首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Potassium-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) from a growth cone-enriched fraction isolated from neonatal rat forebrain was inhibited by the GABA mimetic muscimol in a dose-dependent manner (IC50 15 nM). The GABA antagonist bicuculline completely reversed the effect of muscimol. Bicuculline alone slightly potentiated the K+-induced release of [3H]GABA. Baclofen, a proposed selective agonist for a bicuculline-insensitive GABAB receptor, was found to cause only a slight reduction in the K+-induced release of [3H]GABA. These results are compatible with the presence of a negative feedback mechanism mediated by GABAA receptors for controlling [3H]GABA release from growth cones of the developing rat forebrain.  相似文献   

2.
1. We have estimated free, intracellular calcium ion concentrations ([Ca]i) in isolated retinal ganglion cells of adult goldfish by ratio-imaging fura-2 emission intensity at two excitation wavelengths. Here we describe [Ca]i in these cells, both at rest and during depolarization by elevated levels of extracellular potassium ions ([K]o). 2. [K]o was varied between 5 and 60 mM in sodium-free, tetrodotoxin-containing salines. Ganglion cell membrane potential, measured with patch electrodes, fell with each increment of [K]o used, from approximately -70 mV in 5 mM K+ to approximately -20 mV in 60 mM K+. 3. In control saline, [Ca]i was roughly 120 nM in cell somata and at least twofold higher in their growth cones. [Ca]i increased in both somata and growth cones to as high as 1.5 microM in salines containing 60 mM K+. [Ca]i exceeded 1.5 microM in some cells in high-K+ salines, although these levels could not be quantified accurately with fura-2. 4. Increases in [Ca]i elicited by elevated [K]o persisted for the duration of the exposure to high-K+ saline and were blocked by replacement of most of the bath Ca2+ by Co2+. These increases in [Ca]i were also sensitive to dihydropyridine calcium-channel ligands, viz., enhanced by BAY K 8644 (3 microM) and antagonized by nifedipine (10 microM). 5. Partial recovery of control [Ca]i occurred when [K]o was reduced to 5 mM after exposure to high-K+ saline and in high-K+ saline when nifedipine was included. These results show that goldfish retinal ganglion cells can partially buffer intracellular Ca2+ in the absence of extracellular Na+ ions. 6. These results provide measurements of the changes in [Ca]i brought about by depolarization of goldfish retinal ganglion cells in Na(+)-free salines. In these salines, at least part of the increase in [Ca]i appears to result from Ca2+ influx through a voltage-activated, noninactivating calcium conductance in the somata and growth cones of these cells. These measurements complement whole-cell patch-clamp and vibrating microprobe recordings from the somata and neurites of these cells and also immunocytochemical studies and patch-clamp measurements in amphibian, reptilian, and mammalian retinal ganglion cells.  相似文献   

3.
High K+ (50 mM) increased both [3H]acetylcholine ([3H]ACh) release and cytosolic free calcium level ([Ca2+]i) in rat brain synaptosomes in the presence of extracellular Ca2+. Ouabain (5 x 10(-8) to 5 x 10(-4) M) also caused a dose-dependent increase in [3H]ACh release, but not in [Ca2+]i, in the absence of Ca2+. The effects of high K+ and ouabain on [3H]ACh and/or [Ca2+]i, were inhibited by the intracellular Ca2+ antagonist TMB-8 (10(-4) M). These results suggest that unlike high K+, ouabain increases transmitter release from nerve endings through a mechanism which is independent of [Ca2+]i, but sensitive to TMB-8.  相似文献   

