首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang RX  Lao L  Wang L  Liu B  Wang X  Ren K  Berman BM 《Brain research》2004,1020(1-2):12-17
Our previous study showed that electroacupuncture (EA) significantly attenuated inflammatory hyperalgesia. It has also been reported that EA analgesia in uninjured animals is mediated by mu and delta opioid receptors at 2-15 Hz and by kappa opioid receptor at 100 Hz. Because persistent pain changes neural response to external stimulation, we hypothesized that (1) the mechanisms of EA anti-hyperalgesia may be different under conditions of persistent pain and that (2) combining EA with a sub-effective dose of morphine could enhance EA anti-hyperalgesia. Hyperalgesia, decreased paw withdrawal latency (PWL) to a noxious thermal stimulus, was induced by subcutaneously injecting complete Freund's adjuvant (CFA) into the hind paws of rats. Selective antagonists against mu (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2, CTOP), delta (naltrinodole, NTI) and kappa (nor-binaltorphimine, BNI) opioid receptors were administered intrathecally 10 min before each of two EA treatments at acupoint Huantiao (GB30), one immediately post and the other 2 h post-CFA. Morphine was given (i.p.) 40 min before the second EA treatment. PWL was measured before and 2.5 and 5 h post-CFA. Both 10 and 100 Hz EA-produced anti-hyperalgesia were blocked spinally by mu- and delta- but not kappa-receptor antagonists. EA combined with a sub-threshold dose of morphine (2.5 mg/kg) enhanced anti-hyperalgesia additively (10 Hz EA) or synergistically (100 Hz EA) compared to that produced by each component alone. These results suggest selective involvement of mu and delta, but not kappa, receptors in EA-produced anti-hyperalgesia in rats. A combined EA and opioid drug protocol may provide an improved treatment strategy for inflammatory pain.  相似文献   

2.
Xing GG  Liu FY  Qu XX  Han JS  Wan Y 《Experimental neurology》2007,208(2):323-332
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.  相似文献   

3.
Activated glia play a major role in mediating behavioral hypersensitive state following peripheral inflammation. Electroacupuncture is well known to relieve persistent inflammatory pain. The present study was undertaken to examine whether fluorocitrate, a glial metabolic inhibitor, could synergize electroacupuncture antagonizing thermal hyperalgesia and mechanical allodynia evoked by ankle joint inflammation. Monoarthritis of rat ankle joint was induced by an intra-articular injection of Complete Freund's Adjuvant (CFA). The paw withdrawal latency (PWL) from a thermal stimulus and paw withdrawal threshold (PWT) from von Frey hairs were measured in awake rats. Intrathecal (i.t.) injection of 1 nmol fluorocitrate markedly suppressed monoarthritis-induced thermal hyperalgesia and mechanical allodynia. Unilateral electroacupuncture stimulation of "Huantiao" (GB30) and "Yanglingquan" (GB34) acupuncture points (100/2 Hz alternation, 1-2-3 mA) significantly elevated the PWLs and PWTs for 45 min after cessation of electroacupuncture in monoarthritic rats. Co-application of 0.1 or 1 nmol fluorocitrate with electroacupuncture significantly potentiated electroacupuncture analgesia, although 0.1 nmol fluorocitrate alone had no effect on PWLs and PWTs in monoarthritic rats. These results suggested that electroacupuncture and disrupting glial function could synergistically antagonize inflammatory pain, which might provide a potential strategy for the treatment of arthritic pain.  相似文献   

