首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sigma receptors are classified into sigma(1) and sigma(2) subtypes. These subtypes display a different tissue distribution and a distinct physiological and pharmacological profile in the central and peripheral nervous system. The characterization of these subtypes and the discovery of new specific sigma receptor ligands demonstrated that sigma receptors are novel targets for the therapeutic treatment of neuropsychiatric diseases (schizophrenia, depression, and cognition), brain ischemia, and cocaine addiction. Furthermore, imaging of sigma(1) receptors in the human brain using specific PET radioligands has started. In addition, the two sigma receptor subtypes are also expressed on tumor cells, where they could be of prognostic relevance. The ability of sigma(2) receptor agonists to inhibit tumor cell proliferation through mechanisms that might involve apoptosis, intracellular Ca(2+), and sphingolipids has promoted the development of sigma(2) receptor agonists as novel therapeutic drugs for treating cancer. Consequently, sigma(2) receptor ligands have been demonstrated to be potentially useful tumor imaging ligands. In this article, we focus on the sigma receptor ligands as therapeutic agents and as radiopharmaceuticals.  相似文献   

2.
Since their proposal in 1976, sigma (σ) receptors have been increasingly implicated in the pathophysiology of virtually all major central nervous system (CNS) disorders, including anxiety, depression, schizophrenia, and drug addiction. Due to their involvement in motor function and higher cognitive function,σ receptors have also been implicated in movement disorders (such as Parkinson's disease) and memory deficits (including Alzheimer's disease). In most cases the precise mechanism(s) linking σ receptors to CNS disease are unknown or yet to be fully elucidated. However, many σ ligands have shown promise in pharmacological studies and animal models of the aforementioned diseases, and some have entered clinical trials. This review will assess the validity of receptors as a target for various CNS diseases based on evidence from animal models of human diseases, preclinical studies in humans, and full clinical trials.  相似文献   

3.
Introduction: Sigma receptors are involved in several central nervous system (CNS) disorders, including mood disorders (depression and anxiety), psychosis, schizophrenia, movement disorders (i.e., Parkinson's disease) and memory deficits (i.e., Alzheimer's disease). Recently, the involvement of sigma receptors in neuropathic pain and cancer has also been observed.

Areas covered: This review aims at highlighting the research advancements published in the patent literature between 1986 and 2012, dividing patents according to both their time frame and applicants. The review especially focuses on the development of sigma receptor modulators and their application over the years with respect to CNS diseases, neuropathic pain and neurodegenerative pathologies. The literature was sought through Espacenet, Orbit, ISI Web and PubMed databases.

Expert opinion: In recent years, considerable progress in the knowledge of the biology and pharmacology of sigma receptors has encouraged research on the potential benefits of sigma modulators in a wide range of pathologies. So far, only few potent agonists and antagonists of sigma receptors are in clinical trial for acute and chronic neurodegenerative diseases (SA4503 and ANAVEX 2-73) or neuropathic pain (E-52862).  相似文献   

4.
NMDA receptors are ionotropic receptors mediating glutamatergic neurotransmission and play a role in several basic functions in the central nervous system, from regulating neurodevelopment and synaptic plasticity, learning and memory formation, cognitive processes, rhythm generation necessary for locomotor activity and breathing, and excitotoxicity. Due to their complex involvement in the above processes, NMDA receptors have been established to play a role in the etiopathology of several neuropsychiatric disorders such as ischaemia and traumatic brain injury, neurodegenerative disorders, pain syndromes, addiction, affective disorders and such neurodevelopmental disorders as autism or schizophrenia. NMDA receptors contain multiple types of subunits with distinct functional and pharmacological properties making the picture more complex. These receptors also offer multiple binding sites to be targeted with pharmacons, however, early broad-spectrum NMDA receptor antagonists had limited clinical use due to their intolerable adverse effect profile. The discovery of several types of subunit selective NMDA receptor antagonists may offer valuable therapeutic possibilities for several disorders, with improved clinical efficacy and decreased side effects. However, in spite of our increasing knowledge concerning the involvement of NMDA receptors in pathological processes, molecules with a selective action, tolerable side effect profile and good clinical efficacy are still only in clinical development in the majority of cases. Nevertheless, NMDA receptors offer a novel opportunity in the treatment of various neuropsychiatric conditions.  相似文献   

