首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thomas A. Rando 《Muscle & nerve》2001,24(12):1575-1594
Mutations of different components of the dystrophin–glycoprotein complex (DGC) cause muscular dystrophies that vary in terms of severity, age of onset, and selective involvement of muscle groups. Although the primary pathogenetic processes in the muscular dystrophies have clearly been identified as apoptotic and necrotic muscle cell death, the pathogenetic mechanisms that lead to cell death remain to be determined. Studies of components of the DGC in muscle and in nonmuscle tissues have revealed that the DGC is undoubtedly a multifunctional complex and a highly dynamic structure, in contrast to the unidimensional concept of the DGC as a mechanical component in the cell. Analysis of the DGC reveals compelling analogies to two other membrane‐associated protein complexes, namely integrins and caveolins. Each of these complexes mediates signal transduction cascades in the cell, and disruption of each complex causes muscular dystrophies. The signal transduction cascades associated with the DGC, like those associated with integrins and caveolins, play important roles in cell survival signaling, cellular defense mechanisms, and regulation of the balance between cell survival and cell death. This review focuses on the functional components of the DGC, highlighting the evidence of their participation in cellular signaling processes important for cell survival. Elucidating the link between these functional components and the pathogenetic processes leading to cell death is the foremost challenge to understanding the mechanisms of disease expression in the muscular dystrophies due to defects in the DGC. © 2001 John Wiley & Sons, Inc. Muscle Nerve 24: 1575–1594, 2001  相似文献   

2.
The free radical, nitric oxide (NO.), has been implicated in the pathogenesis of muscular dystrophies because the enzyme, nitric oxide synthase (NOS), which produces NO., binds to the dystrophin-glycoprotein complex (DGC). In various studies of tissue samples from human and animal muscular dystrophies due to DGC defects, correlations between reductions of NOS activity and disease severity have been reported. To test for any direct effect of NOS expression on muscle cell susceptibility, we examined muscle cells in vitro under conditions of experimentally altered NOS activity. There were no differences in susceptibility to oxidative stress between differentiated myotube cultures from wild-type and from neuronal NOS (nNOS)-deficient mice. Likewise, pharmacological inhibition of NOS did not alter cellular susceptibility to oxidative challenges. Overexpression of NOS neither enhanced nor diminished cellular susceptibility to oxidative stress. Finally, we assessed the effect of NOS overexpression on myotube cultures from dystrophin-deficient (mdx) mice. NOS protein was localized to both membrane and cytosolic compartments in the transduced cells. Still, no difference in susceptibility to oxidative stress was found between the NOS-overexpressing cells and control cells. These data suggest that muscle cell susceptibility to oxidative challenges is independent of the level of NOS expression. Therefore, any role NO. may play in the pathogenesis of muscular dystrophies is likely to be independent of its effect on the redox state of the cell.  相似文献   

3.
Progressive muscular dystrophies with primary or secondary dystrophin glycoprotein complex components' deficit are described. Some variants of limb--girdle and congenital muscular dystrophies as well as Duchenne/Becker muscular dystrophy belong to this group. The structure of dystrophin glycoprotein complex (DGC) which is localised within muscle sarcolemma is presented. Usefulness of the assessment of the particular DGC components is underlined and importance of the resulting prognostic as well as diagnostic implications are stressed.  相似文献   

4.
目的 探讨PI3K/GSK-3通路在溶血磷脂酸(LPA)诱导PC12细胞凋亡中的作用。方法 培养PC12细胞,CCK8测定不同水平LPA处理下PC12细胞的细胞活力,Tunel法测定不同水平LPA处理下PC12细胞的细胞凋亡,测定PI3K、GSK-3抑制剂预处理对LPA诱导的PC12细胞活力和细胞凋亡的影响; Western Blot测定不同水平LPA处理下PC12细胞裂解液的凋亡蛋白酶Caspase 3水平,测定PI3K、GSK-3抑制剂预处理对LPA介导的PC12细胞裂解液Caspase 3水平变化的影响。结果 LPA剂量依赖导致PC12细胞活力下降,PI3K、GSK3α抑制剂能够减轻LPA介导的PC12细胞活力下降,GSK3β抑制剂能够促进LPA介导的PC12细胞活性损失; LPA以剂量依赖的方式诱导PC12细胞凋亡,PI3K、GSK3α抑制剂可减轻LPA介导的PC12细胞凋亡,GSK3β抑制剂可促进LPA介导的PC12细胞凋亡; LPA以剂量依赖的方式增加PC12细胞Caspase 3表达,PI3K、GSK3α抑制剂可抑制LPA介导的PC12细胞Caspase 3表达增加,GSK3β抑制剂可促进LPA介导的PC12细胞Caspase 3表达增加。结论 LPA/PI3K/GSK-3通路在神经细胞死亡的病理生理过程中起重要作用,干预LPA/PI3K/GSK-3通路将是一种潜在的创伤后治疗措施。  相似文献   