4.
To further understand the function of excitation-contraction coupling in skeletal muscle cells developing in vitro, Ca2+ transients elicited by high-K+ depolarization in the presence and absence of extracellular Ca2+ were compared with Ca2+ release induced by caffeine in cultured skeletal muscle cells isolated from 9-day-old chicken embryos (E9). Almost all myoblasts and myotubes cultured for 1 (E9I1) to 8 (E9I8) days responded to 80 mM [K+]O with an elevation of [Ca2+]i. Although all myotubes cultured for more than 4 days exhibited Ca2+ release independent of extracellular Ca2+, only about 50% of E9I1 and E9I2 cells maintained their response to Ca(2+)-free high-[K+]O solution. Strikingly, a considerable proportion of cells of short-term culture were insensitive to 10 mM caffeine. Moreover, 46.8% of the caffeine-insensitive E9I1 and E9I2 cells, 29 out of 62, was still responsive to 80 mM [K+]O in the absence of extracellular Ca2+. Western blot and immunocytochemistry showed that ryanodine receptor (RyRs) expression increases with culture. The Ca2+ release from caffeine-insensitive cells induced by Ca(2+)-free high-[K+]O solution could be blocked by 100-200 microM ryanodine, which suggests the involvement of RyRs. Evidence is presented to show that a low resting [Ca2+]i may be one factor responsible for the caffeine insensitivity of RyRs in cells of short-term culture.  相似文献   

5.
The authors have studied the effect of sphingosine-1-phosphate (S1P) on Ca2+ release from intracellular stores in cultured human umbilical vein endothelial cells (HUVECs). In the presence of extracellular Ca2+, S1P increased intracellular Ca2+ concentration ([Ca2+]i) and this increase was partially inhibited by La3+ (1 microM), indicating that S1P induces Ca2+ influx from extracellular pool and Ca2+ release from intracellular stores. S1P increased [Ca2+]i concentration dependently in Ca2+-free extracellular solution. The Hill coefficient (1.7) and EC50 (420 nM) was obtained from the concentration-response relationship. When caffeine depleted Ca2+ store in the presence of ryanodine, S1P did not induce intracellular Ca2+ release. Furthermore, the Ca2+-induced Ca2+ release inhibitors ruthenium red or dantrolene completely inhibited S1P-induced intracellular Ca2+ release. S1P-induced intracellular Ca2+ release was inhibited by the phospholipase C (PLC) inhibitors neomycin and U73312, or the inositol 1,4,5-triphosphate (IP3)-gated Ca2+ channel blocker aminoethoxybiphenyl borane (2-APB). In contrast, S1P-induced intracellular Ca2+ release was not inhibited by the mitochondrial Ca2+ uptake inhibitor CCCP or the mitochondrial Ca2+ release inhibitor cyclosporin A. These results show that S1P mobilizes Ca2+ from intracellular stores primarily via Ca2+-induced and IP3-induced Ca2+ release and this Ca2+ mobilization is independent of mitochondrial Ca2+ stores.  相似文献   

6.
We have examined the effects of dantrolene and D2O on the K+-stimulated respiration in frog skeletal muscle. The threshold for K+ stimulation was around 10 mM extracellular potassium concentration ([K+]o). A further marked increase in respiration to levels about ten times the resting level was noted when [K+]o was between 15 and 20 mM. The increase was sustained for hours when [K+]o was less than 20 mM; however, with higher concentrations the stimulation consisted of an initial burst followed by a decline. Dantrolene shifted the relationship between [K+]o and peak increase in respiration toward higher [K+]o by about 10 mM; in addition it nearly completely blocked the sustained component of the increase. D2O, nearly abolished the K+-induced respiration. Neither agent shifted the relationship between [K+]o and membrane potential nor abolished the stimulation of respiration caused by caffeine. Dantrolene did not block the stimulation of Na+ efflux caused by 15 mM K+. The results with these agents are consistent with the proposal that K+-stimulated respiration is due to Ca2+ release into the cytoplasm. In addition, they provide evidence that the stimulated rate of Ca2+ release into the cytoplasm can remain at a persistently high level for hours provided [K+]o does not exceed 20 mM. We calculated that the level of this constant Ca2+ release is about 3.4 X 10(16) ions/(s.cm3).  相似文献   

7.
A subcellular fraction highly enriched in neuronal growth cones was isolated from 5-day-old rat forebrain by a recently described method. The growth cone fraction was shown to have a sodium- and temperature-dependent, high-affinity (Km = 4.4 microM) uptake system for [3H]GABA. Electron microscopic autoradiography confirmed that this uptake was into growth cones since only these structures were heavily labelled with silver grains. High potassium induced the release of newly accumulated [3H]GABA from the growth cone fraction, about half of which was Ca2+-dependent. The presence of uptake and release systems for GABA in growth cones may simply reflect the development of growth cones into nerve terminals. Alternatively, these observations may indicate a role for neurotransmitter release in synaptogenesis.  相似文献   