4.
Kim JH  Min BI  Na HS  Park DS 《Brain research》2004,998(2):230-236
The relieving effects of electroacupuncture (EA) on mechanical allodynia and its mechanism related to the spinal opioid system were investigated in a rat model of neuropathic pain. To produce neuropathic pain in the tail, the right superior caudal trunk was resected between the S1 and S2 spinal nerves. Two weeks after the surgery, EA stimulation (2 or 100 Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min. The degree of mechanical allodynia was evaluated quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. These rats were then subjected to an i.t. injection with one of the three specific opioid agonists in successive ways: the mu agonist (DAMGO 25, 50 and 100 pmol), the delta agonist (DADELT II 0.5, 1 and 2 nmol), and the kappa agonist (U50488H 5, 10 and 20 nmol) separated by 10 min in cumulative doses. During 30 min of EA stimulation, specific opioid antagonists were subjected to i.t. injection: the mu antagonist (beta-FNA 5, 10 and 20 nmol), the delta antagonist (naltrindole 5, 10 and 20 nmol), and the kappa antagonist (nor-BNI 3, 6 and 12 nmol) separated by 10 min in cumulative doses. As a result, EA reduced the behavioral signs of mechanical allodynia. Two Hz EA induced a robust and longer lasting effect than 100 Hz. All three opioid agonists also showed relieving effects on mechanical allodynia. However, nor-BNI could not block the EA effects on mechanical allodynia, whereas beta-FNA or naltrindole significantly blocked EA effects. These results suggest that the mu and delta, but not kappa, opioid receptors in the spinal cord of the rat, play important roles in mediating relieving effects on mechanical allodynia induced by 2 Hz EA.  相似文献   

5.
Cold-freeze injury at -4 degrees C to the rat sciatic nerve produces mechanical allodynia and thermal hyperalgesia [M.A. Kleive, P.S. Jungbluth, J.A. Uhlenkamp, K.C. Kajander, Cold injury to rat sciatic nerve induces thermal hyperalgesia or analgesia, 8th World Congress on Pain, Vancouver, BC, Canada, August 1996 (Abstract).]. The NMDA receptor, an excitatory amino acid (EAA) receptor, appears to be involved in the development of allodynia and hyperalgesia following nerve injury. The role, if any, of the kainate receptor, another EAA receptor, remains unknown. In the current study, we evaluated whether (2S,4R)-4-methylglutamic acid (SYM-2081), a recently developed kainate receptor antagonist, attenuates increased responsiveness following cold injury to the sciatic nerve. During baseline testing, Sprague-Dawley rats were evaluated for frequency of withdrawal from von Frey filaments and latency of withdrawal from a radiant thermal source. Animals were then anesthetized, the left sciatic nerve was exposed, and the nerve was cooled to -4 degrees C for 15 min (n=24). For control rats (n=24), all procedures were identical except that the nerve was maintained at 37 degrees C. Testing resumed on the third day following surgery. On the fifth post-operative day, SYM-2081 (150 or 100 mg/kg), fentanyl citrate (0. 04 mg/kg) or vehicle was injected intraperitoneally. Injury to the rat sciatic nerve induced a significant increase in withdrawal frequency and a significant decrease in withdrawal latency (ANOVA, p<0.05). SYM-2081 and fentanyl significantly reduced these responses (p<0.05). These results suggest that kainate and opioid receptors are involved in the mechanical allodynia and thermal hyperalgesia that develop following cold injury to the sciatic nerve.  相似文献   

