首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Molecular mechanisms of how energy metabolism affects embryonic stem cell (ESC) pluripotency remain unclear. AMP-activated protein kinase (AMPK), a key regulator for controlling energy metabolism, is activated in response to ATP-exhausting stress. We investigated whether cellular energy homeostasis is associated with maintenance of self-renewal and pluripotency in mouse ESCs (mESCs) by using 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) as an activator of AMPK. We demonstrate that AICAR treatment activates the p53/p21 pathway and markedly inhibits proliferation of R1 mESCs by inducing G(1) /S-phase cell cycle arrest, without influencing apoptosis. Treatment with AICAR also significantly reduces pluripotent stem cell markers, Nanog and stage-specific embryonic antigen-1, in the presence of leukemia inhibitory factor, without affecting expression of Oct4. H9 human ESCs also responded to AICAR with induction of p53 activation and repression of Nanog expression. AICAR reduced Nanog mRNA levels in mESCs transiently, an effect not due to expression of miR-134 which can suppress Nanog expression. AICAR induced Nanog degradation, an effect inhibited by MG132, a proteasome inhibitor. Although AICAR reduced embryoid body formation from mESCs, it increased expression levels of erythroid cell lineage markers (Ter119, GATA1, Klf1, Hbb-b, and Hbb-bh1). Although erythroid differentiation was enhanced by AICAR, endothelial lineage populations were remarkably reduced in AICAR-treated cells. Our results suggest that energy metabolism regulated by AMPK activity may control the balance of self-renewal and differentiation of ESCs.  相似文献   

4.
Fibroblast growth factor 2 (FGF2) is known to promote self-renewal of human embryonic stem cells (hESCs). In addition, it has been shown that transforming growth factor beta (TGFbeta) signaling is crucial in that the TGFbeta/Activin/Nodal branch of the pathway needs to be activated and the bone morphogenic protein (BMP)/GDF branch repressed to prevent differentiation. This holds particularly true for Serum Replacement-based medium containing BMP-like activity. We have reinvestigated a widely used protocol for conditioning hESC medium with mouse embryonic fibroblasts (MEFs). We show that FGF2 acts on MEFs to release supportive factors and reduce differentiation-inducing activity. FGF2 stimulation experiments with supportive and nonsupportive MEFs followed by genome-wide expression profiling revealed that FGF2 regulates the expression of key members of the TGFbeta pathway, with Inhba, Tgfb1, Grem1, and Bmp4 being the most likely candidates orchestrating the above activities. In addition, restimulation experiments in hESCs combined with global expression analysis revealed downstream targets of FGF2 signaling in these cells. Among these were the same factors previously identified in MEFs, thus suggesting that FGF2, at least in part, promotes self-renewal of hESCs by modulating the expression of TGFbeta ligands, which, in turn, act on hESCs in a concerted and autocrine manner.  相似文献   

5.
6.
Extracellular signal-regulated kinase 2 (ERK2) is involved in a variety of cell fate decisions during development, but its exact role in this process remains to be determined. To specifically focus on the role of ERK2 in the brain, and to avoid early lethalities, we used a conditional gene-targeting approach to preferentially inactivate Erk2 in the embryonic mouse brain. The resulting mutant mice were viable and were relatively normal in overall appearance. However, the loss of Erk2 resulted in a diminished proliferation of neural stem cells in the embryonic ventricular zone (VZ), although the survival and differentiation of these cells was unaffected. The multipotent neural progenitor cells (NPCs) isolated from ERK2-deficient brains also showed impaired proliferation, reduced self-renewal ability, and increased apoptosis. By neurosphere differentiation analysis we further observed that lineage-restricted glial progenitors were increased in ERK2-deficient mice. The decline in the self-renewal ability and multipotency of NPCs resulting from the loss of ERK2 was found to be caused at least in part by upregulation of the JAK-STAT signaling pathway and reduced G1/S cell cycle progression. Furthermore, by global expression analysis we found that neural stem cell markers, including Tenascin C NR2E1 (Tlx), and Lgals1 (Galectin-1), were significantly downregulated, whereas several glial lineage markers were upregulated in neurospheres derived from ERK2-deficient mice. Our results thus suggest that ERK2 is required both for the proliferation of neural stem cells in the VZ during embryonic development and in the maintenance of NPC multipotency by suppressing the commitment of these cells to a glial lineage.  相似文献   