5.
Studies on the sigma receptor and related compounds are becoming more attractive since they were found to be closely related to higher brain functions such as memory, learning, depression, anxiety, schizophrenia and neuroprotection. Along with these pharmacological findings, the single transmembrane-type, non-metabotropic sigma binding protein has been cloned, while the presence of metabotropic sigma receptor has been also claimed. Thus, various pharmacological findings are now ready to be characterized on the molecular basis of receptor mechanisms. On the other hand, neurosteroids have higher brain functions such as non-genomic fast actions, which are similar to the actions of sigma compounds. Indeed some neurosteroids were revealed to behave as sigma agonists while others behave like antagonists of metabotropic sigma receptors. Pharmacological studies to determine if sigma compounds can be used to cure various central symptoms related to neurosteroids or steroid hormones can be expected.  相似文献   

6.
Muscarinic agonists might be useful in the treatment of neurological disorders, including Alzheimer's disease, schizophrenia, chronic pain, and drug abuse. Previous studies identified a series of bis-1,2,5-thiadiazole derivatives of 1,2,5,6-tetrahydropyridine with high activity and selectivity for muscarinic receptors. To develop compounds with improved central nervous system penetration, several new derivatives were synthesized and characterized for muscarinic receptor binding and activity. One ligand (11) exhibited agonist activity at M(1), M(2), and M(4) receptors, a selectivity profile suggesting potential utility in the treatment of schizophrenia.  相似文献   

7.
Currently, the drug therapy of schizophrenia consists of blockade of central dopamine D2 receptors. There is, however, an urgent medical need for alternative, more effective treatments. Clinical and preclinical literature suggests that stimulation of AMPA-type glutamate receptors may be involved in positive symptoms of schizophrenia, whereas hypofunctionality of NMDA-type glutamate receptors may be involved in negative symptoms and cognitive deficits. Several pharmacological approaches are conceivable to prevent stimulation of AMPA receptors (AMPA receptor blockade, metabotropic glutamate receptors (mGlu(2) receptor) stimulation or lamotrigine-like Na(+)/Ca(2+) channel blockade). Similarly, several pharmacological principles are conceivable to enhance neurotransmission at NMDA receptors (catechol-o-methyl transferase inhibition, glycine uptake blockade, glutathione suppletion and others). In this review, the possible pharmacological approaches and their respective advantages and disadvantages are discussed.  相似文献   

8.
Marijuana has been used as a traditional medicine and a pleasure-inducing drug for thousands of years around the world, especially in Asia. Delta(9)-tetrahydrocannabinol, major psychoactive component of marijuana, has been shown to interact with specific cannabinoid receptors, thereby eliciting a variety of pharmacological responses in experimental animals and human. In 1990, the gene encoding a cannabinoid receptor (CB1) was cloned. This prompted the search for endogenous ligands. In 1992, N-arachidonoylethanolamine (anandamide) was isolated from pig brain as an endogenous ligand, and in 1995, 2-arachidonoylglycerol was isolated from rat brain and canine gut as another endogenous ligand. Both anandamide and 2-arachidonoylglycerol exhibit various cannabimimetic activities. The results of structure-activity relationship experiments, however, revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor. 2-arachidonoylglycerol is a degradation product of inositol phospholipids that links the function of the cannabinoid receptors with the enhanced inositol phospholipid turnover in stimulated tissues and cells. The possible physiological roles of cannabinoid receptors and 2-arachidonoylglycerol in various mammalian tissues such as those of the nervous and inflammatory cells are demonstrated. Furthermore, the future development of therapeutic drugs coming from this endocannabinoid system are discussed.  相似文献   

9.
The σ receptors are regarded as unique binding sites, distinct from opiate and PCP receptors and implicated in higher brain function. They were classified into σl and σ2 subtypes, the former was cloned from rodent and human tissues while the latter has not yet been fully characterized. Although the precise mechanism of the functional response of σ receptors is still uncertain, it has been accepted that they can modulate a number of central neurotransmitter systems, including glutamate/NMDA, serotonergic, dopaminergic, noradrenergic routes, as well as some other signaling pathways (e.g. neurotrophin and growth factor signaling) which are seemingly important for the brain function. In accordance with their modulatory role, σ receptor ligands have been proposed to be useful in several therapeutic areas such as schizophrenia, depression and anxiety, amnesic and cognitive deficits, drugs of abuse. The present review summarizes the findings related to the pharmacological effects and potential activity of σ receptor ligands from behavioral models predictive of some neuropsychiatric disorders.  相似文献   