8.
Catecholamine secretion evoked by caffeine (40 mM) was markedly enhanced by replacing NaCl in the medium with sucrose or KCl in the absence, but not in the presence, of extracellular Ca2+ and Mg2+ in both perfused adrenal glands and isolated chromaffin cells of the guinea pig. The response to caffeine declined on repetition, but was restored completely after readmission of Ca2+. These results indicate that extracellular Na+ inhibits caffeine from stimulating catecholamine secretion, which may be mediated by a release of Ca2+ from intracellular storage sites in the adrenal chromaffin cells in the presence of extracellular Ca2+ and/or Mg2+.  相似文献   

9.
Components of pacemaker potentials recorded from the guinea pig stomach antrum   总被引:11,自引:1,他引:10  
Pacemaker potentials recorded intracellularly from the guinea pig stomach consisted of initial primary and following plateau components. Inhibition of the internal Ca2+ store pump with cyclopiazonic acid depolarized the membrane and inhibited the plateau component of pacemaker potentials. 2-aminoethoxydiphenyl borate (an inhibitor of IP3-induced Ca2+ release) and carbonyl cyanide m-chlorophenyl-hydrazone (a mitochondrial protonophore) depolarized the membrane and abolished pacemaker potentials. Low [Ca2+]o solution reduced the frequency and rate of rise of pacemaker potentials, and the effects were mimicked by BAPTA-AM (an intracellular Ca2+ chelator). 4,4-diisothiocyanatostilbene-2,2-disulphonic acid and low [Cl-]o solution inhibited the plateau component of pacemaker potentials. Depolarization of the membrane with high [K+]o solutions increased the frequency and reduced the dV/dt(max) of pacemaker potentials. During high-[K+]o-induced depolarization, cyclopiazonic acid abolished pacemaker potentials. Caffeine, forskolin, papaverine, 8-bromo-cGMP and (+/-)S-nitroso-N-acetylpenicillamine (SNAP) inhibited the plateau component, with no alteration of the primary component. It is concluded that the primary and plateau components of pacemaker potentials are related to voltage-gated Ca2+ influx and Ca2+-activated Cl- channels, respectively, and cyclic nucleotides inhibit mainly the latter. Pacemaker potentials may be generated by the release of Ca2+ from internal stores through excitation of inositol 1,4,5-trisphosphate receptors, coupled with Ca2+ uptake into mitochondria.  相似文献   

10.
An increase in intracellular Ca2+ ([Ca2+]i) is necessary for mast cell exocytosis, but there is controversy over the requirement for Ca2+ in the extracellular medium. Here, we demonstrate that mitochondrial function is a critical determinant of Ca2+ dependence. In the presence of extracellular Ca2+, mitochondrial metabolic inhibitors, including rotenone, antimycin A, and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), significantly reduced degranulation induced by immunoglobulin E (IgE) antigen or by thapsigargin, as measured by beta-hexosaminidase release. In the absence of extracellular Ca2+; however, antimycin A and FCCP, but not rotenone, enhanced, rather than reduced, degranulation to a maximum of 76% of that observed in the presence of extracellular Ca2+. This enhancement of extracellular, Ca2+-independent degranulation was concomitant with a rapid collapse of the mitochondrial transmembrane potential. Mitochondrial depolarization did not enhance degranulation induced by thapsigargin, irrespective of the presence or absence of extracellular Ca2+. IgE antigen was more effective than thapsigargin as an inducer of [Ca2+]i release, and mitochondrial depolarization augmented IgE-mediated but not thapsigargin-induced Ca2+ store release and mitochondrial Ca2+ ([Ca2+]m) release. Finally, atractyloside and bongkrekic acid [an agonist and an antagonist, respectively, of the mitochondrial permeability transition pore (mPTP)], respectively, augmented and reduced IgE-mediated Ca2+ store release, [Ca2+]m release, and/or degranulation, whereas they had no effects on thapsigargin-induced Ca2+ store release. These data suggest that the mPTP is involved in the regulation of Ca2+ signaling, thereby affecting the mode of mast cell degranulation. This finding may shed light on a new role for mitochondria in the regulation of mast cell activation.  相似文献   

