首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Although AMPK is traditionally thought to play a major role in the regulation of cellular lipid and protein metabolism, recent discoveries reveal that AMPK inhibits mammalian target of rapamycin (mTOR) signaling and connects with several tumor suppressors such as liver kinase B1 (LKB1), p53, and tuberous sclerosis complex 2 (TSC2), indicating that AMPK may be a potential target for cancer prevention and treatment. For the first time, we demonstrated that apigenin, a naturally occurring nonmutagenic flavonoid, induced AMPK activation in human keratinocytes (both cultured HaCaT cell line and primary normal human epidermal keratinocytes). Through experiments with over-expression of constitutively active Akt and knockdown of LKB1 expression by siRNAs, we further found that the activation of AMPK by apigenin was not dependent on its inhibition of Akt, and was independent of the activation of upstream kinase LKB1. Instead, another upstream kinase of AMPK, calcium/calmodulin-dependent protein kinase kinase-β (CaMKKβ), was required for apigenin-induced AMPK activation. We have demonstrated that knockdown of CaMKKβ expression by siRNA or inhibition of CaMKKβ activity by either CaMKK inhibitor STO-609 or BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; a chelator of intracellular Ca(2+)) prevented apigenin-induced AMPK activation. Apigenin-induced AMPK activation inhibited mTOR signaling and further induced autophagy in human keratinocytes. These results suggest that one of the mechanisms by which apigenin exerts its chemopreventive action may be through activation of AMPK and induction of autophagy in human keratinocytes.  相似文献   

2.
3.
Functional androgen receptor (AR) signaling is necessary for the development of prostate cancer. The therapeutic effect of androgen deprivation therapy for prostate cancer was described over 60 years ago and this treatment remains the mainstay of systemic therapy despite its transient response duration. It has become clear that AR expression and signaling remains intact as the disease evolves from androgen-sensitive cancer to classically (but perhaps inaccurately) termed hormone refractory prostate cancer. Through several genetic and epigenetic adaptations, prostate tumors continue to rely on AR growth signaling and they thus remain targets of 'hormonal' therapy. The development of new strategies and drugs that can abrogate AR signaling will probably result in important clinical benefits. The biology of androgen independence and the development of new approaches targeting AR signaling are reviewed herein.  相似文献   

4.
5.
6.
7.
8.
9.
The androgen‐signaling pathway with the androgen receptor (AR) as its key molecule is widely understood to influence prostate tumor growth significantly even after androgen ablation. Under androgen‐deprived conditions, the AR may be activated inappropriately through interaction with other molecules, including cyclic AMP‐dependent protein kinase A (PKA). In a previous study, we have shown that knocking down the AR significantly inhibits prostate tumor growth. In this study, we show that combined inhibition of the AR and the regulatory subunit I alpha of PKA (RIα) with small interference RNAs significantly increased the growth‐inhibitory and proapoptotic effects of AR knockdown. This treatment strategy was effective in androgen‐sensitive and in androgen ablation‐resistant prostate cancer cells. In addition, we report that downregulating PKA RIα was sufficient to inhibit PKA signaling and interestingly also impaired AR expression and activation. Vice versa, AR knockdown induced a decline in PKA RIα, associated with reduced PKA activity. This mutual influence on expression level was specific, because siRNAs against the AR did not affect expression of PKA RIα in AR negative DU‐145 cells and a siRNA control did not affect protein expression. Another important finding of our study was that depletion of PKA RIα also potentiated the antiproliferative effect of the antiandrogen bicalutamide in androgen‐sensitive LNCaP. We therefore concluded that combined inhibition of PKA RIα and AR may be a promising new therapeutic option for prostate cancer patients and might be superior to solely preventing AR expression.  相似文献   

