首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of atypical antipsychotics on the immediate-early gene, arc (activity-regulated cytoskeleton-associated gene), expression was investigated in phencyclidine (PCP)-treated rats using RT-PCR. Administration of PCP (10 mg/kg) increased arc mRNA levels in the prefrontal cortex, nucleus accumbens and posterior cingulate cortex. Pretreatment with clozapine (20 mg/kg), olanzapine (10 mg/kg) and risperidone (2 mg/kg), but not haloperidol (2 mg/kg), prevented PCP-induced arc expression in the prefrontal cortex and nucleus accumbens. Pretreatment of haloperidol increased the striatal arc mRNA levels. Clozapine, olanzapine and haloperidol inhibited the PCP-induced arc expression in the posterior cingulate cortex. These results suggest that the effects of antipsychotic drugs on PCP-induced arc expression in the prefrontal cortex and nucleus accumbens are useful for distinguishing atypical antipsychotic properties of the drugs.  相似文献   

2.
Hyperfunction of brain dopamine (DA) systems is associated with psychosis in schizophrenia and the medications used to treat schizophrenia are DA receptor blockers. DA also plays a critical role in incentive learning produced by rewarding stimuli. Using DA as the link, these results suggest that psychosis in schizophrenia can be understood from the point of view of excessive incentive learning. Incentive learning is mediated through the non-declarative memory system and may rely on the striatum or medial prefrontal cortex depending on the task. Typical and atypical antipsychotics differentially affect expression of the immediate early gene c-fos, producing greater activity in the striatum and medial prefrontal cortex, respectively. This led to the hypothesis that performance of schizophrenic patients on tasks that depend on the striatum or medial prefrontal cortex will be differentially affected by their antipsychotic medication. Results from a number of published papers supported this dissociation. Furthermore, the effects of two atypical drugs, clozapine and olanzapine, on c-fos expression were different from another atypical, risperidone that resembles the typical antipsychotics. Similarly, in tests of incentive learning, risperidone acted like the typical antipsychotics. Thus, typical and atypical antipsychotic drugs differed in the types of cognitive performance they affected and, furthermore, members of the atypical class differed in their effects on cognition. It remains the task of researchers and clinicians to sort out the symptoms associated with the endogenous illness from possible iatrogenic symptoms resulting from the antipsychotic medications used to treat schizophrenia.  相似文献   

3.
We have recently demonstrated that specific neuroanatomical patterns of Fos-like immunoreactivity are predictive of atypical antipsychotic activity. However, the fact that neuroleptics must be administered chronically in order to generate both extrapyramidal side effects and an optimal therapeutic response calls into question the relevance of acute changes in Fos-like immunoreactivity for these slowly developing events. Fos-like immunoreactivity cannot be used to identify neurons activated by chronic neuroleptic administration because the increase in Fos-like immunoreactivity produced by an acute antipsychotic injection is dramatically reduced following repeated neuroleptic administration. In contrast, expression of the immediate-early gene product ΔFosB is persistently elevated in the striatum by chronic haloperidol administration. This suggests that ΔFosB-like immunoreactivity may be used to identify neurons activated by chronic antipsychotic administration. Since typical and atypical neuroleptics elevate Fos-like immunoreactivity in different regions of the forebrain acutely, the purpose of the present study was to determine whether typical (haloperidol) and atypical (clozapine, ICI 204,636) antipsychotics produce distinct patterns of elevated ΔFosB-like immunoreactivity in the forebrain after chronic administration. Administration of haloperidol (2 mg/kg/day) to rats for 19 days induced a homogeneous elevation of neurons which displayed ΔFosB-like immunoreactivity in the ventral, medial and dorsolateral aspects of the striatum. Chronic haloperidol administration did not enhance ΔFosB-like immunoreactivity in the prefrontal cortex and lateral septal nucleus. Repeated administration of clozapine (20 mg/kg/day) and ICI 204,636 (20 mg/kg/day) for 19 days elevated ΔFosB-like immunoreactivity not only in the ventral striatum but also in the prefrontal cortex and lateral septal nucleus. However, these compounds had weak effects on ΔFosB-like immunoreactivity in the dorsolateral striatum. These results suggest that a preferential action on limbic structures such as the prefrontal cortex, ventral striatum and lateral septal nucleus may account for the ability of chronic clozapine and ICI 204,636 administration to reduce the symptoms of schizophrenia without generating extrapyramidal side effects.  相似文献   