5.
《Brain & development》2019,41(8):649-661
Apoptosis is a highly conservative energy demand program for non-inflammatory cell death, which is extremely significant in normal physiology and disease. There are many techniques used for studying apoptosis. MicroRNA (miRNA) is closely related to cell apoptosis, and especially microRNA-31 (miR-31) is involved in apoptosis by regulating a large number of target genes and signaling pathways. In many neurological diseases, cell apoptosis or programmed cell death plays an important role in the reduction of cell number, including the reduction of neurons in spinal cord injuries. In recent years, the phosphoinositol 3-kinase/AKT (PI3K/AKT) signal pathway, as a signal pathway involved in a variety of cell functions, has been studied in spinal cord injury diseases. The PI3K/AKT pathway directly or indirectly affects whether apoptosis occurs in a cell, thereby affecting a significant intracellular event sequence. This paper reviewed the interactions of miR-31 target sites in the PI3K/AKT signaling pathway, and explored new ways to prevent and treat spinal cord injury by regulating the effect of miR-31 on apoptosis.  相似文献   

6.
Evidence has implicated apoptosis as a mechanism underlying cell demise in diverse neurodegenerative diseases including Parkinson's disease (PD). Endogenous toxins and other stress signals activate the sphingomyelin pathway increasing the levels of ceramide, an important regulator of cell death.In the present paper we have analysed the contribution of PI3K/AKT-GSK3β and MAPK (ERK and JNK) pathways to cell death in a catecholaminergic cell line following exposure to C2-ceramide. We also explored the potential neuroprotective action of insulin-like growth factor-1 (IGF-1) and neurotrophin-3 (NT3).We demonstrated that C2-ceramide-induced cell death is associated to an early decrease in phosphorylation (inhibition) of PI3K/AKT and ERK, followed by phosphorylation (activation) of JNK and de-phosphorylation (activation) of glycogen synthase kinase-3 beta (GSK3β). NT3 and IGF-1 increased survival at early time points, but only IGF-1 is capable to attenuate C2-ceramide-mediated neuronal death, and this neuroprotection is associated to strong and permanent activation of AKT and inhibition of GSK3β.In conclusion, C2-ceramide initiates a series of events including an early inactivation of PI3K/AKT and ERK pathways followed by activation of JNK and activation of GSK3β and neuronal death, changes that are counteracted by IGF-1.  相似文献   

7.
Using immunohistochemical methods, we assessed the distribution of all 10 known laminin chains (alpha1-5, beta1-3, gamma1 and gamma2) in skeletal muscles from patients with Duchenne, congenital, limb girdle, or Emery-Dreifuss muscular dystrophies. The alpha2, beta1 and gamma1 chains were abundant in the basal lamina surrounding muscle fibers in normal controls; alpha1, alpha3-alpha5, beta3, and gamma2 were undetectable; and beta2 was present at a low level. Compared to controls, levels of the alpha5 chain were increased in muscles from many dystrophic patients; levels of beta1 were reduced and/or levels of beta2 were increased in a minority. However, these changes were neither specific for, nor consistent within, diagnostic categories. In contrast, levels of alpha4 were increased in muscles from all patients with alpha2 laminin (merosin)-deficient congenital muscular dystrophy. Loss of alpha2 laminin in congenital dystrophy is disease-specific but some other changes in laminin isoform expression in dystrophic muscles could be secondary consequences of myopathy, denervation, regeneration or immaturity. To distinguish among these possibilities, we compared the laminins of embryonic, denervated, regenerating, and mutant mouse muscles with those in normal adult muscle. Embryonic muscle basal lamina contained alpha4 and alpha5 along with alpha2, and regenerating muscle re-expressed alpha5 but not alpha4. Levels of alpha5 but not alpha4 were increased in dystrophin (mdx) mutants and in dystrophin/utrophin double mutants (mdx:utrn -/-), models for Duchenne dystrophy. In contrast, laminin alpha4 was upregulated more than alpha5 in muscles of laminin alpha2 mutant mice (dy/dy; a model for alpha2-deficient congenital dystrophy). Based on these results, we hypothesize that the expression of alpha5 in many dystrophies reflects the regenerative process, whereas the selective expression of alpha4 in alpha2-deficient muscle is a specific compensatory response to loss of alpha2.  相似文献   