6.
P2X is a family of ligand‐gated ion channels that act through adenosine ATP. The P2X3 receptor plays a key role in the transmission of neuropathic pain at peripheral and spinal sites. Electroacupuncture (EA) has been used to treat neuropathic pain effectively. To determine the role of EA in neuropathic pain mediated through the P2X3 receptor in dorsal root ganglion neurons and the spinal cord, a chronic constriction injury (CCI) model was used. Sprague‐Dawley rats were divided into four groups: sham CCI, CCI, CCI plus contralateral EA, and CCI plus ipsilateral EA. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded. Furthermore, the expression of the P2X3 receptor was evaluated through Western blotting and immunofluorescence. The effects of EA and A‐317491 were investigated through the whole‐cell patch‐clamp method and intrathecal administration. Our results show that the MWT and TWL of EA groups were higher than those in the CCI group, whereas the expression of the P2X3 receptor was lower than that in the CCI group. However, no significant difference was detected between the two EA groups. EA depressed the currents created by ATP and the upregulation of the P2X3 receptor in CCI rats. Additionally, EA was more potent in reducing mechanical allodynia and thermal hyperalgesia when combined with A‐317491 through intrathecal administration. These results show that both contralateral and ipsilateral EA might inhibit the primary afferent transmission of neuropathic pain induced through the P2X3 receptor. In addition, EA and A‐317491 might have an additive effect in inhibiting the transmission of pain mediated by the P2X3 receptor. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Fu X  Wang YQ  Wu GC 《Brain research》2006,1078(1):212-218
The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous agonist of the N/OFQ peptide receptor (NOP receptor), has been demonstrated to be involved in many physiological and pathological functions including pain regulation. In the present study, the involvement of N/OFQ-NOP receptor system in electroacupuncture (EA)-produced anti-hyperalgesia was investigated in rats with peripheral inflammation. Intrathecal (i.t.) administration of N/OFQ (15 nmol) or EA at acupoints GB30 and GB34 could significantly attenuate hyperalgesia which was induced by subcutaneously injecting complete Freund's adjuvant (CFA) into one hindpaw of rats, manifesting as decreased paw withdrawal latency (PWL) to the noxious thermal stimulus. The anti-nociceptive effect of N/OFQ or EA was significantly blocked by intrathecal injection of [Nphe(1)]nociceptin(1-13)NH(2) (20 nmol), a selective antagonist of the NOP receptor, indicating the NOP-receptor-mediated mechanism. Additionally, the combination of N/OFQ injection with EA treatment could enhance anti-hyperalgesia compared to that produced by each component alone. These findings suggested that the spinal N/OFQ-NOP system might be involved in EA analgesia, which may be one of the mechanisms underlying the anti-nociceptive effect of EA in rat's peripheral inflammatory pain.  相似文献   

8.
Repeated exposure to swimming stress induces a long-lasting hyperalgesia in the rat by mechanisms to be elucidated. Since opioid and glutamate neurotransmitter systems modulate pain, we now evaluated the effect of pharmacological blockade of opioid and glutamate receptors subtypes on forced swimming stress-induced hyperalgesia. Male rats were daily subjected to 10-20 min of forced or sham swimming for 3 days and thermal nociception was estimated twice, before each behavioral conditioning and 24 h after the last, using hot plate test. Selective opioid and NMDA receptor antagonists were administered i.p. either before each conditioning session or before the second nociception assessment. Unlike sham swimming rats, forced swimming rats showed significant reductions in hot plate response latencies (hyperalgesia) after the last swimming session, as compared to pre-stress values. Rats treated with the opioid receptor antagonists naloxone (0.1 mg/kg, non-subtype-selective) and naloxonazine (5 mg/kg, mu(1)-subtype-selective), before each forced swimming, did not become hyperalgesic, whereas those treated before the second post-stress assessment of nociception developed hyperalgesia. Naltrindole (0.5 mg/kg, delta-subtype-selective) and nor-binaltorphimine (0.5mg/kg, kappa-subtype-selective) were inactive in both administration schedules. The efficacy of morphine (3-7.5 mg/kg) to produce analgesia in forced swimming rats was lower than in sham swimming rats. Rats treated with the NMDA antagonist ketamine (5 mg/kg) before the forced swimming or the second post-stress assessment of nociception did not have hyperalgesia. Thus, swim stress-induced hyperalgesia might be initiated by the repeated stimulation of mu-opioid and NMDA receptors but maintained only by the activity of NMDA receptors.  相似文献   

