首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early observation that Apo2L/TRAIL preferentially triggers apoptosis in tumor cells over normal cells highlighted its potential as a candidate therapeutic in cancer. Since its identification in the mid-1990s, our increased understanding of Apo2L/TRAIL and Apo2L/TRAIL receptor signaling has led to the development of several agonists designed to promote tumor cell apoptosis through death receptor engagement. Recombinant human Apo2L/TRAIL/dulanermin is unique in that it is the only agonist which binds both Apo2L/TRAIL death receptors. In pre-clinical studies dulanermin demonstrates broad spectrum anti-tumor activity and the ability to cooperate with multiple conventional and targeted therapies. Results from early stage clinical trials indicate that dulanermin is well tolerated and shows some evidence of clinical activity. Not all tumors are likely to be equally sensitive to apoptosis induction by Apo2L/TRAIL. Therefore, an increased understanding of the regulation of Apo2L/TRAIL signaling should aid in the identification of molecular signatures that define a patient population likely to respond. In this review, current knowledge and new insights about Apo2L/TRAIL signaling is discussed with the focus on the development of Apo2L/TRAIL as a cancer therapeutic.  相似文献   

2.
While the apoptosis-inducing ligand Apo2L/TRAIL is a promising new agent for the treatment of cancer, the sensitivity of cancer cells for induction of apoptosis by Apo2L/TRAIL varies considerably. Identification of agents that can be used in combination with Apo2L/TRAIL to enhance apoptosis in breast cancer cells would increase the potential utility of this agent as a breast cancer therapeutic. Here, we show that the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize Apo2L/TRAIL-resistant breast cancer cells to Apo2L/TRAIL-induced apoptosis. Importantly, neither Apo2L/TRAIL alone, nor in combination with SAHA, affected the viability of normal human cells in culture. Apo2L/TRAIL-resistant MDA-MB-231 breast cancer cells, generated by long-term culture in the continuous presence of Apo2L/TRAIL, were resensitized to Apo2L/TRAIL-induced apoptosis by SAHA. The sensitization of these cells by SAHA was accompanied by activation of caspase 8, caspase 9 and caspase 3 and was concomitant with Bid and PARP cleavage. The expression of the proapoptotic protein, Bax, increased significantly with SAHA treatment and high levels of Bax were maintained in the combined treatment with Apo2L/TRAIL. Treatment with SAHA increased cell surface expression of DR5 but not DR4. Interestingly, SAHA treatment also resulted in a significant increase in cell surface expression of DcR1. Taken together, our findings indicate that the use of these 2 agents in combination may be effective for the treatment of breast cancer.  相似文献   

3.
Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is unique to selectively induce apoptosis in tumor cells while sparing normal cells. Thus there is tremendous interest in Apo2L/TRAIL therapy; however, drug resistance is a serious limitation. Autophagy is a cellular housekeeping process that controls protein and organelle turnover, and is almost consistently activated in response to apoptosis-inducing stimuli, including Apo2L/TRAIL. Unlike apoptosis, autophagy leads to cell death or survival depending on the context. Various molecular mechanisms by which autophagy regulates Apo2L/TRAIL-induced apoptosis have been identified. Further, whether autophagy is completed (intact autophagic flux) or not could determine the fate of cancer cells, either cell survival or death. Thus, targeting autophagy is an attractive strategy to overcome Apo2L/TRAIL resistance. We present the current view of how these regulatory mechanisms of this interplay between autophagy and apoptosis may dictate cancer cell response to Apo2L/TRAIL therapy.  相似文献   