7.
Branching morphogenesis (BM) of the chorionic villous tree is a crucial component of early placental formation. Fibroblast growth factors (FGFs), their receptor tyrosine kinase (RTK) and negative regulators like Sprouty (Spry) proteins are pivotal factors in the development of diverse branching organ systems. The aim of this study was to examine the effect of FGF10 and Sprouty 2 on BM of the chorionic villi in vitro. Villous explants of first trimester placentas were cultured and their outgrowths were monitored. The effect of FGF10 was tested on matrigel migration/invasion assay, collagenolytic activity of single cell trophoblasts and on villous explants outgrowths. siRNA of Spry2 was used to reduce its expression and to investigate the role of Sprouty 2 in villous explants outgrowths. Quantitative RT-PCR and immunohistochemistry were performed to determine Sprouty 2 and HLA-G (a marker of invasion) expression. FGF 10 stimulated by 8-fold the migration/invasion of single cell trophoblast enhanced their collagenolytic activity. Reduction of Spry2 expression in villous explants showed a marked increase in villous outgrowths. This was accompanied by enhanced staining for HLA-G and by the reduction of Spry2 expression that was confirmed by immunohistochemistry and by quantitative RT-PCR. We conclude that trophoblast outgrowth and invasion (part of placental villi sprouting) at the fetal maternal interface is in part under delicate control of FGF 10 and Sprouty 2. FGF 10 promotes invasion and outgrowth of trophoblasts. In addition, it increases Spry2 expression, which attenuates trophoblast sprouting.  相似文献   

8.
Adipose tissue-derived stem cells offer tremendous potential for regenerative medicine. However, characterization of their self-renewal ability has not been performed yet, although it is a crucial feature for in vitro expansion of undifferentiated cells and in vivo maintenance of stem cell pools. We have undertaken the identification of molecular events that are involved in in vitro self-renewal of human multipotent adipose-derived stem (hMADS) cells from young donors, by assessing their proliferation rate, their ability to grow at the single-cell level (clonogenicity), and their differentiation potential. As hMADS cells are propagated in culture, cell morphology changes dramatically, concomitantly to a progressive decrease in proliferation, clonogenicity, and differentiation potential. This decrease is associated with a decrease in fibroblast growth factor 2 (FGF2) expression and can be circumvented by chronic treatment with exogenous FGF2. Moreover, analysis of FGF2 secretion revealed that it is exported to hMADS cell surface without being released into the culture medium, suggesting a strictly autocrine loop. Indeed, treatment of FGF2-expressing hMADS cells with PD173074, a specific FGF receptor inhibitor, decreases dramatically their clonogenicity and differentiation potential. Thus, hMADS cells express a functional autocrine FGF loop that allows maintenance of their self-renewal ability in vitro. Finally, inhibition of mitogen-activated protein kinase kinase 1 reduces the clonogenic potential of hMADS cells but does not affect their differentiation potential, indicating that the extracellular signal-related kinases 1/2 signaling pathway is partly involved in FGF2-mediated self-renewal. Together, our data clearly identify the key function of FGF2 in the maintenance of self-renewal of adipose tissue-derived stem cells.  相似文献   

9.
Fibroblast growth factor (FGF), transforming growth factor (TGF)/Nodal, and Insulin/insulin-like growth factor (IGF) signaling pathways are sufficient to maintain human embryonic stem cells (ESCs) and induced pluripotent stem cells in a proliferative, undifferentiated state. Here, we show that only a few FGF family members (FGF2, FGF4, FGF6, and FGF9) are able to sustain strong extracellular-signal-regulated kinase (ERK) phosphorylation and NANOG expression levels in human ESCs. Surprisingly, FGF1, which is reported to target the same set of receptors as FGF2, fails to sustain ERK phosphorylation and NANOG expression under standard culture conditions. We find that the failure of FGF1 to sustain ES is due to thermal instability of the wild-type protein, not receptor specificity, and that a mutated thermal-stable FGF1 sustains human ESCs and supports both differentiation and reprogramming protocols.  相似文献   

10.
11.
12.
How self-renewal versus differentiation of neural progenitor cells is temporally controlled during early development remains ill-defined. We show that mouse Lin41 (mLin41) is highly expressed in neural progenitor cells and its expression declines during neural differentiation. Loss of mLin41 function in mice causes reduced proliferation and premature differentiation of embryonic neural progenitor cells. mLin41 was recently implicated as the E3 ubiquitin ligase that mediates degradation of Argonaute 2 (AGO2), a key effector of the microRNA pathway. However, our mechanistic studies of neural progenitor cells indicate mLin41 is not required for AGO2 ubiquitination or stability. Instead, mLin41-deficient neural progenitors exhibit hyposensitivity for fibroblast growth factor (FGF) signaling. We show that mLin41 promotes FGF signaling by directly binding to and enhancing the stability of Shc SH2-binding protein 1 (SHCBP1) and that SHCBP1 is an important component of FGF signaling in neural progenitor cells. Thus, mLin41 acts as a temporal regulator to promote neural progenitor cell maintenance, not via the regulation of AGO2 stability, but through FGF signaling.  相似文献   