9.
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.  相似文献   

10.
Nerve growth factor (NGF) reverses some effects of axotomy and prevents toxic neuropathy in adult rodents. We tested the effect of NGF on behavioral hyperalgesia resulting from a chronic constriction injury (CCI) of the sciatic nerve in the rat [5]. CCI rats exhibit thermal hyperalgesia as demonstrated by a reduction of paw withdrawal latency to a noxious thermal stimulus applied to the paw on the side of injury. The mechanical sensitivity of the ipsilateral hindpaw, assessed with von Frey filaments, was also significantly increased. There were no significant changes in nociceptive thresholds on the contralateral side. When NGF was infused directly on the ligated nerve via an osmotic pump (0.5 μg/μl/h for 7 days) immediately after the ligation, thermal hyperalgesia was abolished from postoperative days 5 up to at least two weeks. The CCI-induced decrease in mechanical threshold was also abolished by NGF. However, NGF had only a minor effect on the abnormally long response duration, a second measure of mechanical sensitivity, to the mechanical stimulus. Delayed infusion of NGF four days after the ligation failed to block hyperalgesia. Infusion of NGF on the sciatic nerve of rats that had no CCI had no significant effect on paw withdrawal latency. Infusion of anti-NGF antiserum did not enhance hyperalgesia in CCI rats. These results suggest that alterations in neurotrophic factor(s) contribute to the development of behavioral hyperalgesia in an animal model of neuropathy and that NGF may have therapeutic value in the treatment of neuropathic pain in humans.  相似文献   

11.
Tian XY  Bian ZX  Hu XG  Zhang XJ  Liu L  Zhang H 《Brain research》2006,1088(1):101-108
Acupuncture has long been used for patients with irritable bowel syndrome. However, it has remained unclear. The aim of this study was to testify the effect of electro-acupuncture(EA) on (1) visceral hypersensitivity induced by the mechanical colorectal irritation during postnatal development of rats, and (2) stress-induced colonic motility changes on rats with chronic visceral hypersensitivity. The abdominal withdrawal reflex (pain threshold and score) for visceral hypersensitivity and fecal pellet output for motor dysfunction were selected as two indexes for measurement. In addition, the effect of EA on 5-HT(4a) receptor and serotonin transporter (SERT) expression in the colon mucosa was analyzed semi-quantitatively through immunohistochemistry and 5-HT concentration in the colon tissue was observed through spectro-photo-fluorimeter detection, respectively. Our results showed that EA significantly elevated pain threshold, decreased the scores and also decreased fecal pellet output during water avoid stress. Furthermore, EA decreased 5-HT concentration in colon in rats with CVH and CVH rats with water avoidance stress, and increased the 5-HT(4a) and SERT expression in rats with CVH. Thus, it can be concluded that EA attenuates behavioral hyperalgesia and stress-induced colonic motor dysfunction in CVH rats via serotonergic pathway.  相似文献   

12.
Lao L  Zhang RX  Zhang G  Wang X  Berman BM  Ren K 《Brain research》2004,1020(1-2):18-29
We previously reported the anti-hyperalgesia of electroacupuncture (EA) on persistent inflammatory pain in an unrestrained, unsedated, and conscious rat model. Using this model, induced by injecting complete Freund's adjuvant (CFA) into one hind paw, we systematically evaluated the anti-hyperalgesia of EA stimulation parameters (frequency, intensity, treatment duration, and pulse width). We assessed hyperalgesia by paw withdrawal latency (PWL) to a noxious thermal stimulus and found that 10- and 100-Hz EA frequencies at a current intensity of 3 mA produced the greatest anti-hyperalgesia, when compared to other parameters. Both frequencies significantly increased PWL in the early phases of hyperalgesia (2.5 and 24 h; p < 0.05), and 10 Hz EA also significantly increased PWL in later phases (5 to 7 days; p < 0.05). A sufficient but tolerable intensity of 3 mA was more effective than lower intensities (1-2 mA). A 20-min treatment produced better anti-hyperalgesia than longer and shorter (10 and 30 min) treatments. Acupoint specificity study demonstrated that GB30 produced significant EA anti-hyperalgesia, while Waiguan (TE5) and sham points, an abdominal point and a point at the opposite aspect of GB30, did not. The spinal Fos protein expression study demonstrated that the optimal EA selectively suppressed Fos expression in superficial laminae (I/II) and activated it in deeper laminae (III/IV) of the spinal dorsal horn. The results suggest that the EA anti-hyperalgesia is parameter-dependent and point-specific, and they provide important information for designing further clinical acupuncture research on persistent inflammatory pain.  相似文献   