11.
Ca2+ -induced Ca2+ -release (CICR) from ryanodine-sensitive Ca2+ stores provides a mechanism to amplify and propagate a transient increase in intracellular calcium concentration ([Ca2+]i). A subset of rat dorsal root ganglion neurons in culture exhibited regenerative CICR when sensitized by caffeine. [Ca2+]i oscillated in the maintained presence of 5 mM caffeine and 25 mM K+. Here, CICR oscillations were used to study the complex interplay between Ca2+ regulatory mechanisms at the cellular level. Oscillations depended on Ca2+ uptake and release from the endoplasmic reticulum (ER) and Ca2+ influx across the plasma membrane because cyclopiazonic acid, ryanodine, and removal of extracellular Ca2+ terminated oscillations. Increasing caffeine concentration decreased the threshold for action potential-evoked CICR and increased oscillation frequency. Mitochondria regulated CICR by providing ATP and buffering [Ca2+]i. Treatment with the ATP synthase inhibitor, oligomycin B, decreased oscillation frequency. When ATP concentration was held constant by recording in the whole cell patch-clamp configuration, oligomycin no longer affected oscillation frequency. Aerobically derived ATP modulated CICR by regulating the rate of Ca2+ sequestration by the ER Ca2+ pump. Neither CICR threshold nor Ca2+ clearance by the plasma membrane Ca2+ pump were affected by inhibition of aerobic metabolism. Uncoupling electron transport with carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone or inhibiting mitochondrial Na+/Ca2+ exchange with CGP37157 revealed that mitochondrial buffering of [Ca2+]i slowed oscillation frequency, decreased spike amplitude, and increased spike width. These findings illustrate the interdependence of energy metabolism and Ca2+ signaling that results from the complex interaction between the mitochondrion and the ER in sensory neurons.  相似文献   

12.
The release of [3H]gamma-aminobutyric acid continuously synthesized from [3H]glutamine was studied in the striatum of halothane-anaesthetized rats superfused with a push-pull cannula. The levels of spontaneously released [3H]GABA were identical in all striatal regions examined, but were found to be higher at the junction between the striatum and the globus pallidus. Superfusion with a medium enriched in K+ ions induced a concentration-dependent increase in [3H]GABA release. Superfusion with a Ca2+-free medium did not affect the spontaneous outflow of [3H]GABA but sharply reduced the release of [3H]GABA evoked by 30 mM K+. Locally applied tetrodotoxin (50 microM) decreased slightly the spontaneous release of [3H]GABA (-22%). When acetylcholine (50 or 500 microM) was added to a superfusion medium containing eserine (50 microM), the spontaneous release of [3H]GABA was enhanced in the ventral but not in the dorsal region of the striatum. The local application of 2,3,4,5-tetrahydro, 7,8,-dihydroxy, 1-phenyl, 1-H, 3-benzazepine (10 microM), a dopaminergic agonist acting preferentially on D1 receptors increased the release of [3H]GABA in the dorsal striatum (+32%) but decreased it slightly (-19%) in the ventral striatum. 3-(2-(N-3 hydroxyphenylethyl)N-propylamino)ethyl-phenol (50 microM), a preferential D2 receptor agonist, decreased [3H]GABA release when it was applied dorsally (-23%) but not ventrally in the striatum. It is concluded that the regulation of the release of [3H]GABA by acetylcholine and dopaminergic drugs is different in the dorsal and ventral regions of the striatum. These differences may be related to the existence of subpopulations of GABA neurons and may well have functional implications as suggested by behavioural studies.  相似文献   

