotine-induced (0.5 mg/kg) CPP was completely blocked by selective CB2 antagonist, SR144528 (3 mg/kg) in wild-type mice, and was absent in CB2 (?/?) mice. Conversely, the CB2 receptor agonist, O-1966 (1, 3, 5, 10, 20 mg/kg) given in combination with a subthreshold dose of nicotine (0.1 mg/kg) elicited a place preference. In contrast, O-1966 (20 mg/kg) blocked cocaine (10 mg/kg)-induced CPP in wild type mice, while CB2 (?/?) mice showed unaltered cocaine CPP. CB2 (+/+) and (?/?) nicotine-dependent mice showed almost identical precipitated withdrawal responses and deletion of CB2 receptor did not alter acute somatic effects of nicotine.

Conclusions

Collectively, these results indicate that CB2 receptors are required for nicotine-induced CPP in the mouse, while it is not involved in nicotine withdrawal or acute effects of nicotine. Moreover, these results suggest that CB2 receptors play opposing roles in nicotine- and cocaine-induced CPP.  相似文献   

19.
Drugs that interfere with cannabinoid CB1 transmission suppress various food-motivated behaviors, and it has been suggested that such drugs could be useful as appetite suppressants. Biochemical studies indicate that most of these drugs assessed thus far have been CB1 inverse agonists, and although they have been shown to suppress food intake, they also appear to induce nausea and malaise. The present studies were undertaken to characterize the behavioral effects of AM4113, which is a CB1 neutral antagonist, and to examine whether this drug can reduce food-reinforced behaviors and feeding on diets with varying macronutrient compositions. Biochemical data demonstrated that AM4113 binds to CB1 receptors, but does not show inverse agonist properties (ie no effects on cyclic-AMP production). In tests of spontaneous locomotion and analgesia, AM4113 reversed the effects of the CB1 agonist AM411. AM4113 suppressed food-reinforced operant responding with rats responding on fixed ratio (FR) 1 and 5 schedules of reinforcement in a dose-dependent manner, and also suppressed feeding on high-fat, high-carbohydrate, and lab chow diets. However, in the same dose range that suppressed feeding, AM4113 did not induce conditioned gaping, which is a sign of nausea and food-related malaise in rats. These results suggest that AM4113 may decrease appetite by blocking endogenous cannabinoid tone, and that this drug may be less associated with nausea than CB1 inverse agonists.  相似文献   

20.
This study examined the effects of the cannabinoid CB(1) receptor agonist (R)-methanandamide and the CB(1) receptor antagonist SR-141716 on open-field behaviors in rats. Animals were examined after administration of (R)-methanandamide (dose range 10 to 30 mg/kg) plus vehicle, and the two drugs in combination; the dose range of SR-141716 was 0.3 to 5.6 mg/kg. Injections were given intraperitoneally 20 min prior to initial testing. Additional exposures to the open-field arena occurred for the groups treated with 30 mg/kg (R)-methanandamide at 60 and 120 min post administration. There was a dose-related suppression of ambulation (horizontal activity) and rearing (vertical activity) after (R)-methanandamide administration. Coadministration of SR-141716 did not counteract the suppression induced by 10 and 18 mg/kg (R)-methanandamide but rather tended to augment it, especially with regard to ambulation using SR-141716 doses of 1 mg/kg and up. The latency to leave the starting area in the center of the field was significantly elevated by 30 mg/kg (R)-methanandamide. This effect was completely blocked by SR-141716. With increasing doses of SR-141716, there was an increase in grooming and scratching. Generally, the strongest effects occurred 20 min post administration with the exception of grooming, which reached maximum at 60 min post. Differences in the number of circlings, vocalizations, urination, and defecation generally did not differ clearly among treatments. These results coupled with previous open-field data examining combinations of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and SR-141716 [Pharmacol. Biochem. Behav. 73 (2002) 911] underscore pharmacological differences between (R)-methanandamide and Delta(9)-THC revealed by their interactions with SR-141716.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号