8.
Platelet-derived growth factor (PDGF) has been implicated in promoting survival and proliferation of immature neurons, and even protecting neurons from gp120-induced cytotoxicity. However, the mechanisms involved in neuroprotection are not well understood. In the present study we demonstrate the role of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in PDGF-mediated neuroprotection. Pharmacological inhibition of PI3K greatly reduced the ability of PDGF-BB to block gp120 IIIB-mediated apoptosis and cell death in human neuroblastoma cells. The role of Akt in PDGF-mediated protection was further corroborated using a dominant-negative mutant of Akt, which was able to block the protective effect of PDGF. We next sequentially examined the signals downstream of Akt in PDGF-mediated protection in human neuroblastoma cells. In cells pretreated with PDGF prior to gp120 there was increased phosphorylation of both GSK-3beta and Bad, an effect that was inhibited by PI3-kinase inhibitor. Nuclear translocation of NF-kappaB, which lies downstream of GSK-3beta, however, remained unaffected in cells treated with PDGF. In addition to inducing phosphorylation of Bad, PDGF-mediated protection also involved down-regulation of the proapoptotic protein Bax. Furthermore, PDGF-mediated protection also involved the inhibition of gp120-induced release of mitochondrial cytochrome C. Our findings thus underscore the roles of both PI3K/Akt and Bcl family pathways in PDGF-mediated neuroprotection.  相似文献   

9.
Amphetamine (AMPH) abuse can influence neuropsychiatric disorders and cell apoptosis by interfering with the protein kinase B/ glycogen synthase kinase 3 beta (AKT/GSK3β) pathway. However, the mechanisms underlying this regulation are poorly understood. Using PC12 cells, we found that AMPH inhibited AKT and GSK-3β phosphorylation levels and increased total GSK-3β levels. Furthermore, AMPH caused an increase in the activity of protein phosphatase 2 (PP2A), a signaling protein upstream of AKT, which in turn inhibited phosphorylated AKT levels. Okadaic acid, a PP2A inhibitor, protected PC12 cells against AMPH-induced apoptosis. Together, our results suggest that the PP2A/AKT/GSK3β pathway plays an important role in AMPH-induced neurotoxicity.  相似文献   

10.
In dystrophic mice, a model of merosin-deficient congenital muscular dystrophy, laminin-2 mutations produce peripheral nerve dysmyelination and render Schwann cells unable to sort bundles of axons. The laminin receptor and the mechanism through which dysmyelination and impaired sorting occur are unknown. We describe mice in which Schwann cell-specific disruption of beta1 integrin, a component of laminin receptors, causes a severe neuropathy with impaired radial sorting of axons. Beta1-null Schwann cells populate nerves, proliferate, and survive normally, but do not extend or maintain normal processes around axons. Interestingly, some Schwann cells surpass this problem to form normal myelin, possibly due to the presence of other laminin receptors such as dystroglycan and α6β4 integrin. These data suggest that PI integrin links laminin in the basal lamina to the cytoskeleton in order for Schwann cells to ensheath axons, and alteration of this linkage contributes to the peripheral neuropathy of congenital muscular dystrophy.  相似文献   

11.
The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even in young boys (age <2 years). The expression of the beta1D integrin subunit was not altered in any of our patients with different types of muscular dystrophy. In contrast, sarcolemmal expression of beta1D integrin was significantly reduced in the alpha7 integrin knock-out mice, whereas the expression of the components of the DGC was not altered. The secondary loss of alpha7B in laminin alpha2 chain deficiency defines a biochemical change in the composition of the plasma membrane resulting from a primary protein deficiency in the basal lamina. These findings, in addition to the occurrence of a muscular dystrophy in alpha7 deficient mice, implies that the alpha7B integrin is an important laminin receptor within the plasma membrane which plays a significant role in skeletal muscle function and stability.  相似文献   