13.
Evoked release of [3H]dopamine ([3H]DA) from pheochromocytoma cells (PC 12) is dependent on extracellular calcium ([Ca2+]ex), but it can take place if calcium ions (Ca2+) are substituted by other divalent ions such as strontium (Sr2+) and barium (Ba2+). The potency of the divalent cations at supporting release varies with the cell type; in PC 12 cells the order of potency is Ba2+ > Sr2+ > Ca2+. The close correlation between depolarization-evoked Ca2+ entry and depolarization-evoked transmitter release prompted us to examine whether the higher evoked transmitter release in the presence of Sr2+ correlates with an increased evoked Sr2+ influx. Influx studies were conducted on PC12 cells using a radioactive tracer (45Ca2+ or 85Sr2+, < 1 microM) in the presence of either Sr2+ (0.5 mM) or Ca2+ (0.5 mM). Depolarization with K Cl (60 mM) increased evoked 45Ca2+ influx 2-fold when Ca2+ was substituted with Sr2+. Similarly, evoked 85Sr2+ influx increased 1.87-fold by substituting Ca2+ for Sr2+. Thus the amount of evoked cation influx is determined by the type of divalent ion which is accessible in the extracellular medium, independently of the radioactive tracer used. Increased evoked transmitter release in the presence of Sr2+ was associated with increased evoked Sr2+ influx. This suggests that the potency of evoked transmitter release is determined predominantly by the influx of divalent cations. Furthermore, the steps subsequent to cation influx in the release process are equally efficient for both cations.  相似文献   

14.
Metabotropic receptors modulate numerous cellular processes by intracellular Ca2+ signaling, but less is known about their role in regulating mitochondrial metabolic function within the CNS. In this study, we demonstrate in area CA3 of rat organotypic hippocampal slice cultures that glutamatergic, serotonergic, and muscarinic metabotropic receptor ligands, namely trans-azetidine-2,4-dicarboxylic acid, alpha-methyl-5-hydroxytryptamine, and carbachol, transiently increase mitochondrial Ca2+ concentration ([Ca2+]m) as recorded by changes in Rhod-2 fluorescence, stimulate mitochondrial oxidative metabolism as revealed by elevations in NAD(P)H fluorescence, and induce K+ outward currents as monitored by rapid increases in extracellular K+ concentration ([K+]o). Carbachol (1-1,000 microM) elevated NAD(P)H fluorescence by 相似文献   

15.
N Zurgil  M Yarom  N Zisapel 《Neuroscience》1986,19(4):1255-1264
We have recently shown that the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate enhances the depolarization induced, calcium dependent release of [3H]dopamine from cultured brain neurons in the rat. In the present study the effects of 12-O-tetradecanoyl-phorbol-13-acetate on the kinetic parameters of depolarization induced calcium influx and on Ca2+ dependent neurotransmitter release and protein phosphorylation were investigated. Depolarization induced neurotransmitter release from the neurons occurs in two phases: an initial, fast release and a subsequent slow release. At low extracellular Ca2+, 12-O-tetradecanoyl-phorbol-13-acetate enhanced the quantity of fast release and in addition, increased the rate constant of the slow release. These effects mimicked the effects of increasing the extracellular Ca2+. Various phorbol derivatives known to activate the Ca2+ activated phospholipid dependent protein kinase (protein kinase C) were also able to enhance the stimulated release of [3H]dopamine from the neurons. 12-O-tetradecanoyl-phorbol-13-acetate induced the incorporation of 32Pi into a protein with an apparent molecular weight of 45,000 daltons regardless of depolarization or of the presence of Ca2+. In addition, 12-O-tetradecanoyl-phorbol-13-acetate induced in unstimulated neurons, Ca2+ dependent increase in the amount of 32Pi incorporated into a 43,000 dalton protein and decrease in the amount incorporated into a 55,000 dalton protein. These changes mimicked the Ca2+ dependent changes in protein phosphorylation which occur upon stimulation of the neurons. Kinetic studies of depolarization induced Ca2+ uptake by the neurons indicated that 12-O-tetradecanoyl-phorbol-13-acetate enhanced the maximal influx of Ca2+ through the voltage sensitive Ca2+ channels by 40%. The results indicate that 12-O-tetradecanoyl-phorbol-13-acetate acts primarily on the regulation of stimulated Ca2+ entry into the cells. Consequently neurotransmitter release at submaximal extracellular [Ca2+] is enhanced.  相似文献   