4.
BACKGROUND: Conventional and atypical antipsychotics have different affinities for D2 receptors, and these receptors are principally located in the striatum. Given that this cerebral structure was previously found to play a major role in procedural learning, the antipsychotic treatment in schizophrenia may be determinant for the procedural learning profile of these patients. OBJECTIVE: The current study was aimed at verifying whether procedural learning differs in patients with schizophrenia treated with conventional antipsychotics and patients treated with atypical antipsychotics. METHOD: Forty-five patients with schizophrenia were divided into 3 different groups according to their pharmacologic treatment: (1) haloperidol, a classical neuroleptic with high D2 receptor affinity; (2) clozapine, an atypical neuroleptic with practically no D2 receptor affinity; and (3) risperidone, an atypical neuroleptic that nevertheless shows high D2 receptor affinity. Patients were compared to 35 control subjects on a visuomotor procedural learning task (mirror drawing). RESULTS: All patients were able to learn the task. However, those treated with haloperidol showed some degree of learning impairment, while those treated with clozapine or risperidone did not show this impairment. In addition, performance per se, regardless of the learning, was found to be affected in the haloperidol and risperidone, but not in the clozapine groups. CONCLUSION: Procedural learning in schizophrenia may be differentially affected, depending on the pharmacologic profiles of the antipsychotics used for the treatment of this illness.  相似文献   

5.
OBJECTIVE: The authors compared the efficacy and safety of three atypical antipsychotics (clozapine, olanzapine, and risperidone) with one another and with haloperidol in the treatment of patients with chronic schizophrenia or schizoaffective disorder. METHOD: In a double-blind trial, 157 inpatients with a history of suboptimal treatment response were randomly assigned to treatment with clozapine, olanzapine, risperidone, or haloperidol for 14 weeks (an 8-week escalation and fixed-dose period followed by a 6-week variable-dose period). RESULTS: Clozapine, risperidone, and olanzapine (but not haloperidol) resulted in statistically significant improvements in total score on the Positive and Negative Syndrome Scale. Improvements seen in total and negative symptom scores with clozapine and olanzapine were superior to haloperidol. The atypical drugs, particularly olanzapine and clozapine, were associated with weight gain. CONCLUSIONS: The effects of atypical antipsychotics in this population were statistically significant but clinically modest. The overall pattern of results suggests that clozapine and olanzapine have similar general antipsychotic efficacy and that risperidone may be somewhat less effective. Clozapine was the most effective treatment for negative symptoms. However, the differences among treatments were small.  相似文献   

6.
The effects of chronic treatment with typical and atypical antipsychotics on acquisition, working memory, motor activity, and rat tardive dyskinesia (TD) were studied in 3- and 18-month-old Sprague-Dawley rats. Acquisition and working memory were studied in eight-arm radial mazes. TD liability of antipsychotic drugs (APD) was evaluated in rat model of TD in which spontaneous repetitive jaw movements (RJM) occur during withdrawal from neuroleptic treatment. Motor behavior was assessed using the traverse beam test. D1 and D2 receptor occupancy was determined in the rat brain during treatment with typical and atypical antipsychotics. Chronic administration of clozapine, haloperidol, and risperidone impaired acquisition of the eight-arm radial maze in both young and aging rats while olanzapine had no effect. Retention tests showed that aging rats made more errors than the adults and that the antipsychotics haloperidol and risperidone significantly impaired retention in both age groups. Evaluation of motor behavior revealed that typical and atypical antipsychotics used in comparable doses in young rats had no effect on motor behavior, whereas in aging rats performance was impaired by clozapine, haloperidol, and risperidone but not by olanzapine. RJM responses were increased during washout from haloperidol treatment in young and aging rats whereas olanzapine, clozapine, and risperidone had no effect. D2 receptor occupancy in haloperidol- and risperidone-treated rats was above 70% while olanzapine and clozapine receptor occupancy was below 70%, which is the threshold for the appearance of extrapyramidal syndrome (EPS) and TD.  相似文献   