10.
Since their discovery in 1991, an extraordinary amount of information has accumulated about the neurobiology and pharmacology of D(4) receptors in the mammalian central nervous system, making it timely to review salient aspects of this rapidly evolving research story and its relevance to clinical neuroscience. Recent progress in the molecular, genetic, anatomical, and functional characterization of D(4) receptors in the animal and human brain is yielding insights into their neurochemical and physiological roles in brain function. The temporal patterns of postnatal D(4) receptor development appear to differ in specific regions of mammalian forebrain. Postmortem neuropathological and clinical genetic studies have generally been disappointing regarding possible relationships of D(4) receptors to the pathophysiology or treatment of schizophrenia, however, they suggest relationships to other neuropsychiatric conditions, including attention deficit hyperactivity disorder, mood disorders, and Parkinson's disease. Several selective agonists and antagonists for D(4) receptors have been developed. Some are employed as experimental D(4) probes. The potential of D(4)-selective ligands as innovative treatments for neuropsychiatric disorders requires further investigation.  相似文献   

11.
Sigma receptors have been implicated in a myriad of cellular functions, biological processes and diseases. While the precise biological functions of sigma receptors have not been elucidated, recent work has shed some light on to these enigmatic systems. Sigma receptors have recently been a target of drug development related to psychiatric and neurological disorders. Sigma ligands have also been shown to modulate endothelial cell proliferation and can control angiogenesis which makes them a promising target for oncology applications. Other areas currently being investigated include treatment of gastrointestinal, cardiovascular, endocrine and immune system disorders. Of interest is that the human sigma-1 receptor gene contains a steroid binding component, and several gonadal steroids, including progesterone, testosterone and dehydroepiandrosterone (DHEA), interact with sigma-1 receptors. Of the steroids examined thus far, progesterone binds with the highest affinity to human sigma-1 receptors, with a reported affinity (Ki) as high as 30 nM while the other steroids exhibit lower affinity. For this and other reasons, sigma-1 receptors have been proposed as a link between the central nervous system and the endocrine and reproductive systems. Taken together, the above information highlights an important yet largely unexplored but promising area of research to examine the biological function and therapeutic potential of sigma receptors. This review provides an overview of the current knowledge of these sites with a focus on specific areas where in vivo sigma receptor imaging is currently being investigated.  相似文献   

12.
The identification of new binding sites raises the problem of defining their role, if any. At times they are shown to be pharmacological receptors, in a strict sense, as they fulfill certain requirements, and a precise physiological role and function, and an endogenous ligand (neurotransmitter) are discovered. At other times, however, neither a clear physiological role nor an endogenous ligand are found, but the term "receptor" is still used, although it may not be a proper one in the conventional pharmacological sense. Furthermore, no clear intracellular signalling transduction pathway is defined and, as a consequence, it is not possible to determine whether drugs binding to these receptors act as agonists or antagonists. What their structure and biological function are and how they mediate the pharmacological effects of ligands may remain for a long time an enigma. The matter, in any case, is of great interest to researchers of different areas, especially to medicinal chemists who foresee novel potential targets for therapeutic interventions. In this meeting one section is dedicated to two examples of this kind of receptors: imidazoline (I) and sigma (sigma) receptors.  相似文献   

13.
Chemokines and chemokine receptors, primarily found to play a role in leukocyte migration to the inflammatory sites or to second lymphoid organs, have recently been found expressed on the resident cells of the central nervous system (CNS). These proteins are important for the development of the CNS and are involved in normal brain functions such as synaptic transmission. Increasing lines of evidence have implicated an involvement for chemokines and their receptors in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), human immunodeficiency virus-associated dementia (HAD), multiple sclerosis (MS), and stroke. Specific inhibition of the biological activities of chemokine receptors could gain therapeutic benefit for these neurodegenerative disorders. In recent years, non-peptide antagonists of chemokine receptors have been disclosed and tested in relevant pharmacological models and some of these inhibitors have entered clinical trials. The aim of this review is to outline the recent progress regarding the role of chemokines and their receptors in neurodegenerative diseases and the advancements in the development of chemokine receptor inhibitors as potential therapeutic approaches for these neurodegenerative diseases.  相似文献   