16.
Effects of Ca2+-induced Ca2+ release blockers, ruthenium red (RR) and Mg2+, on Ag+-induced Ca2+ release were studied using skinned muscle fibers or fragmented heavy SR (HSR) prepared from frog muscle, and compared with those on caffeine-induced one. Exposure of the skinned fibers to 5 microM Ag+ produced a rapid and large contraction in the presence of 0.043 mM free Mg2+. When Mg2+ concentration was increased to 0.86 mM, Ag+ led to a large transient contraction, combined with a small tonic one. The transient component was completely blocked by high Mg2+ (3.64 mM), but the tonic one was not. Ca2+-ATPase activity was not stimulated by increase of Mg2+ from 0.86 to 3.64 mM. Ag+ and caffeine induced a rapid Ca2+ efflux from HSR in a dose-dependent manner. RR over a range from 1 to 10 microM dose-dependently inhibited the Ca2+ efflux induced by 10 microM Ag+. Despite increase of RR to 30 microM, however, further inhibition of the Ca2+ efflux was not produced any more (77.8 +/- 12.2% inhibition). A 10 mM caffeine-induced efflux of Ca2+ was blocked slightly by only 0.5 microM RR and almost completely by 3 microM. A slight inhibition (about 28%) of the Ca2+-ATPase activity was observed in the presence of 10 microM Ag+ in 0.5 mg SR protein/ml of medium. RR and caffeine did not affect the enzyme activity. These results indicate that frog SR could induce a rapid release of Ca2+ upon Ag+ and caffeine, suggesting that Ag+ may have two different binding sites to release Ca2+; one is on Ca2+-induced Ca2+ release channel and the other on RR-insensitive site.  相似文献   

17.
Basal release of [3H]catecholamine ([3H]CA) from rabbit carotid bodies (CBs), previously incubated in the presence of [3H]tyrosine, was not significantly modified by prostaglandin E2 (PGE2). On the contrary, PGE2 (3-300 nM) produced a dose-dependent inhibition of the low PO2-evoked release of [3H]CA. The inhibition was greatest (55%) at a low intensity of hypoxic stimulation (incubating solution PO2 approximately 66 mmHg) and decreased with increasing intensities of hypoxia. Chronic denervation of the CB did not modify the response to PGE2. The release of [3H]CA induced by incubating the CBs in a hypercapnic-acidic solution (PCO2 approximately 132 mmHg; pH = 6.60) and by dinitrophenol (100 microM) was not significantly modified by 300 nM PGE2. PGE2 (300 nM) inhibited the release of [3H]CA elicited by incubating the CBs in a high K+ (35 mM)-containing solution. The release response elicited by high K+ (25 mM) was strongly augmented by a dihydropyridine agonist of Ca2+ channels, Bay K 8644, at a concentration of 1 microM. The Bay K 8644 effect was partly inhibited by PGE2 (300 nM). Using whole-cell recordings in freshly dispersed or short-term cultured chemoreceptor cells from adult rabbits it was found that Ca2+ currents (ICa) were reversibly inhibited by bath application of PGE2. A good parallelism exits between the dose-response curves for PGE2 inhibition of ICa in isolated chemoreceptor cells and high extracellular [K+]- or hypoxia-evoked release of [3H]CA from the whole CB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The mitogen-activated protein kinases (MAPK), including stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and extracellular signal-related kinase (ERK), are believed to be important biomolecules in cell proliferation, survival, and apoptosis induced by extracellular stimuli. In Chinese hamster V79 cells exposed to hydrogen peroxide (H2O2), we recently demonstrated that SAPK/JNK was activated by tyrosine kinase and intracellular Ca2+ ([Ca2+]i). In this study, we report that [Ca2+]i release from intracellular stores is important in the activation of SAPK/JNK but not p38 and ERK. H2O2-induced elevation of [Ca2+]i was observed in Ca2+-free medium. Pretreatment with thapsigargin, a Ca2+-ATPase inhibition of endoplasmic reticulum (ER), did not influence H2O2-induced elevation of [Ca2+]i in the absence of external Ca2+. An intracellular Ca2+ chelator (BAPTA-AM) inhibited H2O2-induced phosphorylation of SAPK/JNK, but an extracellular Ca2+ chelator (EDTA) or a Ca2+ entry blocker (NiCl2) did not. Activation of p38 and ERK in V79 cells exposed to H2O2 was observed in the presence of these inhibitors. These results suggest that [Ca2+]i release from intracellular stores such as mitochondria or nuclei but not ER, occurred after H2O2 treatment and Ca2+-dependent tyrosine kinase-induced activation of SAPK/JNK, although [Ca2+]i was unnecessary for the H2O2-induced activation of p38 and ERK.  相似文献   