7.
Post-mortem investigations have confirmed that glutamatergic NMDA, AMPA, and kainate receptors are involved in the pathophysiology of schizophrenia. It is still unclear, however, whether the altered number of receptors is caused by the disease itself or the medication. Therefore, animal models were investigated for effects of antipsychotic medication after treatment periods of up to 6 months, the results of which are summarized here. Generally, NMDA receptor binding was found to be increased in striatum and nucleus accumbens after therapy with haloperidol, whereas clozapine only increased the number of receptors in nucleus accumbens. While haloperidol led to an increase in AMPA receptors in the posterior cingulate gyrus, striatum, insular cortex, and n. accumbens, clozapine was found to elevate ligand binding in the anterior cingulate gyrus and infralimbic cortex. Although kainate receptor binding was increased in hippocampus by both antipsychotics, clozapine was significantly more effective. In conclusion, data reveal different effects from the typical neuroleptic haloperidol and the atypical antipsychotic clozapine. The results suggest that post-mortem findings in patients with schizophrenia may at least partially be explained by drug effects and plasticity changes induced by long-term medication with antipsychotics.  相似文献   

8.
The 5-hydroxytryptamine (5-HT; serotonin)-6 receptor (5-HT6R) is a putative target of atypical antipsychotic drugs and its mRNA expression is altered in schizophrenia. [125I]SB-258585 is a selective 5-HT6R antagonist which has been well characterized for use in the rat brain. The present study evaluated its suitability for receptor autoradiography in the human brain and its application to quantitative studies. The affinity (K(d) approximately 1.2 nM) and relative distribution of binding sites (striatum > cortex approximately hippocampus) were similar to the rat. The distribution of [125I]SB-258585 binding in these regions was also consistent with that of 5-HT6R mRNA, determined in parallel using in situ hybridization. [125I]SB-258585 binding site densities were measured in dorsolateral prefrontal cortex of 20 patients with chronic schizophrenia and compared with 17 normal subjects. No differences were seen between groups. Neither were [125I]SB-258585 binding site densities affected in the frontal cortex or striatum of rats following 2 weeks' administration of the antipsychotic drugs haloperidol, chlorpromazine, olanzapine, risperidone, or clozapine. In summary, [125I]SB-258585 is a suitable radioligand for studies of human brain 5-HT6R binding sites and shows that their distribution is broadly similar to that of the rodent. The lack of effect of schizophrenia or antipsychotic drug administration on [125I]SB-258585 binding suggests that an altered receptor density does not contribute to any involvement which the 5-HT6R may have in the disease or its treatment.  相似文献   

9.
Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.  相似文献   

10.
Previously, we demonstrated that serotonin-lesioned rats had an enhanced mesoprefrontal dopaminergic response to restraint stress. This study attempted to extend our knowledge regarding this serotonin/dopamine interaction by seeing if suppression of serotonin metabolism by chronic administration of the atypical antipsychotic, clozapine, would have similar effects. Both typical and atypical neuroleptics require chronic administration in humans before antipsychotic activity is seen. Rats treated for 21 days with clozapine or haloperidol, a typical antipsychotic without significant binding affinity for serotonergic receptors, showed lowered basal dopamine metabolism in the medial prefrontal cortex, the nucleus accumbens, and the striatum, as expected. Basal serotonin metabolism in the prefrontal cortex was also lowered by clozapine treatment, but not haloperidol. One of two challenges were given to chronically treated rats: 30 min of restraint stress or an acute challenge of clozapine. When corrected for baseline differences, both challenges significantly elevated dopamine metabolism in the prefrontal cortex of the clozapine group more than the saline or haloperidol groups. No hyperresponsiveness was seen with serotonin metabolism in the prefrontal cortex or either dopamine or serotonin metabolism in the nucleus accumbens in clozapine-treated, challenged rats. Additionally, this augmentation of the dopaminergic stress response was not seen with a single, acute administration of clozapine. The significance of the clozapine-induced hyperresponsiveness of the mesoprefrontal dopamine system is discussed with regard to clinical efficacy of clozapine.  相似文献   