14.
Proteinase-activated receptors (PARs), a family of four seven-transmembrane G protein-coupled receptors, act as targets for signalling by various proteolytic enzymes. PARs are characterized by a unique activation mechanism involving the proteolytic unmasking of a tethered ligand that stimulates the receptor. Given the emerging roles of these receptors in cancer as well as in disorders of the cardiovascular, musculoskeletal, gastrointestinal, respiratory and central nervous system, PARs have become attractive targets for the development of novel therapeutics. In this Review we summarize the mechanisms by which PARs modulate cell function and the roles they can have in physiology and diseases. Furthermore, we provide an overview of possible strategies for developing PAR antagonists.  相似文献   

15.
胍丁胺是一种新的神经递质和/或神经调质,是咪唑啉受体的内源性配体。它作为一种阳离子胺类物质,除了咪唑啉受体外,在生物体内还存在多个作用靶点,NMDA受体是其中最重要的作用靶点之一。本文就胍丁胺与NMDA受体在中枢神经系统的分布、胍丁胺在NMDA受体上的作用位点以及胍丁胺通过NMDA受体介导的药理作用等几个方面进行了综述。  相似文献   

16.
Hayashi T  Su TP 《CNS drugs》2004,18(5):269-284
The sigma receptor was originally proposed to be a subtype of the opioid receptor. However, it is now clear that sigma receptors are unique non-opioid, non-phencyclidine brain proteins. Two types of sigma receptor exist, the sigma-1 receptor and the sigma-2 receptor. sigma-1 receptors have been cloned and their distribution, physiological functions and roles in signal transduction were recently characterised. Certain sex hormones in the brain (neurosteroids) are known to interact with sigma-1 receptors. sigma-1 receptors regulate glutamate NMDA receptor function and the release of neurotransmitters such as dopamine. They are thus proposed to be involved in learning and memory as well as in certain neuropsychiatric disorders. Selective sigma-1 receptor ligands have been suggested to represent a new class of therapeutic agents for neuropsychiatric disorders, although none have yet been introduced into therapeutic use. Early studies showed that psychotomimetic benzomorphans, as well as several antipsychotics, can bind to sigma-1 receptors. As a result of these findings, sigma-1 receptor ligands have been proposed as being of potential use in the treatment of schizophrenia. Nevertheless, the relationship of sigma-1 receptors to the underlying pathogenesis of schizophrenia is still unclear. sigma-1 receptor ligands have failed to improve acute psychotic symptoms of schizophrenia in clinical trials, but, interestingly, a few studies have shown an improvement in negative symptoms in schizophrenic patients. A number of preclinical studies have shown that selective agonists of sigma-1 receptors affect higher-ordered brain functions such as learning and memory, cognition and mood. These studies indicate that sigma-1 receptor agonists may exert therapeutic effects in depression and senile dementia. Indeed, the sigma-1 receptor agonist igmesine, has been shown to improve depression in a clinical trial. The most distinctive feature of the action of sigma-1 receptor ligands is their "modulatory" role. In behavioural studies of depression and memory, they exert beneficial effects only when brain functions are perturbed. Given the recently accumulated preclinical and clinical data, it is time to reconstruct the concept of sigma-1 receptors and the associated pathophysiological conditions that ligands of these receptors target. This would allow clinical trials to be performed more efficiently, and the results may confirm a long-speculated possibility that sigma-1 receptor ligands represent a new class of therapeutic agents for neuropsychiatric disorders.  相似文献   

17.
Trace amines (TAs) are endogenous compounds that are related to biogenic amine neurotransmitters and are present in the mammalian nervous system in trace amounts. Although their pronounced pharmacological effects and tight link to major human disorders such as depression and schizophrenia have been studied for decades, the understanding of their molecular mode of action remained incomplete because of the apparent absence of specialized receptors. However, the recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. The unique pharmacology and expression pattern of these receptors make them prime candidates for targets in drug development in the context of several neurological diseases. Current research focuses on dissecting their molecular pharmacology and on the identification of endogenous ligands for the apparently TA-insensitive members of this receptor family.  相似文献   