10.
Preclinical studies and clinical analyses have implicated the mammalian target of rapamycin (mTOR) pathway in the progression of prostate cancer, suggesting mTOR as a potential target for new therapies. mTOR, a serine/threonine kinase, belongs to two distinct signaling complexes: mTORC1 and mTORC2. We previously showed that the synthetic organoselenium compound, p-XSC, effectively inhibits viability and critical signaling molecules (e.g., androgen receptor, Akt) in androgen responsive (AR) and androgen independent (AI) human prostate cancer cells. On the basis of its inhibition of Akt, we hypothesized that p-XSC modulates mTORC2, an upstream regulator of the kinase. We further hypothesized that combining p-XSC with rapamycin, an mTORC1 inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer. The effects of p-XSC and rapamycin, alone or in combination, on viability and mTOR signaling were examined in AR LNCaP prostate cancer cells and AI C4-2 and DU145 cells. Phosphorylation of downstream targets of mTORC1 and mTORC2 was analyzed by immunoblotting. The interaction of mTORC1- and mTORC2-specific proteins with mTOR was probed through immunoprecipitation and immunoblotting. p-XSC inhibited phosphorylation of mTORC2 downstream targets, Akt and PCKα, and decreased the levels of rictor, an mTORC2-specific protein, coimmunoprecipitated with mTOR in C4-2 cells. The combination of p-XSC and rapamycin more effectively inhibited viability and mTOR signaling in C4-2, LNCaP and DU145 cells than either agent individually.  相似文献   

11.
Androgens, through their actions on the androgen receptor (AR), are required for the development of the prostate and contribute to the pathologic growth dysregulation observed in prostate cancers. Consequently, androgen ablation has become an essential component of the pharmacotherapy of prostate cancer. In this study, we explored the utility of targeting processes downstream of AR as an alternate approach for therapy. Specifically, we show that the serum and glucocorticoid-regulated kinase 1 (SGK1) gene is an androgen-regulated target gene in cellular models of prostate cancer. Furthermore, functional serum- and glucocorticoid-regulated kinase 1 (SGK1) protein, as determined by the phosphorylation of its target Nedd4-2, was also increased with androgen treatment. Importantly, we determined that RNA interference-mediated knockdown of SGK1 expression attenuates the androgen-mediated growth of the prostate cancer cell line LNCaP. Given these findings, we explored the utility of SGK1 as a therapeutic target in prostate cancer by developing and evaluating a small-molecule inhibitor of this enzyme. From these studies emerged GSK650394, a competitive inhibitor that quantitatively blocks the effect of androgens on LNCaP cell growth. Thus, in addition to androgen ablation, inhibition of pathways downstream of AR is likely to have therapeutic utility in prostate cancer.  相似文献   

12.
Although there have been several studies suggesting the involvement of growth factor receptor tyrosine kinases in ligand-independent activation of the androgen receptor (AR) and progression of prostate cancer, limited studies have been reported actually showing the enhancement of phosphorylation of the AR in vivo in response to growth factors or activation of their receptors in prostate cancer cells. In this study, we have demonstrated that overexpression of HER2/Neu enhanced in vivo phosphorylation of the AR and MAP kinase in DU-145 cells, and that the HER2/Neu inhibitor TAK165 reduced the HER2/Neu-enhanced phosphorylated AR and MAP kinase, indicating that the MAP kinase pathway seems to be involved in the phosphorylation of the AR by HER2/Neu. Both HER2/Neu inhibitor TAK165 and EGFR tyrosine kinase inhibitor gefitinib ('Iressa', ZD1839) successfully reduced the HER2/Neu-induced transactivation activity of the AR in PC-3 and DU-145 cells, suggesting that these inhibitors are possible therapeutic drugs for patients with hormone-refractory prostate cancer. The transactivation activity of the AF-1+DBD of the AR was enhanced by HER2/Neu overexpression while that of the AF-2+DBD was not, demonstrating that the enhancement of the AR activity by HER2/Neu was mainly mediated through the AF-1 of the AR.  相似文献   