11.
BACKGROUND: Chronic exposure to stressful events precipitates or exacerbates many neuropsychiatric disorders, including depression and schizophrenia. Evidence suggests that treatment with the atypical antipsychotic drugs olanzapine or clozapine results in a superior amelioration of the anxious and depressive symptoms that accompany schizophrenia relative to therapy with classical antipsychotics such as haloperidol. Moreover, olanzapine and clozapine, but not haloperidol, increase the brain content of neuroactive steroids. The effects of olanzapine and clozapine on the stress-induced increase in dopamine output in the rat cerebral cortex have now been compared with that of haloperidol. METHODS: Rats chronically treated (3 weeks, once a day) with each drug were exposed to foot-shock stress or injected with a single dose of the anxiogenic benzodiazepine receptor ligand FG7142, and dopamine release was then measured in the prefrontal cortex by vertical microdialysis. RESULTS: Long-term administration of olanzapine or clozapine prevented or markedly inhibited, respectively, the increase in the extracellular dopamine concentration induced by foot shock; haloperidol had no such effect. Chronic olanzapine treatment also blocked the effect of FG7142 on dopamine output. CONCLUSIONS: The reduction in the sensitivity of cortical dopaminergic neurons to stress shown to be elicited by treatment with olanzapine or clozapine may contribute to the anxiolytic actions of these drugs.  相似文献   

12.
Apart from their differential propensities to block dopamine D2 and serotonin 5-HT2 receptors, the molecular mechanisms underlying the clinical efficacy of typical and atypical antipsychotics in schizophrenia are largely unknown. Given recent interest in the effects of antipsychotics on neurotrophic and other growth related factors, the effects of antipsychotics on brain-derived neurotrophic factor (BDNF), a neurotrophin crucial to the structural integrity of adult neurons, were investigated in male Wistar rats. Chronic (19 day) but not acute (45 min) antipsychotic administration significantly altered levels of hippocampal BDNF mRNA. In addition, whereas chronic treatment with the strong D2 receptor-blocker haloperidol significantly downregulated hippocampal BDNF mRNA, the selective 5-HT2 receptor-blocker ritanserin significantly upregulated CA1 hippocampal BDNF mRNA in comparison to controls. Since high doses of risperidone and clozapine produce potent inhibition of both 5-HT2 and D2 receptors, while lower doses produce significantly greater 5-HT2 vs. D2 receptor blockade, a dose-response study was employed to determine whether low doses of these atypical antipsychotics would also upregulate hippocampal BDNF mRNA in the absence of significant D2 receptor blockade. Whereas chronic haloperidol and high-dose risperidone significantly downregulated hippocampal BDNF mRNA, intermediate and lower doses of risperidone and clozapine were, unlike ritanserin, without effect when compared to controls. Thus, although the long-term downregulation of hippocampal BDNF mRNA may underlie the different clinical profiles of certain antipsychotics, this effect seems to be associated with antipsychotic doses that not only cause significant D2 receptor inhibition, but are usually associated with side effects rather than therapeutic efficacies.  相似文献   