18.
At central synapses, glutamate is the main excitatory neurotransmitter. Once released from presynaptic terminals, glutamate activates a number of different glutamatergic receptors one of which is the ligand gated ionophore glutamatergic subtype N-methyl-D-aspartate receptors (NMDARs). NMDARs play a crucial role in controlling various determinants of synaptic function. N-acetylaspartylglutamate (NAAG) is the most prevalent peptide transmitter in the mammalian central nervous system. NAAG is released upon neuronal depolarization by a calcium-dependent process from glutamatergic and GABAergic neurons. It is cleaved by a specific peptidase located on astrocytes, glutamate carboxypeptidase type II (GCP-II), to N-acetylaspartate (NAA) and glutamate. Current evidence supports the hypothesis that NAAG is an endogenous agonist at G protein coupled mGluR3 receptors and an antagonist at NMDAR. In several disorders and animal models of human diseases, the levels of NAAG and the activity of GCP-II are altered in ways that are consistent with NAAG's role in regulation of glutamatergic neurotransmission. Several lines of evidence suggest that a dysfunction in glutamatergic via the NMDAR might be involved in schizophrenia. This hypothesis has evolved from findings that NMDAR antagonists such as phencyclidine (PCP or "angel dust"), produces a syndrome in normal individuals that closely resembles schizophrenia and exacerbates psychotic symptoms in patients with chronic schizophrenia. Recent postmortem, metabolic and genetic studies have provided evidence that hypofunction of discrete populations of NMDAR can contribute to the symptoms of schizophrenia, at least in some patients. The review outlines the role of endogenous NAAG at NMDAR neurotransmission and its putative role in the pathophysiology of schizophrenia.  相似文献   

19.
Radioligand binding as well as molecular biological studies revealed an heterogeneity of serotonin (5-HT) receptors in the central nervous system. The early availability of specific antagonists for the serotonin-2 (5-HT2) receptor subtype (spiperone, ketanserin and ritanserin represented an important step towards the biochemical, physiological and, more recently, molecular characterization of 5-HT2 receptors in brain. Though they are unevenly distributed in different brain areas, they are highly expressed in the frontal cortex. Based on radioligand studies, either two different 5-HT2 receptors or one 5-HT2 receptor with two different affinity states might exist. Molecular biological studies revealed that the 5-HT2 receptor belongs to the G-protein receptor superfamily and the 5-HT2 receptor clone encodes a single-subunit protein containing approximately 450 amino acids arranged in seven interconnected transmembrane segments. Recent studies suggested that 5-HT itself might not represent the endogenous ligand for the 5-HT2 receptor. Isolation and purification of an endogenous peptide of mol. wt 6-8 kDa with affinity for [3H]ketanserin recognition sites further supports this possibility. The rapid advances in the molecular understanding of the 5-HT2 receptor and its putative endogenous ligand may have significant implications in the actual debate on the classification of the 5-HT2 receptor subtypes.  相似文献   

20.
Opiate alkaloids, such as morphine, are powerful analgesic agents that are the drugs of choice for the treatment of severe pain. The pharmacological effects of opiates are mediated through the binding and activation of membrane-bound opioid receptors that are found in the central and peripheral nervous systems. Opioid receptors have been classified into three different types, mu, delta and kappa, and are activated by the specific ligands. It has been demonstrated that the most potent antinociceptive effects are mediated by the mu-receptor. However, until 1997 no endogenous ligand for this receptor was known. The identification of endomorphins opened a new era in the research of the mu-opioid system. They are the first reported brain peptides that label mu-receptor with high affinity and selectivity and therefore are proposed as the endogenous mu-opioid receptor ligands. Morphine and endomorphins act as agonists at the same mu-opioid receptor, but the latter are thought to inhibit pain without some of the undesired side-effects of plant opiates. This observation encouraged extensive studies on the possible use of endomorphin analogs as analgesics instead of morphine. This review summarizes a decade of research on structure-activity relationship studies of endomorphin analogs, aimed at obtaining compounds with increased bioavailability, in particular with better barrier penetration and resistance against enzymatic degradation. Chemical modifications that led to obtaining potent and selective agonists and antagonists based on the structure of endomorphins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号