4.
Although TRAIL/Apo2L preferably induces apoptosis in tumour cells without toxicity in normal cells, many tumour cell types display TRAIL/Apo2L resistance. Whether TRAIL/Apo2L in combination with chemotherapy may overcome TRAIL/Apo2L resistance while maintaining tumour selectivity remains to be determined. Here, we report that while ActD, DOX and CDDP sensitised both OS and Ewing's tumour cell lines and normal cells (hOBs, synovial cells, fibroblasts) to TRAIL/Apo2L-induced apoptosis, the combination of etoposide (VP16) and TRAIL/Apo2L was selectively active on tumour cells without affecting normal cells. Sensitisation of OS cells and hOBs to TRAIL/Apo2L did not correlate with a compatible change in the gene expression profile of the receptors for TRAIL/Apo2L determined by quantitative real-time RT-PCR. Also, sensitisation of the TRAIL/Apo2L death pathway did not rely entirely on the chemotherapy-induced, caspase-dependent cytotoxicity. Further, chemotherapy did not cause a compatible change in expression levels of proteins such as Bcl-2, Bcl-x(L), Bax, cIAP2, XIAP and survivin. However, ActD, DOX and CDDP downregulated expression of cFLIP in OS cells as well as expression of p21 in normal hOBs. Interestingly, while VP16 also extinguished cFLIP in OS cells, which were sensitised for TRAIL/Apo2L by VP16, VP16 induced cFLIP and enhanced p21 levels in normal hOBs, which remained refractory to VP16 plus TRAIL/Apo2L. Together, our data reveal that TRAIL/Apo2L combined with certain chemotherapeutic drugs is toxic to bone tumour and normal human cells and suggest that cotreatment with TRAIL/Apo2L and VP16 provides an attractive approach for selective killing of tumour cells while leaving unaffected normal cells.  相似文献   

5.
The survival of patients with malignant gliomas is still unsatisfactory despite multimodality treatment, therefore new therapeutic strategies are required. Tumor necrosis factor apoptosis related ligand (TRAIL/Apo2L), a member of the tumor necrosis factor superfamily, may induce apoptotic cell death in several tumors, but not in normal cells, upon binding with specific receptors. In the present study, the expression and function of TRAIL receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5) has been investigated in five human glioma cell lines (U87, U138, U373, A172, SW1783) in ex vivo tumors and in primary cultures obtained from the tumors. Our data show that gliomas preferentially express TRAIL R2 and that treatment with topotecan, a topoisomerase I inhibitor, significantly up-regulates its expression as detected by flow cytometry and western blotting. Moreover, in most cases, treatment with topotecan resulted in an increased sensitivity to TRAIL-dependent apoptosis, although cyclohexymide had to be added to induce apoptosis. On glioma cell lines, the effects of irradiation on TRAIL receptors were also analysed. In our experimental conditions, irradiation with 2Gy had a modest additive effect on TRAIL-dependent apoptosis and was not able to modulate TRAIL receptor expression.  相似文献   

6.
Apo2L/TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines that induces death of cancer cells but not normal cells. Its potent apoptotic activity is mediated through its cell surface death domain-containing receptors, DR4 and DR5. Apo2L/TRAIL interacts also with 3 "decoy" receptors that do not induce apoptosis, DcR1, DcR2, which lack functional death domains, and osteoprotegerin (OPG). The aim of our study was to investigate the cytotoxic activity of Apo2L/TRAIL on established osteogenic sarcoma cell lines (BTK-143, HOS, MG-63, SJSA-1, G-292 and SAOS2) and in primary cultures of normal human bone (NHB) cells. When used alone, Apo2L/TRAIL at 100 ng/ml for 24 hr induced greater than 80% cell death in only 1 (BTK-143) of the 6 osteogenic sarcoma cell lines. In contrast, Apo2L/TRAIL-resistant cells were susceptible to Apo2L/TRAIL-mediated apoptosis in the presence of the anticancer drugs, Doxorubicin (DOX), Cisplatin (CDDP) and Etoposide (ETP) but not Methotrexate (MTX) or Cyclophosphamide (CPM). Importantly, neither Apo2L/TRAIL alone nor in combination with any of these drugs affected primary normal human bone cells under equivalent conditions. Apo2L/TRAIL-induced apoptosis, and its augmentation by chemotherapy in the resistant cell lines was mediated through caspase-8 and caspase-3 activation. Furthermore, Apo2L/TRAIL-induced apoptosis and its augmentation by chemotherapy was effectively inhibited by caspase-8 zIETD-fmk and caspase-3 zDEVD-fmk protease inhibitors and by the pan-caspase inhibitor zVAD-fmk. The pattern of basal Apo2L/TRAIL receptor mRNA expression, or expression of the intracellular caspase inhibitor FLICE-inhibitory protein, FLIP, could not be readily correlated with resistance or sensitivity to Apo2L/TRAIL-induced apoptosis. However, the augmentation of Apo2L/TRAIL effects by chemotherapy was associated with drug-induced up-regulation of death receptors DR4 and DR5 mRNA and protein. No obvious correlation was seen between the expression of OPG mRNA or protein and susceptibility of cells to Apo2L/TRAIL-induced apoptosis. Stable over-expression of a dominant negative form of the Fas-associated death domain protein (FADD) in the Apo2L/TRAIL-sensitive BTK-143 cells completely inhibited Apo2L/TRAIL-induced cell death. Our results indicate that chemotherapy and Apo2L/TRAIL act synergistically to kill cancer cells but not normal bone-derived osteoblast-like cells, which has implications for future therapy of osteosarcoma.  相似文献   