12.
Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal models may be valuable for such genotype-phenotype analysis and for determining mechanism of disease as well as function of laminin. Here, we have analyzed protein expression in three lines of mice with mutations in the laminin alpha2 chain gene and in two lines of transgenic mice overexpressing the human laminin alpha2 chain gene in skeletal muscle. The dy(3K)/dy(3K) experimental mutant mice are completely deficient in laminin alpha2; the dy/dy spontaneous mutant mice have small amounts of apparently normal laminin; and the dy(W)/dy(W) mice express even smaller amounts of a truncated laminin alpha2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter substantially prevented the muscular dystrophy in these mice. However, dy(W)/dy(W) mice, expressing the human laminin alpha2 under the control of the striated muscle-specific portion of the desmin promoter, still developed muscular dystrophy. This failure to rescue is apparently because of insufficient production of laminin alpha2. This study provides additional evidence that the amount of laminin alpha2 is most critical for the prevention of muscular dystrophy. These data may thus be of significance for attempts to treat congenital muscular dystrophy in human patients.  相似文献   

13.
Although numerous sarcolemmal protein defects in muscular dystrophies have been identified, the mechanisms linking these defects and muscle fibre degeneration are not fully characterized. As there is evidence that apoptosis is part of muscle fibre loss in dystrophin‐deficient mdx‐mice, apoptotic muscle fibre death may also play a role in humans with muscular dystrophies. We investigated in‐situ DNA‐fragmentation by the TUNEL‐method and expression of apoptosis‐related proteins immunohistochemically in 14 children suffering from deficiencies of dystrophin, adhalin, and merosin, and found TUNEL‐positive chromatin‐cleavage of muscle fibre nuclei in about 10% of non‐necrotic muscle fibres. DNA‐fragmentation also occurred in groups of 'necrotic and regenerating' muscle fibres with labelling of nuclei in myogenic cells and phagocytizing macrophages. These lesions also revealed expression of apoptosis‐promoting factors, such as bax and ICE, inducing cleavage of myofilaments, and of the apoptosis‐inhibiting proteins bcl‐xL and bcl‐2 which neutralized high bax levels. Mimicking embryonal myogenesis, chromatin‐fragmentation in 'necrotic and regenerating' areas seems to be part of the regulating events in muscle regeneration to eliminate excessive proliferating satellite cells. Nevertheless, macrophages are also affected by apoptosis after successful removal of necrotic fibres. In humans, DNA‐fragmentation and expression of apoptosis‐related proteins indicate that apoptosis plays a role in muscle degeneration and regeneration in muscular dystrophies.  相似文献   

14.
Dystrophin, the protein product of the DMD/BMD (Duchenne muscular dystrophy/Becker muscular dystrophy) gene, is associated with dystrophin-associated proteins (DAPs), which are classified into three groups: the dystroglycan complex, the sarcoglycan complex and the syntrophin complex. There is a connecting axis between subsarcolemmal actin filaments and laminin, one of the main components of the extracellular matrix through dystrophin and dystroglycan. This system may play an important role in protecting the sarcolemma during contraction and relaxation of muscle fibers. In this paper, the abnormalities of DAPs and laminin as a cause of muscular dystrophies are reviewed. While there are no reports on the role of mutations of dystroglycan and the syntrophin gene as being a cause of muscular dystrophies, the immunostaining intensities of these complexes are reduced as a secondary phenomenon of defects of dystrophin in DMD. The sarcoglycan complex, which is comprised of membrane-integrated proteins, contains at least four components, each of which is encoded by a separate gene. This complex plays a crucial role in the development of severe childhood autosomal recessive muscular dystrophy (SCARMD). In this disease, the absence of any single component may result in a loss of the complex function. Therefore, SCARMD develops irrespective of any mechanism involving a defect of individual genes. As such SCARMD is collectively referred to as sarcoglycanopathy. Laminin, a heterotrimer and genetic defect of the α2 subunit, has been shown to be the cause of the classical type of congenital muscular dystrophy. This disease is characterized by floppy infants with severe muscular dystrophy, dysmyelinating neuropathy and white matter changes in the brain. In the clinical setting and in the mouse model of this disease a defect of the laminin α2 subunit in skeletal muscle has been demonstrated. α2 subunit-null mutant mice also exhibit the muscular dystrophy phenotype and a muscle pathology compatible with dystrophia muscularis (dy) mice. A final common mechanism of muscle-cell necrosis in many of the muscular dystrophies is associated with the destabilization of the sarcolemma.  相似文献   