13.
The regulation of mouse embryonic stem cell (mESC) fate is controlled by the interplay of signaling networks that either promote self-renewal or induce differentiation. Leukemia inhibitory factor (LIF) is a cytokine that is required for stem cell renewal in mouse but not in human embryonic stem cells. However, feeder layers of embryonic fibroblasts are capable of inducing stem cell renewal in both cell types, suggesting that the self-renewal signaling pathways may also be promoted by other triggers, such as alternative cytokines and/or chemical or physical properties of the extracellular matrix (ECM) secreted by feeder fibroblasts. We have recently used a synthetic polyamide matrix (Ultra-Web) whose three-dimensional (3D) nanofibrillar organization resembles the ECM/basement membrane. Growth of mESCs on this nanofibrillar surface greatly enhanced proliferation and self-renewal in comparison with growth on tissue culture surfaces without nanofibers, despite the presence of LIF in both systems. Enhanced proliferation and self-renewal of the stem cells on nanofibrillar surfaces were correlated with the activation of the small GTPase Rac, the activation of phosphoinositide 3-kinase (PI3K) pathway, and the enhanced expression of Nanog, a homeoprotein required for maintenance of pluripotency. Inhibitors of PI3K reduced the expression level of Nanog in mESCs cultured on 3D nanofibrillar surfaces. These results provide support for the view that the three-dimensionality of the culture surface may function as a cue for the activation of Rac and PI3K signaling pathways, resulting in stem cell proliferation and self-renewal.  相似文献   

14.
15.
The activation of Notch signaling in neural crest stem cells (NCSCs) results in the rapid loss of neurogenic potential and differentiation into glia. We now show that the attenuation of endogenous Notch signaling within expanding NCSC clones by the Notch ligand soluble Jagged1 (sJ1), maintains NCSCs in a clonal self-renewing state in vitro without affecting their sensitivity to instructive differentiation signals observed previously during NCSC self-renewal. sJ1 functions as a competitive inhibitor of Notch signaling to modulate endogenous cell-cell communication to levels sufficient to inhibit neural differentiation but insufficient to instruct gliogenic differentiation. Attenuated Notch signaling promotes the induction and nonclassic release of fibroblast growth factor 1 (FGF1). The functions of sJ1 and FGF1 signaling are complementary, as abrogation of FGF signaling diminishes the ability of sJ1 to promote NCSC expansion, yet the secondary NCSCs maintain the dosage sensitivity of the founder. These results validate and build upon previous studies on the role of Notch signaling in stem cell self-renewal and suggest that the differentiation bias or self-renewal potential of NCSCs is intrinsically linked to the level of endogenous Notch signaling. This should provide a unique opportunity for the expansion of NCSCs ex vivo without altering their differentiation bias for clinical cell replacement or transplant strategies in tissue repair. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

16.
17.
Embryonic stem cells (ESCs) posses the ability to self-renew and differentiate into a multitude of lineages, including the osteogenic lineage in vitro. Currently, most approaches have focused on embryonic body (EB)-mediated osteogenic differentiation, which relies on formation of all three germ layers resulting in limited yields and labour-intensive culture processes. Our study aimed at developing an efficient culture strategy resulting in the upregulated in vitro osteogenic differentiation of murine ESCs (mESCs), which completely avoided EB formation. Specifically, mESCs were cultured in HepG2 conditioned medium for 3 days and then directed into osteogenic differentiation for 21 days without prior EB formation. The mineralised bone nodules generated were characterized by Alizarin red S-staining, phenotypic alkaline phosphatase expression, time-course analysis of ALPase activity, the presence of type I collagen and osteopontin, and osteocalcin, cbfa-1/runx-2, and osterix gene expression. Our method of direct osteogenic differentiation of mESCs represents a novel and efficient approach that results in enhanced yields and could have significant applications in bone tissue engineering.  相似文献   

18.
19.
20.
Understanding the intrinsic and extrinsic signals that regulate the molecular basis of the pluripotent state may improve our understanding of mammalian embryogenesis, different states of pluripotency, and our ability to tailor lineage differentiation. Although the role of the PI3K/Akt pathway in the self-renewal and maintenance of mESCs is well-established, the specific contribution of the pathway or of its negative regulator, PTEN, in the maintenance of the human pluripotent state is less understood. To explore the PI3K/AKT pathway in human embryonic stem cell (hESC) pluripotency and differentiation, we generated stable PTEN knockdown (KD) hESCs using short hairpin RNA. Similar to mESCs, we found that PTEN KD hESCs have increased self-renewal, cell survival, and proliferation over multiple passages compared to control cells. However, in contrast to mESCs, in vitro, PTEN KD hESCs differentiated inefficiently in directed differentiation assays, in part due to the continued maintenance of OCT4 and NANOG expression. In teratoma assays, PTEN KD hESCs generated tissues from the three germ layers, although with a bias toward neuroectoderm differentiation. These results demonstrate that PTEN is a key regulator of hESC growth and differentiation, and manipulation of this pathway may improve our ability to regulate and understand the pluripotent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号