7.

Background:

We conducted a multicentre Phase 1b/2 trial to evaluate the safety and efficacy of mapatumumab, a fully human agonistic monoclonal antibody to the tumour necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) in patients with relapsed non-Hodgkin''s lymphoma (NHL).

Methods:

Forty patients with relapsed or refractory NHL were treated with either 3 or 10 mg kg−1 mapatumumab every 21 days. In the absence of disease progression or prohibitive toxicity, patients received a maximum of six doses.

Results:

Mapatumumab was well tolerated, with no patients experiencing drug-related hepatic or other dose-limiting toxicity. Three patients with follicular lymphoma (FL) experienced clinical responses, including two with a complete response and one with a partial response. Immunohistochemistry staining of the TRAIL-R1 suggested that strong staining in tumour specimens did not appear to be a requirement for mapatumumab activity in FL.

Conclusions:

Mapatumumab is safe and has promising clinical activity in patients with FL.  相似文献   

8.
Most tumour cells are sensitive to TRAIL-induced apoptosis, but not normal cells; thus, cancer therapy using TRAIL is expected clinically. Several tumour cells are resistant to TRAIL-induced apoptosis, and various mechanisms of such resistance were reported in individual cases. In this study, we established a TRAIL-resistant glioma cell line, which completely lacked TRAIL receptors. In addition, this tumour cell line had wild-type p53 tumour-suppressive gene, suggesting new mechanisms for tumour cells to expand and escape from immune surveillance. The present study further explored the mechanisms that determine the sensitivity to TRAIL. We show that genotoxic agents such as cisplatin, doxorubicin and camptothecin, in addition to UV radiation, can induce TRAIL-R2 on the cell surface of TRAIL receptor-negative tumour cells. Newly synthesised TRAIL-R2 is functional, so apoptosis is effectively induced by TRAIL, but it is significantly inhibited by constitutive expression of dominant-negative p53. In addition, apoptosis induced by pretreatment of genotoxic agents and additional stimulation of TRAIL is efficiently inhibited by either antagonistic anti-TRAIL-R2 antibody or pan-caspase inhibitor z-VAD-FMK. Taken together, these findings suggest that resistance to TRAIL by lack of TRAIL receptors on glioma is restored by genotoxic agents, which support the new strategies for tumour killing by TRAIL-bearing cytotoxic cells in combination with genotoxic treatment.  相似文献   

9.
Colorectal cancer patients with BRAF-mutant tumors have a more aggressive, rapidly progressing disease that is in critical need of novel therapeutic approaches. Indeed, whereas the median overall survival (OS) of colorectal cancer (CRC) patients receiving standard-of-care therapy is approximately two years or more if their tumors express wild-type BRAF and wild-type KRAS, median OS is less than twelve months with tumors expressing V600E-mutant BRAF and wild-type KRAS. Pro-apoptotic receptor agonists are a class of biologic agents under development to induce tumor-specific apoptosis and are being combined with classical chemotherapy or targeted agents in clinical trials. Herein, we present the case of a patient with bulky V600E-mutant BRAF hepatic flexure colon carcinoma, treated initially with FOLFOX plus bevacizumab neoadjuvant therapy and surgery. The patient had a rapid tumor relapse with metastatic disease to the liver and lung, and was enrolled in a phase 1b open-label clinical study, where he received the FOLFIRI regimen in combination with the pro-apoptotic receptor agonist dulanermin (rhApo2L/TRAIL). The patient maintained stable disease through 25 doses administered every two weeks before his disease progressed. After coming off study, the patient underwent surgical debulking and received intraperitoneal hyperthermic chemotherapy. He subsequently relapsed and was treated with FOLFIRI plus cetuximab. At the time of this report, the patient remains on active treatment. It is unclear what effect dulanermin may have had on the course of his disease, but it is noteworthy that the patient remained on FOLFIRI plus dulanermin therapy for a period that exceeded the median OS for patients with advanced, aggressive BRAF-mutant CRC. It is also noteworthy that at the time of this report the patient's overall survival since diagnosis has exceeded 30 months, which is beyond what is generally observed even for patients with CRC harboring wild-type BRAF and wild-type KRAS.  相似文献   

10.