19.
Agonist-induced platelet cytoplasmic Ca2+ concentrations ([Ca2+]i) in patients with congenital cyclo-oxygenase deficiency (A) and with impaired aggregation to A23187 (B) were measured with aequorin in the presence or absence of extracellular Ca2+. The influence of TMB-8 or ONO3708 on agonist-induced [Ca2+]i in those platelets was also investigated. In Patient 1, there was a single aequorin luminescence peak in response to arachidonate, which was a thromboxane A2(TXA2) independent Ca2+ influx. The luminescence peak due to the formation of TXA2 was not detectable. The A23187-induced [Ca2+] i was decreased in the presence of extracellular Ca2+, but was within normal limits in the absence of extracellular Ca2+. A thrombin or STA2-induced elevation of [Ca2+] i was always within normal limits under any conditions. These results suggest that cyclo-oxygenase activity (CO activity) contributes to the A23187-induced Ca2+ influx, but does not contribute to the Ca2+ release from intracellular stores, and that the thrombin or STA2-induced Ca2+ influx and release do not depend on the CO activity. In Patient 2, the time lag from the addition of A23187 to the aequorin luminescence peak was found both in the presence and absence of extracellular Ca2+, which was more obvious in the latter. This A23187-induced elevation of [Ca2+] i disappeared after treatment of the platelets with TMB-8 in the absence of extracellular Ca2+, which is rarely seen in normal platelets. The most striking finding was that the thrombin-induced rise in [Ca2+] i in the absence of extracellular Ca2+ was not detectable. These findings might be closely related to abnormal platelet function in this patient.  相似文献   

20.
Autoregulation of histamine release in brain by presynaptic H3-receptors   总被引:5,自引:0,他引:5  
Regulation of histamine release was studied mainly on brain slices prelabeled with L-[3H]-histidine and depolarized by increased extracellular K+ concentration or veratridine in a non-superfused system. The released 3H-labeled amines, isolated by ion-exchange chromatography from a large excess of 3H-labeled precursor consisted by more than 95% of unchanged [3H]histamine. Exogenous histamine reduced the release of neosynthesized [3H]histamine via stimulation of previously characterized H3-receptors whereas it did not modify the 3H-labeled amine release from slices prelabeled with preformed [3H]histamine. The maximal inhibitory effect of exogenous histamine progressively diminished as the strength of the depolarizing stimulus or the external Ca2+ concentration were elevated. On the contrary H3-receptor antagonists like impromidine or burimamide enhanced the depolarization-induced release of [3H]histamine, an effect which was particularly marked when slices were loaded with histamine by preincubation with [3H]histidine in high concentration. These results suggest that the inhibition of [3H]histamine release by exogenous histamine acting via H3-receptor stimulation is mediated by a restricted access of Ca2+ and that its extent is influenced by the degree of autostimulation by endogenous histamine as well as, possibly, by actual internal Ca2+ concentration. In addition the decrease in external Ca2+ concentration shifted rightwards the concentration-response curve to histamine. The autoinhibitory effect of exogenous histamine was found on slices from various regions, known from lesion studies to contain terminals of extrinsic histaminergic neurons. It did not apparently involve interneurones, not being prevented in slices in which the traffic of action potentials was blocked by tetrodotoxin. It also remained unaffected in striatal slices in which the neuronal cell-bodies were selectively destroyed by prior local infusion of kainic acid. Finally exogenous histamine inhibited [3H]histamine release from depolarized synaptosomes of rat cerebral cortex, with an EC50 value similar to that found with slices and was antagonised by impromidine with an apparent Ki value similar to that displayed at H3-receptors. It is concluded that histamine modulates its own release from cerebral neurones by interacting with H3-presynaptic autoreceptors and via mechanisms similar to those previously evidenced on other aminergic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号