15.
We recently suggested that, in muscular dystrophies, the excessive accumulation of adenosine as a result of an altered purine metabolism may contribute to progressive functional deterioration and muscle cell death. To verify this hypothesis, we have taken advantage of C2C12 myoblastic cells, which can be differentiated in vitro into multinucleated cells (myotubes). Exposure of both proliferating myoblasts and differentiated myotubes to adenosine or its metabolically-stable analog, 2-chloro-adenosine, resulted in apoptotic cell death and myotube disruption. Cytotoxicity by either nucleoside did not depend upon extracellular adenosine receptors, but, at least in part, by entry into cells via the membrane nitro-benzyl-thio-inosine-sensitive transporter. The adenosine kinase inhibitor, 5-iodotubercidin, prevented 2-chloro-adenosine-induced (but not adenosine-induced) effects, suggesting that an intracellular phosphorylation/activation reaction plays a key role in 2-chloro-adenosine-mediated cytotoxicity. Conversely, adenosine cytotoxicity was aggravated by the addition of homocysteine, suggesting that adenosine effects may be due to the accumulation of S-adenosyl-homocysteine, which blocks intracellular methylation-dependent reactions. Both nucleosides markedly disrupted the myotube structure via an effect on the actin cytoskeleton; however, also for myotubes, there were marked differences in the morphological alterations induced by these two nucleosides. These results show that adenosine and 2-chloro-adenosine induce apoptosis of myogenic cells via completely different metabolic pathways, and are consistent with the hypothesis that adenosine accumulation in dystrophic muscles may represent a novel pathogenetic pathway in muscle diseases.  相似文献   

16.
T D King  G N Bijur  R S Jope 《Brain research》2001,919(1):106-114
The compound 1-methyl-4-phenylpyridinium (MPP) is a selective inhibitor of mitochondrial complex I, and is widely used in model systems to elicit neurochemical alterations that may be associated with Parkinson's disease. In the present study treatment of human neuroblastoma SH-SY5Y cells with MPP resulted in a time- and concentration-dependent activation of the apoptosis-associated cysteine protease caspase-3, and caused morphological changes characteristic of apoptosis. To test if the activation state of the cell survival-promoting phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway affects MPP-induced caspase-3 activation, PI3K was inhibited with LY294002, or activated with insulin-like growth factor-1. MPP-induced caspase-3 activation was increased by inhibition of PI3K, and decreased by stimulation of PI3K, indicative of anti-apoptotic signaling by the PI3K/Akt pathway. To test if glycogen synthase kinase-3beta (GSK3beta), a pro-apoptotic kinase that is inhibited by Akt, is involved in regulating MPP-induced apoptosis, overexpression of GSK3beta and lithium, a selective inhibitor of GSK3beta, were used to directly alter GSK3beta activity. MPP-induced caspase-3 activity was increased by overexpression of GSK3beta. Conversely, the GSK3beta inhibitor lithium attenuated MPP-induced caspase-3 activation. To test if these regulatory interactions applied to other mitochondrial complex I inhibitors, cells were treated with rotenone. Rotenone-induced activation of caspase-3 was enhanced by inhibition of PI3K or increased GSK3beta activity, and was attenuated by inhibiting GSK3beta with lithium. Overall, these results indicate that inhibition of GSK3beta provides protection against the toxic effects of agents, such as MPP and rotenone, that impair mitochondrial function.  相似文献   