13.
Although morphine is a potent antinociceptive agent, its chronic use developed tolerance in neuropathic pain (NP). Furthermore, opioid antagonist naloxone attenuated the antinociceptive effect of neuropeptide Y (NPY). The present study investigated the role of NPY and NPY Y1/Y5 receptors in acute and chronic actions of morphine in neuropathic rats using thermal paw withdrawal test and immunocytochemistry. In acute study, intracerebroventricular (icv) administration of morphine, NPY or NPY Y1/Y5 receptors agonist [Leu31, Pro34]-NPY produced antinociception, whereas selective NPY Y1 receptors antagonist BIBP3226 caused hyperalgesia. While NPY or [Leu31, Pro34]-NPY potentiated, BIBP3226 attenuated morphine induced antinociception. Chronic icv infusion of morphine via osmotic minipumps developed tolerance to its antinociceptive effect, and produced hyperalgesia following withdrawal. However, co-administration of NPY or [Leu31, Pro34]-NPY prevented the development of tolerance and withdrawal hyperalgesia. Sciatic nerve ligation resulted in significant increase in the NPY-immunoreactive (NPY-ir) fibers in ventrolateral periaqueductal gray (VLPAG) and locus coeruleus (LC); fibers in the dorsal part of dorsal raphe nucleus (DRD) did not respond. While chronic morphine treatment significantly reduced NPY-ir fibers in VLPAG and DRD, morphine withdrawal triggered significant augmentation in NPY-immunoreactivity in the VLPAG. NPY-immunoreactivity profile of LC remained unchanged in all the morphine treatment conditions. Furthermore, removal of sciatic nerve ligation reversed the effects of NP, increased pain threshold and restored NPY-ir fiber population in VLPAG. NPY, perhaps acting via Y1/Y5 receptors, might profoundly influence the processing of NP information and interact with the endogenous opioid system primarily within the framework of the VLPAG.  相似文献   

14.
The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of “below-level” neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats.  相似文献   

15.
Mice lacking the gene encoding for substance P and neurokinin A, or the NK-1 receptor, exhibit alterations in behavior to various acute nociceptive stimuli. However, behavioral responses of NK-1 mutant animals have not been well characterized in models of chronic pain. We studied the behavioral responses of NK-1 knockout and wild-type control mice to thermal and mechanical stimuli before and after inducing chronic neuropathic pain by unilateral ligation of the L5 spinal nerve. Mechanical hyperalgesia was evaluated by determining the frequency of withdrawal to von Frey monofilaments applied to the hind paws. Nerve injury-induced hyperalgesia to thermal stimuli was examined by determining responses to radiant heat and cooling stimuli. The contribution of the sympathetic nervous system to mechanical hyperalgesia was evaluated by administering 3 mg/kg phentolamine, an alpha-adrenergic antagonist, subcutaneously. Following spinal nerve injury, withdrawal frequencies to mechanical stimulation increased in wild-type mice within 1 day and persisted during the 9-week observation period, whereas in the knockout mice, withdrawal frequencies did not increase significantly. In contrast, withdrawal latencies to radiant heat decreased up to 2 weeks after nerve injury in both the NK-1 and the wild-type mice. Similarly, the increase in withdrawal frequency to the cooling stimuli following the nerve injury was not different in the NK-1 knockout and wild-type mice. Mechanical hyperalgesia in the wild-type mice was not reversed by systemic administration of phentolamine, suggesting that the pain is not sympathetically maintained. The results indicate that NK-1 receptors contribute to the development of mechanical, but not thermal, hyperalgesia in neuropathic pain.  相似文献   