Background:

Dulanermin (rhApo2L/TRAIL) induces apoptosis by binding to death receptors DR4 and DR5, leading to caspase activation and subsequent cell death. A Phase1a trial evaluated the safety and tolerability of dulanermin in patients with advanced tumours. One aim was to develop and validate pharmacodynamic biomarkers to monitor dulanermin activity in patient serum.

Methods:

We optimised assays to measure the cell-death markers caspase 3/7, cytokeratin 18 and genomic DNA in serum. Mice bearing Colo205 xenografts were treated with dulanermin and sera were collected and assayed for apoptotic markers. Upon validating these assays, we monitored apoptotic markers in patients who received dulanermin.

Results:

We detected transient increases in apoptotic markers in mouse sera 8–24 h after dulanermin treatment. This increase was dose-dependent and correlated with active caspase 3 detected by IHC in Colo205 tumours. A statistically significant increase in serum caspase 3/7 was detected in cohorts of colorectal and sarcoma patients 24 h after receiving dulanermin dosed above 4 mg kg−1.

Conclusion:

Owing to limited responses in the Phase 1a study, the changes in circulating cell-death markers were not evaluable. Future studies with dulanermin are needed to determine the utility of these assays with respect to providing evidence of activity or predicting overall response.  相似文献   

11.
12.
13.
目的:探讨细胞外信号调节激酶1/2(ERK1/2)信号通路在三氧化二砷诱导的胶质瘤细胞U251凋亡中的作用,为应用三氧化二砷治疗胶质瘤奠定基础。方法:50μmol/L三氧化二砷作用U251细胞,不同时间检测胶质瘤细胞增殖活性,半定量PCR检测ERK1/2mRNA表达,Western blot检测ERK1/2蛋白表达;Ho-echst33258染色及流式细胞术(FCM)检测细胞凋亡;转染ERK1/2上游激酶MEK1,应用ERK1/2激酶抑制剂U0126观察ERK1/2通路在肿瘤凋亡及增殖中的作用;比色分析法检测Caspase-3活性的变化。结果:三氧化二砷诱导胶质瘤细胞发生明显凋亡,抑制肿瘤细胞增殖;增加ERK1/2蛋白的表达,呈时间依赖性;阻断ERK1/2信号通路后胶质瘤细胞凋亡受到抑制,Caspase-3活性下降。结论:ERK1/2信号通路在三氧化二砷诱导的胶质瘤细胞凋亡中起重要作用。  相似文献   

14.
Background: Adeno-associated virus 2 mediated gene transfer of vascular endothelial growth factor Trap (AAV2-VEGF-Trap) has been reported to inhibit the growth of primary tumor as well as distant metastasis in 4T1 metastatic breast cancer models. The aim of this study was to investigate the inhibiting efficacy of AAV2-VEGF-Trap for glioma.

Methods: The intracranial transplanted model of glioma in rats was established. They were treated with AAV2-VEGF-Trap, bevacizumab (BEV), temozolomide (TMZ), TMZ combined with AAV2-VEGF-Trap, TMZ combined with BEV and the control group, respectively. A 7.0 Tesla magnetic resonance (MR) was used to assess the tumor volumes and obtain the apparent diffusion coefficient (ADC) values. Immunohistochemical and terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining were used to evaluate the effects on tumor angiogenesis, proliferation and apoptosis.