17.
The laminin alpha2 chain is a major component of basal lamina in both skeletal muscle and the peripheral nervous system. Laminin alpha2 chain deficiency causes merosin-deficient congenital muscular dystrophy, which affects not only skeletal muscles, but also the peripheral and central nervous systems. It has been reported that the formation of basal lamina is required for myelination in the peripheral nervous system. In fact, the spinal root of dystrophic mice (dy/dy mice), whose laminin alpha2 chain expression is greatly reduced, shows lack of basal lamina and clusters of naked axons. To investigate the role of laminin alpha2 chain and basal lamina in vivo, we examined the peripheral nervous system of dy3K/dy3K mice, which are null mutants of laminin alpha2 chain. The results indicate the presence of myelination although Schwann cells lacked basal lamina in the spinal roots of dy3K/dy3K mice, suggesting that basal lamina is not an absolute requirement for myelination in vivo. Immunohistochemically, the expression of laminin alpha4 chain was increased and laminin alpha5 chain was preserved in the endoneurium of the spinal root. Laminin alpha4 and alpha5 chains may play the critical role in myelination instead of laminin alpha2 chain in dy3K/dy3K mice. In addition, the motor conduction velocity of the sciatic nerve was significantly reduced compared with that of wild-type littermate. This reduction in conduction velocity may be due to small axon diameter, thin myelin sheath and the patchy disruption of the basal lamina of the nodes of Ranvier in dy3K/dy3K mice.  相似文献   

18.
In pheochromocytoma 12 (PC12) cells and sympathetic neurons, nerve growth factor (NGF) engagement with the tropomyosin-related tyrosine kinase (TrkA) receptor activates the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta), enabling it to phosphorylate the microtubule-associated protein 1B (MAP1B). GSK3beta phosphorylation of MAP1B acts as a molecular switch to regulate microtubule dynamics in growing axons, and hence the rate of axon growth. An important question relates to the identification of the upstream pathway linking the activation of GSK3beta with TrkA engagement. TrkA can utilise a number of intracellular signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3 kinase (PI3K) pathway. We now show, using pharmacological inhibitor studies of PC12 cells and sympathetic neurons in culture and in vitro kinase and activation assays, that the MAPK pathway, and not the PI3K pathway, links NGF engagement with the TrkA receptor to GSK3beta activation in PC12 cells and sympathetic neurons. We also show that activated GSK3beta is a small fraction of the total GSK3beta present in developing brain and that it is not part of a multiprotein complex. Thus, NGF drives increased neurite growth rates partly by coupling the MAPK pathway to the activation of GSK3beta and thereby phosphorylation of MAP1B.  相似文献   

19.
Integrins are dynamic membrane proteins that mediate adhesion of cells to the extracellular matrix. Integrins initiate signal transduction, alone and cooperatively with growth factor receptors, and regulate many aspects of cell behavior. We report here that alpha5beta1-mediated adhesion of Ntera2 neuronal cells to fibronectin decreased apoptosis in response to serum withdrawal. Adhesion induced phosphorylation of FAK, and strongly increased the AKT phosphorylation induced by growth factors, demonstrating for the first time in neuronal cells that integrin-mediated adhesion and growth factors cooperate to regulate AKT activity. Integrins exist on cells in different activation states, and cell survival on fibronectin was enhanced by the antibody 12G10, that modulates the conformation of beta1 in favor of its active form. The antibody 12G10 specifically delayed loss of phosphorylation of AKT on serine 473, and GSK-3beta on serine 9, induced by serum withdrawal, suggesting that these kinases are critical sensors of integrin activation on neuronal cells.  相似文献   

20.
Molecular basis of muscular dystrophies   总被引:20,自引:0,他引:20  
Cohn RD  Campbell KP 《Muscle & nerve》2000,23(10):1456-1471
Muscular dystrophies represent a heterogeneous group of disorders, which have been largely classified by clinical phenotype. In the last 10 years, identification of novel skeletal muscle genes including extracellular matrix, sarcolemmal, cytoskeletal, cytosolic, and nuclear membrane proteins has changed the phenotype-based classification and shed new light on the molecular pathogenesis of these disorders. A large number of genes involved in muscular dystrophy encode components of the dystrophin-glycoprotein complex (DGC) which normally links the intracellular cytoskeleton to the extracellular matrix. Mutations in components of this complex are thought to lead to loss of sarcolemmal integrity and render muscle fibers more susceptible to damage. Recent evidence suggests the involvement of vascular smooth muscle DGC in skeletal and cardiac muscle pathology in some forms of sarcoglycan-deficient limb-girdle muscular dystrophy. Intriguingly, two other forms of limb-girdle muscular dystrophy are possibly caused by perturbation of sarcolemma repair mechanisms. The complete clarification of these various pathways will lead to further insights into the pathogenesis of this heterogeneous group of muscle disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号