16.
Although systematic studies have demonstrated that acupuncture or electroacupuncture (EA) analgesia is based on their accelerating endogenous opioid release to activate opioid receptors and that EA of different frequencies is mediated by different opioid receptors in specific areas of the central nervous system, there is little direct, real‐time evidence to confirm this in vivo. The present study was designed to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS), an analogue of EA, at low and high frequencies on μ‐opioid receptor (MOR) availability in the brain of rhesus monkeys. Monkeys underwent 95‐min positron emission tomography (PET) with 11C‐carfentanil three times randomly while receiving 0, 2, or 100 Hz TEAS, respectively. Each TEAS was administered in the middle 30 min during the 95‐min PET scan, and each session of PET and TEAS was separated by at least 2 weeks. The results revealed that 2 Hz but not 100 Hz TEAS evoked a significant increase in MOR binding potential in the anterior cingulate cortex, the caudate nucleus, the putamen, the temporal lobe, the somatosensory cortex, and the amygdala compared with 0 Hz TEAS. The effect remained after the end of TEAS in the anterior cingulate cortex and the temporal lobe. The selective increase in MOR availability in multiple brain regions related to pain and sensory processes may play a role in mediating low‐frequency TEAS efficacy. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Peroxynitrite (PN, ONOO(-)) is a potent oxidant and nitrating agent that contributes to pain through peripheral and spinal mechanisms, but its supraspinal role is unknown. We present evidence here that PN in the rostral ventromedial medulla (RVM) is essential for descending nociceptive modulation in rats during inflammatory and neuropathic pain through PN-mediated suppression of opioid signaling. Carrageenan-induced thermal hyperalgesia was associated with increased 3-nitrotyrosine (NT), a PN biomarker, in the RVM. Furthermore, intra-RVM microinjections of the PN decomposition catalyst Fe(III)-5,10,15,20-tetrakis(N-methyl-pyridinium-4-yl)porphyrin (FeTMPyP(5+)) dose-dependently reversed this thermal hyperalgesia. These effects of FeTMPyP(5+) were abrogated by intra-RVM naloxone, implicating potential interplay between PN and opioids. In support, we identified NT colocalization with the endogenous opioid enkephalin (ENK) in the RVM during thermal hyperalgesia, suggesting potential in situ interactions. To address the functional significance of such interactions, we exposed methionine-enkephalin (MENK) to PN and identified the major metabolite, 3-nitrotyrosine-methionine-sulfoxide (NSO)-MENK, using liquid chromatography-mass spectrometry. Next, we isolated, purified, and tested NSO-MENK for opioid receptor binding affinity and analgesic effects. Compared to MENK, this NSO-MENK metabolite lacked appreciable binding affinity for δ, μ, and κ opioid receptors. Intrathecal injection of NSO-MENK in rats did not evoke antinociception, suggesting that PN-mediated chemical modifications of ENK suppress opioid signaling. When extended to chronic pain, intra-RVM FeTMPyP(5+) produced naloxone-sensitive reversal of mechanical allodynia in rats following chronic constriction injury of the sciatic nerve. Collectively, our data reveal the central role of PN in RVM descending facilitation during inflammatory and neuropathic pain potentially through anti-opioid activity.  相似文献   

18.
This study was designed to determine whether 3 weeks of gabapentin treatment is effective in alleviating neuropathic pain‐like behavior in animal models of complex regional pain syndrome type‐I and partial sciatic nerve ligation (PSNL). We investigated the contribution of adenosine subtypes to the antihyperalgesic effect of gabapentin by examining the effect of caffeine, a non‐selective adenosine A1 and A2 receptor antagonist or 1,3‐dipropyl‐8‐cyclopentylxanthine (DPCPX), a selective adenosine A1 subtype receptor antagonist on this effect. Neuropathic pain was produced by unilateral prolonged hind paw ischemia and reperfusion (I/R) or PSNL procedures which resulted in stimulus‐evoked mechanical hyperalgesia. After procedures, animals received gabapentin (10, 30, or 100 mg/kg intraperitoneal, respectively), caffeine (10 mg/kg intraperitoneal or 150 nmol intrathecally) or DPCPX (3 µg intrathecally) alone or in combination. Mice were tested for tactile mechanical hyperalgesia at 1, 2, and 3 weeks following procedures. Gabapentin produced dose‐related inhibition of mechanical hyperalgesia over a 3‐week period, and this effect was blocked by concomitant caffeine or DPCPX administration 1 week after injuries. The results of this study demonstrated that the mechanism through which gabapentin produces its effect may involve the activation of adenosine A1 subtype receptor.  相似文献   