Results: The combination of TMZ with AAV2-VEGF-Trap or BEV showed greater tumor growth inhibition than the other groups, and the ADC values in these two groups were larger than that of the control group. The decreased microvessel density in treatment groups which contain AAV2-VEGF-Trap or BEV was observed. The reduced proliferation activity in groups containing TMZ and increased apoptotic tumor cells in TMZ combined with AAV2-VEGF-Trap group and TMZ combined with BEV group were detected. In addition, there were no differences in antitumor effect, ADC values, Ki-67 and CD31 staining and apoptosis analysis between the two combined therapy groups.

Conclusion: AAV2-VEGF-Trap has an obvious anti-angiogenic effect and inhibits the growth of glioma just by a single intravenous injection, which is similar to BEV. Moreover, there is a synergistic antitumor effect between AAV2-VEGF-Trap and TMZ.  相似文献   


15.
TRAIL/Apo-2L (tumor necrosis factor-related apoptosis-inducing ligand or Apo-2 ligand) was discovered by its sequence homology to tumor necrosis factor (TNF) and CD95 ligand (Fas ligand). Recombinant soluble human TRAIL/Apo-2L is a candidate for clinical research in cancer therapy because it induces apoptosis in a broad spectrum of human cancer cell lines but not in many normal cells. It is now well-known that either ligands of death receptors or chemotherapeutic drugs can induce apoptosis in tumor cells through a common apoptotic machinery. Central to this process is a family of intracellular proteases, known as caspases. During apoptosis, they can act either as initiators in response to apoptotic signals or as effectors that finally cleave a number of vital proteins and lead to the demise of the cell. The activation of caspases is controlled via multiple signaling pathways that are described in this review. There are multiple kinases involved in survival signaling that may be targeted by novel agents. There are several compounds targeting the protein kinase Akt/PKB that may inhibit apoptosis at several levels of the caspase cascade, which are also described in this review. Akt is the major kinase which phosphorylates the proapoptotic Bcl-2 member Bad and thereby converts Bad into an anti-apoptotic form that does not induce cytochromec release. Chemotherapeutic drugs trigger the death pathway through the release of cytochromec from damaged mitochondria. Besides TRAIL/Apo-2L, several novel agents are described that can lead to extend the therapeutic threshold. Hopefully, clinical trials will be begun very soon to elucidate the possibility of enhancing the therapeutic effect in terms of response and, especially, survival. It is thus essential for clinical investigators to understand the distinct pathways of apoptosis and caspase activation when deciding to participate in these trials.   相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to induce apoptosis in malignant cells without harming normal cells. To determine the antitumor potential of TRAIL against prostate cells, we undertook a comprehensive study that included eight prostate cancer cells lines (CWR22Rv1, Du145, DuPro, JCA-1, LNCaP, PC-3, PPC-1, and TsuPr1) and primary cultures of normal prostate epithelial cells (PrEC). Cells were tested for susceptibility to soluble TRAIL in the presence or absence of the chemotherapeutic agent doxorubicin. TRAIL was also delivered by an adenoviral vector. Our results reveal that Du145, DuPro, LNCap, TsuPr1, and PrEC were resistant to 100 ng/mL TRAIL. JCA-1 and PPC-1 were slightly sensitive (20% killing) and PC-3 and CWR22Rv1 exhibited the highest sensitivity to TRAIL (30% and 50% killing, respectively). The combination of 10 ng/mL TRAIL with doxorubicin resulted in 60-80% cytotoxicity in seven of eight prostate cancer cells. TRAIL-mediated apoptosis involved cleavage of Bid, caspase-3, and PARP, and required caspase-8 and -9 activity. Full-length TRAIL delivered by an adenoviral vector (AdTRAIL-IRES-GFP) killed prostate cancer cell lines and PrEC without requisite doxorubicin cotreatment. Therefore, expression of the transgene from a tissue-specific promotor would make gene therapy with AdTRAIL-IRES-GFP a possibility.  相似文献   