13.
BACKGROUND: There has been considerable support for the observation that atypical antipsychotics have a broader range of therapeutic effects than traditional antipsychotics. We are exploring whether this expanded clinical efficacy can also be seen in patients with treatment-resistant schizophrenia. METHOD: The subjects were 157 treatment-resistant inpatients diagnosed with DSM-IV schizophrenia or schizoaffective disorder. They were randomly assigned to treatment with clozapine, olanzapine, risperidone, or haloperidol in a 14-week double-blind trial and rated with a standard measure of clinical antipsychotic efficacy (Positive and Negative Syndrome Scale [PANSS]). Factor analysis at baseline and endpoint together with changes in 5 PANSS-derived factors were examined. Data were gathered from June 1996 to December 1999. RESULTS: The underlying PANSS factor structure, as indicated by the factor loadings, was essentially identical at baseline and endpoint. At baseline, the excitement factor was followed by the positive, negative, cognitive, and depression/anxiety factors, explaining 49.4% of the total variance. At endpoint, the positive factor was followed by the negative, excitement, cognitive, and depression/anxiety factors, explaining 55.5% of the total variance. The endpoint data indicated statistically significant (p <.05) improvements over time on the positive factor for all 3 atypicals, but not for haloperidol. The negative factor showed significant improvement for clozapine and olanzapine, with significant worsening for haloperidol. Clozapine, olanzapine, and risperidone were superior to haloperidol on the negative factor, while clozapine was also superior to risperidone. The cognitive factor showed significant improvement for all atypicals, as did the depression/anxiety factor. Only clozapine showed improvement on the excitement factor and was superior to both haloperidol and risperidone. CONCLUSIONS: Treatment with atypical antipsychotics did not substantially change the underlying PANSS 5-factor structure. However, antipsychotic treatment with all 3 atypical medications was associated with significant improvements on 3 of 5 syndromal domains (positive, cognitive, and depression/anxiety) of schizophrenia. Clozapine and olanzapine also showed improvement on the negative factor. Only clozapine was associated with improvement on the excitement domain. This finding confirms that atypicals are associated with improvement of an expanded spectrum of symptoms in treatment-resistant patients.  相似文献   

14.
Antipsychotic (neuroleptic) drugs induce structural alterations in synaptic terminals and changes in the expression of presynaptic protein genes. Whether there are also changes in corresponding postsynaptic (dendritic) markers has not been determined. We describe the effect of 14-day treatment with typical (haloperidol, chlorpromazine) or atypical (clozapine, olanzapine, risperidone) antipsychotics on the expression of two dendritic protein genes, microtubule-associated protein 2 (MAP2) and spinophilin, using in situ hybridization, in the rat hippocampus, retrosplenial, and occipitoparietal cortices. MAP2 mRNA was increased modestly in the dentate gyrus and retrosplenial cortex by chlorpromazine, risperidone, and olanzapine and in the occipitoparietal cortex by chlorpromazine, haloperidol, and risperidone. None of the antipsychotics affected spinophilin mRNA in any area. Overall, these results show a modulation of MAP2 gene expression, likely reflecting functional or structural changes in the dendritic tree in response to some typical and atypical antipsychotics. The lack of change in spinophilin mRNA suggests that dendritic spines are not affected selectively by the drugs. The data provide further evidence that antipsychotics regulate genes involved in synaptic structure and function. Such actions may underlie their long-term effects on neural plasticity in areas of the brain implicated in the pathology of schizophrenia.  相似文献   

15.
Antipsychotic treatment with so-called "atypical" neuroleptics, as defined by the lack of extrapyramidal side effects in its strict sense, has made great advances in the last decades with the advent of newly developed antipsychotic agents. The first atypical neuroleptic drug was clozapine, also referred to as "dirty drug" or "rich drug" because of its broad receptor binding profile. Clozapine has been the starting point for several different, newly developed antipsychotics. Among these, the most prominent are olanzapine, risperidone, sertindol, ziprasidone, and amisulpride. All of these newly developed, atypical antipsychotics show a high degree of efficacy in the treatment of positive symptoms of schizophrenia in combination with a lack of or a reduced degree of extrapyramidal side effects (EPS). In addition, several atypical antipsychotics seem to have an additional impact on negative symptoms such as alogia, anhedonia, or avolition. However, apart from the clear advantage of clozapine in the treatment of otherwise treatment-resistant schizophrenia, differential indications for the different antipsychotics remain to be established.  相似文献   