13.
Molecular chaperones throughout the life cycle of the androgen receptor   总被引:2,自引:0,他引:2  
  相似文献   

14.
Whereas hydroxyflutamide (HF) has been used as an antiandrogen to block androgen-stimulated prostate tumor growth, the antiandrogen withdrawal syndrome that allows antiandrogens to stimulate prostate tumor growth still occurs in many patients treated with androgen ablation therapy. This was previously explained by mutations in the androgen receptor (AR) and/or modulation from AR coregulators, so that HF becomes an AR agonist. Using immunohistochemical analysis, we analyzed four prostate cancer patients undergoing androgen ablation therapy with flutamide and compared their phospho-extracellular signal-regulated kinase 1/2 levels in prostate cancer biopsies before receiving HF and after experiencing disease progression while taking HF. We found a significant increase of activated mitogen-activated protein (MAP) kinase in prostate tumors from patients receiving HF during androgen ablation therapy. In vitro studies showed that HF induced a rapid activation of the Ras/MAP kinase pathway in human prostate cancer DU145 cells which lack the AR, as well as in PC-3AR2 and CWR22 cells which express the AR. Cycloheximide failed to inhibit this activation, but both AG1478, an inhibitor of the epidermal growth factor receptor (EGF-R), and an EGF-R-neutralizing antibody blocked this HF-mediated activation of MAP kinase, which suggests that the activation of Ras/MAP kinase by HF is a membrane-initiated, non-AR-mediated, and nongenomic action. The consequence of this activation may result in increasing cell proliferation and cyclin D1 expression. This raises a concern for using HF in the complete-androgen-ablation therapy in prostate cancer treatment and provides a possible pathway that might contribute to the HF withdrawal syndrome.  相似文献   

15.
HER-2/neu has been implicated in the activation of androgen receptor (AR) and in inducing hormone-independent prostate cancer growth. Here we report that HER-2/neu activates Akt (protein kinase B) to promote prostate cancer cell survival and growth in the absence of androgen. Blocking of the Akt pathway by a dominant-negative Akt or an inhibitor LY294002 abrogates the HER-2/neu-induced AR signaling and cell survival/growth effects in the absence or presence of androgen. Akt specifically binds to AR and phosphorylates serines 213 and 791 of AR. Thus, Akt is a novel activator of AR required for HER-2/neu signaling to androgen-independent survival and growth of prostate cancer cells.  相似文献   

16.
17.
Medulloblastoma is a highly prevalent pediatric central nervous system malignancy originating in the cerebellum, with a strong propensity for metastatic migration to the leptomeninges, which greatly increases mortality. While numerous investigations are focused on the molecular mechanisms of medulloblastoma histogenesis, the signaling pathways regulating migration are still poorly understood. Medulloblastoma likely arises from aberrant proliferative signaling in cerebellar granule precursor cells during development, and estrogen is a morphogen that promotes medulloblastoma cell migration. It has been previously shown that the calcium/calmodulin activated kinase kinase (CaMKK) pathway promotes cerebellar granule precursor migration and differentiation during normal cerebellar development via CaMKIV. Here we investigate the regulatory role of the CaMKK pathway in migration of the human medulloblastoma DAOY and cerebellar granule cells. Using pharmacological inhibitors and dominant negative approaches, we demonstrate that the CaMKK/CaMKI cascade regulates basal medulloblastoma cell migration via Rac1, in part by activation of the RacGEF, βPIX. Additionally, pharmacological inhibition of CaMKK blocks both the estrogen induced Rac1 activation and medulloblastoma migration. The CaMKK signaling module described here is one of the first reported calcium regulated pathways that modulates medulloblastoma migration. Since tumor dissemination requires cell migration to ectopic sites, this CaMKK pathway may be a putative therapeutic target to limit medulloblastoma metastasis.  相似文献   

18.
19.
20.
The suppression of androgen receptor (AR) expression exacerbates the migration potential of prostate cancer. This study identified a previously unrecognized regulation of the AR-controlled pathway that promotes migration potential in prostate cancer cells. Prostate cancer cells that pass through a transwell membrane (mig cells) have a higher migration potential with a decreased AR expression than parental cells. In this study, we aimed to elucidate the mechanism of migration enhancement associated with the suppression of AR signaling. Expression of C–C motif ligand 20 (CCL20) is upregulated in mig cells, unlike in the parental cells. Knockdown of AR with small interfering RNA (siAR) in LNCaP and C4-2B cells increased CCL20 secretion and enhanced the migration of cancer cells. Mig cells, CCL20-treated cells, and siAR cells promoted cell migration with an enhancement of AKT phosphorylation and Snail expression, while the addition of a C–C chemokine receptor 6 (CCR6, the specific receptor of CCL20) inhibitor, anti-CCL20 antibody, and AKT inhibitor suppressed the activation of AKT and Snail. With 59 samples of prostate cancer tissue, CCL20 secretion was profuse in metastatic cases despite low AR expression levels. Snail expression was associated with the expression of CCL20 and CCR6. A xenograft study showed that the anti-CCL20 antibody significantly inhibited Snail expression, thereby suggesting a new therapeutic approach for castration-resistant prostate cancer with the inhibition of the axis between CCL20 and CCR6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号