17.
The EBV-encoded LMP2A protein is consistently expressed in EBV(+) Hodgkin's lymphoma and can be targeted by CTLs. CTLs stimulated conventionally by LCLs have little activity against LMP2A(+) target cells. Here, we describe an alternative approach, based on the in vitro stimulation of CTLs with DCs genetically modified with 2 E1/E3-deleted recombinant adenoviruses, AdGFPLMP2A, encoding a fusion gene of GFP and LMP2A, and AdLMP2A, encoding LMP2A only. Transduction of DCs with AdGFPLMP2A at MOI 1,000 resulted in LMP2A expression in up to 88% of DCs. LMP2A protein was expressed in 40% of DCs transduced with AdLMP2A at an MOI of 100. Higher MOI resulted in DC death. CTL lines activated by transduced DCs had a higher frequency of LMP2A tetramer-specific CTLs than CTL lines activated by LCLs. CTLs stimulated with transduced DCs lysed both autologous fibroblasts infected with vaccinia virus LMP2A (FBvaccLMP2A) and autologous LCLs, which express LMP2A at lower levels. In contrast, CTLs generated from the same donors by stimulation with autologous LCLs showed minimal lysis of FBvaccLMP2A. Moreover, 1 donor who did not respond to LMP2A when CTLs were stimulated with LCLs became a responder when LMP2A was expressed by transduced DCs. Hence, recombinant adenoviruses encoding LMP2A effectively transduce DCs and direct the generation of LMP2A-specific CTLs. This approach will be a potent strategy in Hodgkin's lymphoma immunotherapy.  相似文献   

18.
Fibroblast growth factor-2 (FGF-2) is involved as an autocrine growth factor in the autonomous proliferation of glioma cells. To develop a new strategy for treating patients with glioma, we studied the effect on human glioma cells of a 16-mer oligopeptide with conformational similarity to the putative receptor-binding domain of FGF-2. A synthesized oligonucleotide was assessed its receptor-binding activity by BIAcore instrument. Its biological effect on glioma cell lines was examined in vitro by MTT assay. The peptide suppressed the in vitro growth of human glioma cells U87MG, T98G and U251MG cells, but not of A431 cells whose growth is not dependent on FGF-2. Apoptotic bodies were noted after 24-h incubation in the presence of the peptide; Ac-YVAD-CHO, a caspase-3 inhibitor, suppressed apoptosis. Furthermore, we examined the modulation of the cytotoxic effect of anticancer drugs by the oligopeptide. The addition of this oligopeptide to the chemotherapeutic agents CDDP, ACNU and VP16 had additive effects in vitro. These results suggest that the pathway of the FGF-2 autocrine loop through the FGF receptor plays an important role in the proliferation of glioma cells. New drugs targeting this loop may be highly effective in treating FGF-2-dependent tumors. Our results suggest that its addition to the therapeutic arsenal may lead to improved treatment regimens for patients with FGF-2-dependent tumors.  相似文献   

19.
The mammalian target of rapamycin (mTOR) plays a critical role in the regulation of cell growth, proliferation and survival. Components of the mTOR pathway are activated in a variety of tumors, including glioblastoma multiforme (GBM), and we have found that one surprising consequence of mTOR pathway activation is resistance of GBMs to the proapoptotic effects of agents such as APO2L/TRAIL. mTOR inhibition has become feasible following the development of rapamycin and comparable analogs with improved pharmacological properties, including CCI-779, RAD001 and AP23573. Numerous studies have also demonstrated promising proapoptotic activity, with relatively mild side effects, using rapamycin analogs in vitro and in vivo in conjunction with APO2L/TRAIL. These studies suggest that mTOR inhibitors can be combined with APO2L/TRAIL as a potential tumor-selective therapy.  相似文献   

20.
Interferon-beta (IFN-beta) has been used as an antitumor drug against human glioma, melanoma and medulloblastoma since the 1980s. Recently, we developed a new gene therapy using the IFN-beta gene against malignant gliomas and then began clinical trials in 2000. Since stimulation of immune system was one mechanism of antitumor effect induced by IFN-beta gene therapy, we hypothesized that combination of IFN-beta gene therapy with immunotherapy might increase its effectiveness. In the present study, we tested whether combination therapy with IFN-beta gene therapy and immunotherapy using tumor cell lysate-pulsed dendritic cells (DCs) would increase the efficacy of IFN-beta gene therapy. In an experimental mouse intracranial glioma (GL261), which cannot be cured by either IFN-beta gene therapy or DC immunotherapy alone, IFN-beta gene therapy following DC immunotherapy resulted in a significant prolongation in survival of the mice. Moreover, when this combination was performed twice, 50% of treated mice survived longer than 100 days. Considering these results, this combination therapy may be one promising candidate for glioma therapy in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号