16.
Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality   总被引:4,自引:0,他引:4  
Although all currently used antipsychotic drugs act as dopamine (DA) D2 receptor antagonists, clozapine, the prototype for atypical antipsychotics, shows superior efficacy, especially regarding negative and cognitive symptoms, in spite of a significantly reduced central D2 receptor occupancy compared with typical (conventional) antipsychotic drugs. Clozapine, as well as several other atypicals, displays significant affinities also for several other neurotransmitter receptors, including other dopaminergic receptors, alpha-adrenergic receptors and different serotonergic and cholinergic receptors, which in several ways may contribute to the clinical effectiveness of the drugs. Preclinical and clinical results suggest a dysregulated mesocorticolimbic DA system in schizophrenia, with an impaired prefrontal DA projection, which may relate to negative and cognitive symptoms, concomitant with an overactive or overreactive striatal DA projection, with bearing on psychotic (positive) symptomatology. Available data suggest that blockage of alpha1-adrenoceptors by antipsychotics may contribute to suppress positive symptoms, especially in acute schizophrenia, whereas alpha2-adrenoceptor blockage, a prominent effect of clozapine and, to some extent, risperidone but not other antipsychotics, may rather be involved in relief of negative and cognitive symptoms. Whereas alpha1-adrenoceptor blockage may act by suppressing, at the presynaptic level, striatal hyperdopaminergia, alpha2-adrenoceptor blockage may act by augmenting and improving prefrontal dopaminergic functioning. Thus, the prominent alpha1- and alpha2-adrenoceptor blocking effects of clozapine may generally serve to stabilize dysregulated central dopaminergic systems in schizophrenia, allowing for improved efficacy in spite of a reduced central D2 receptor occupancy compared with typical antipsychotic drugs.  相似文献   

17.
BACKGROUND: The increase in glutamate efflux in the prefrontal cortex by the psychotomimetic drugs phencyclidine (PCP) and ketamine may produce the dopaminergic and some of the behavioral effects of these drugs. Here, we examined whether antipsychotic drugs influence this increase. METHODS: The effect of haloperidol, clozapine or the 5-HT(2A) antagonist, M100907, on PCP-induced increase in cortical glutamate efflux was examined by microdialysis. Because previous studies had suggested that M100907 attenuates some behavioral effects of PCP, we also examined the effect of M100907 on PCP-induced cortical and accumbal dopamine activation while making concomitant measures of locomotion and stereotypy. RESULTS: Haloperidol, clozapine or M100907 did not significantly block hyperglutamatergic effects of PCP. M100907 was ineffective in inhibiting the dopaminergic and motoric effects of PCP. CONCLUSIONS: These results contrast previous findings with glutamatergic drugs, such as AMPA antagonists or group II metabotropic glutamate agonists, that blocked glutamatergic and motoric effects of PCP. Thus, the PCP glutamate activation model lacks predictive validity for conventional antipsychotics; however, this model may be useful for design of novel classes of drugs that target those symptoms of schizophrenia that are not generally treated with monoamine-based antipsychotics.  相似文献   

18.
Summary. The neurotoxicity of conventional antipsychotic drugs has emerged as a potential pathogenic event in extrapyramidal side effects (EPS) and in their limited efficacy for negative-cognitive symptoms in schizophrenic patients. The atypical antipsychotics, recently developed, have superior therapeutic efficacy to treat not only positive symptoms but negative symptoms and cognitive dysfunctions with much lower potentials of side effects, although the influence of atypical antipsychotics on the regulation of neuronal survival has been less investigated. It is important to clarify the effects of typical and atypical antipsychotics on neuronal survival and their contributions to the therapeutic development and understanding of the pathophysiology of schizophrenia. We measured the neurotoxicity of two antipsychotic drug treatments, haloperidol and risperidone, in primary cultured rat cortical neurons. Immunoblotting and pharmacological agent analyses were used to determine the signal transduction changes implicated in the mechanisms of the neurotoxicity. Haloperidol induced apoptotic injury in cultured cortical neurons, but risperidone showed weak potential to injure the neurons. Treatment with haloperidol also led the reduction of phosphorylation levels of Akt, and activated caspase-3. The D2 agonist bromocriptine and 5-HT2A antagonist, ketanserin attenuated the haloperidol-induced neuronal toxicity. Moreover, brain-derived neurotrophic factor (BDNF) reduced the caspase-3 activity and protected neurons from haloperidol-induced apoptosis. BDNF also reversed the reduced levels of phosphorylation of Akt caused by treatment with haloperidol. Haloperidol but not risperidone induces caspase-dependent apoptosis by reducing cellular survival signaling, which possibly contributes to the differential clinical therapeutic efficacy and expression of side effects in schizophrenia.  相似文献   