19.
The present study was undertaken to investigate the role of spinal somatostatin SSTR2A receptors in nociceptive processing. SSTR2A receptor-like immunoreactivity was found in a dense network in the spinal cord of normal rats. With Western blot analysis a major band of approximately 80-85 kDa was detected. Both immunohistochemistry and immunoblot analysis indicated a significant increase in SSTR2A receptor content in the spinal cord 6 h after noxious thermal stimulation that lasted for at least 24 h. However, there were no notable changes in SSTR2A receptor content 3, 6, 12, or 24 h after noxious mechanical stimulation. Effects of intrathecally administered polyclonal antiserum to SSTR2A receptor (anti-SSTR2A) on thermal and mechanical pain thresholds were determined with behavioral tests. In normal rats, pretreatment with anti-SSTR2A (1 microl, intrathecal) did not affect paw withdrawal latency or pinch threshold. Hindpaw inflammation induced by complete Freund's adjuvant led to thermal and mechanical hyperalgesia as reflected by a robust decrease in paw withdrawal latency and pinch threshold. Significant attenuation of the thermal hyperalgesia was observed 3, 5, 7, 9, and 24 h after pretreatment with anti-SSTR2A. This effect disappeared in another 24 h. In contrast, pretreatment with anti-SSTR2A failed to exert any notable effect on adjuvant-induced mechanical hyperalgesia. The present findings provide the first evidence that SSTR2A receptors are responsible for thermal, but not mechanical, nociceptive transmission in the spinal cord. The results also suggest that somatostatin has an excitatory role in spinal nociceptive processing and that there are differential receptor responses to different types of noxious stimuli.  相似文献   

20.
Cold-freeze injury at −4 degrees C to the rat sciatic nerve produces mechanical allodynia and thermal hyperalgesia [M.A. Kleive, P.S. Jungbluth, J.A. Uhlenkamp, K.C. Kajander, Cold injury to rat sciatic nerve induces thermal hyperalgesia or analgesia, 8th World Congress on Pain, Vancouver, BC, Canada, August 1996 (Abstract).]. The NMDA receptor, an excitatory amino acid (EAA) receptor, appears to be involved in the development of allodynia and hyperalgesia following nerve injury. The role, if any, of the kainate receptor, another EAA receptor, remains unknown. In the current study, we evaluated whether (2S,4R)-4-methylglutamic acid (SYM-2081), a recently developed kainate receptor antagonist, attenuates increased responsiveness following cold injury to the sciatic nerve. During baseline testing, Sprague-Dawley rats were evaluated for frequency of withdrawal from van Frey filaments and latency of withdrawal from a radiant thermal source. Animals were then anesthetized, the left sciatic nerve was exposed, and the nerve was cooled to −4 degrees C for 15 min (n = 24). For control rats (n = 24), all procedures were identical except that the nerve was maintained at 37 degrees C. Testing resumed on the third day following surgery. On the fifth post-operative day, SYM-2081 (150 or 100 mg/kg), fentanyl citrate (0.04 mg/kg) or vehicle was injected intraperitoneally. Injury to the rat sciatic nerve induced a significant increase in withdrawal frequency and a significant decrease in withdrawal latency (ANOVA, p < 0.05). SYM-2081 and fentanyl significantly reduced these responses (p < 0.05). These results suggest that kainate and opioid receptors are involved in the mechanical allodynia and thermal hyperalgesia that develop following cold injury to the sciatic nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号