19.
Subanesthetic doses of N-methyl- -aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine precipitate psychotic symptoms in schizophrenic patients. In addition, these drugs induce a constellation of behavioral effects in healthy individuals that resemble positive, negative, and cognitive symptoms of schizophrenia. Such findings have led to the hypothesis that decreases in function mediated by NMDA receptors may be a predisposing, or even causative, factor in schizophrenia. The present study examined the effects of the representative atypical (clozapine) and typical (haloperidol) antipsychotic drugs on ketamine- induced increases in -2-deoxyglucose (2-DG) uptake in the rat brain. As previously demonstrated, administration of subanesthetic doses of ketamine increased 2-DG uptake in specific brain regions, including medial prefrontal cortex, retrosplenial cortex, hippocampus, nucleus accumbens, basolateral amygdala, and anterior ventral thalamic nucleus. Pretreatment of rats with 5 or 10 mg/kg clozapine alone produced minimal or no change in 2-DG uptake, yet clozapine completely blocked ketamine-induced changes in 2-DG uptake in all brain regions studied. In striking contrast, a dose of haloperidol (0.5 mg/kg) that produces a substantial cataleptic response, potentiated, rather than blocked, ketamine-induced activation of 2-DG uptake. These results demonstrate, in a model with potential relevance to schizophrenia, a striking neurobiological difference between the actions of prototypical typical and atypical antipsychotic drugs. The dramatic blockade by clozapine of ketamine-induced brain metabolic activation suggests that antagonism of the consequences of reduced NMDA receptor function could contribute to the superior therapeutic effects of this atypical antipsychotic agent. The results also suggest that this model of ketamine-induced alterations in 2-DG uptake may be extremely useful for understanding the complex neural mechanisms of atypical antipsychotic drug action.  相似文献   

20.
Abusers of phencyclidine (PCP) often present with a symptom profile similar to that exhibited by schizophrenic patients. Animal models utilising such psychotomimetics are currently informing research into the condition. Accumulating evidence suggests that a central cognitive deficit in schizophrenia is the inability to use task-setting cues to guide goal directed behaviour and that this ability is mediated by prefrontal dopamine (DA). The current study used the non-competitive NMDA antagonist phencyclidine (PCP) and Haloperidol (typical antipsychotic) and Clozapine (atypical antipsychotic) in order to further investigate the influence of DAergic manipulation on a task that requires the use of conditional information to inform goal-directed performance. An instrumental conditional discrimination task was employed in which rats learn to respond appropriately according to the presence of specific auditory conditional stimuli. Probe test 1 showed impaired conditional discrimination performance following sub-chronic PCP administration (seven twice-daily injection protocol) compared to control which was reversed by acute treatment with clozapine (5 mg/kg) but not haloperidol (0.1 mg/kg) both administered 60 min pre-test. Probe test 2 (8 days post-treatment) showed enduring deficits to conditional discrimination performance that were again reversed by clozapine but not haloperidol (injection procedures as above). These results show that tasks dependent upon conditional relationships are particularly sensitive to manipulation of DAergic systems as prolonged treatment with PCP has been shown to selectively reduce prefrontal cortex (PFC) DA activity and treatment with clozapine (known to ameliorate cognitive deficits) but not haloperidol has been shown to selectively restore PFC DA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号