首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of flocculus in vestibular compensation is still a controversial issue. Calbindin regulates intracellular signaling and has been reported to be a reliable marker of Purkinje cell. Expression of calbindin in flocculus was examined using immunohistochemistry following unilateral labyrinthectomy (UL) in rats. Both the staining intensity and number of calbindin-positive Purkinje cells in the ipsilateral flocculus to the lesion side decreased 6 h after UL compared to the control and contralateral side. Forty-eight hours after UL, the expression of calbindin returned to control levels and asymmetric expression in bilateral flocculus subsided. These transient reduction of calbindin expression in the ipsilateral flocculus may reflect a decrease in the GABAergic inhibition of the floccular Purkinje cell to the ipsilateral vestibular nuclei during vestibular compensation.  相似文献   

2.
We investigated the role of the cerebellar flocculus in mediating the adaptive changes that occur in the intrinsic properties of brainstem medial vestibular nucleus (MVN) neurons during vestibular compensation. Ipsi-lesional, but not contra-lesional, flocculectomy prevented the compensatory increase in intrinsic excitability (CIE) that normally occurs in the de-afferented MVN neurons within 4 h after unilateral labyrinthectomy (UL). Flocculectomy did not, however, prevent the down-regulation of efficacy of GABA receptors that also occurs in these neurons after UL, indicating that these responses of the MVN neurons to deafferentation are discrete, parallel processes. CIE was also abolished by intra-floccular microinjection of the metabotropic glutamate receptor (mGluR) antagonist AIDA, and the protein kinase C inhibitor bisindolymaleimide I (BIS-I). The serene-threonine kinase inhibitor H-7 had no effect when microinjected at the time of de-afferentation, but abolished CIE if microinjected 2 h later. These cellular effects are in line with the recently reported retardatory effects of BIS-I and H-7 on behavioural recovery after UL. They demonstrate that the increase in intrinsic excitability in MVN neurons during vestibular compensation is cerebellum dependent, and requires mGluR activation and protein phosphorylation in cerebellar cortex. Furthermore, microinjection of the glucocorticoid receptor (GR) antagonist RU38486 into the ipsi-lesional flocculus also abolished CIE in MVN neurons. Thus an important site for glucocorticoids in facilitating vestibular compensation is within the cerebellar cortex. These observations ascribe functional significance to the high levels of GR and 11-β-HSD Type 1 expression in cerebellum.  相似文献   

3.
Removal of the peripheral vestibular receptor cells in one inner ear (unilateral vestibular deafferentation, UVD) results in a syndrome of ocular motor and postural disorders, many of which disappear over time in a process of behavioural recovery known as vestibular compensation. Excitatory amino acid receptors, in particular the N-methyl-D-aspartate (NMDA) receptor, have been implicated in vestibular compensation; however, the metabotropic glutamate receptors (mGluRs) have not been studied in this context. The aim of this study was to determine whether group I mGluRs in the brainstem vestibular nucleus complex (VNC) ipsilateral to the UVD are involved in vestibular compensation of the static symptoms of UVD in guinea pig. The selective group I mGluR antagonist (RS)-1-aminoindan-1,5,dicarboxylic acid (AIDA) was continuously infused into the ipsilateral VNC for 30-min pre-UVD and 30-min post-UVD by cannula, at a rate of 1 microl/h, using one of four doses: 0.1 fg, 0.1 pg, 0.1 ng or 0.1 microg (n=5 animals in each case). In control conditions, a 0.1-fg (n=4) or 0.1-microg (n=5) NaOH vehicle was infused into the ipsilateral VNC using the same protocol. In order to control for the possibility that AIDA disrupted spontaneous neuronal activity in the VNC in normal animals, 0.1 microg AIDA (n=4) or 0.1 microg NaOH (n=2) was infused into the VNC in labyrinthine-intact animals. In both groups, static symptoms of UVD (i.e. spontaneous nystagmus, SN, yaw head tilt, YHT and roll head tilt, RHT) were measured at 8, 10, 12, 15, 20, 25, 30, 35, 45 and 50 h post-UVD. In addition, the righting reflex latency (RRL) was measured in labyrinthine-intact animals in order to assess whether AIDA impaired motor coordination in labyrinthine-intact animals. In UVD animals, the highest dose of AIDA significantly reduced SN frequency and changed its rate of compensation (P<0.001 and P<0.0001, respectively). This dose of AIDA also caused a significant reduction in YHT (P<0.005) as well as a significant change in its rate of compensation (P<0.0001). However, RHT was not significantly affected. In the labyrinthine-intact animals, AIDA infusion did not induce a UVD syndrome, nor did it significantly affect RRL. These results suggest that group I mGluRs in the ipsilateral VNC may be involved in the expression of ocular motor and some postural symptoms following UVD. Furthermore, group I mGluRs may not contribute to the resting activity of vestibular nucleus neurons.  相似文献   

4.
5.
GABA and the GABAA and GABAB receptors play a pivotal role in the coordination of the central vestibular pathways. The commissural inhibition, which exists between the two vestibular nucleus complexes (VNCs) and which is responsible for enhancing the dynamic sensitivity of VNC neurons to head acceleration, is known to be substantially mediated by GABA acting on GABAA and GABAB receptors. After unilateral vestibular deafferentation (UVD), the large asymmetry in spontaneous resting activity between the two VNCs is reinforced and exacerbated by the GABAergic interaction between the ipsilateral and contralateral sides. Although it has been suggested that reduced GABAergic inhibition of the ipsilateral VNC may be partially responsible for the recovery of resting activity that underlies vestibular compensation of the static symptoms of UVD, at present there are few data available to test this hypothesis systematically. There is some evidence that GABA concentrations change in the ipsilateral VNC during the development of compensation; however, it is unclear whether these changes relate to GABA release or to metabolic pools of GABA. Most biochemical studies of GABA receptors have been conducted at the gene expression level. Therefore, it is unclear whether changes in the receptor protein also occur, although the most recent data suggest that changes in GABAA and GABAB receptor density in the VNC are unlikely. The few radioligand binding data relate to GABAA receptors with benzodiazepine binding sites only. A decrease in the sensitivity of ipsilateral VNC neurons from compensated animals to GABA receptor agonists has been reported; however, these studies have employed brainstem slices and therefore the functional identity of the neurons involved has been unclear. Although it seems likely that some changes in central GABAergic systems accompany the recovery of resting activity in the ipsilateral VNC during the development of vestibular compensation, at the present stage there is no compelling evidence that these changes have a causal role in the compensation process.  相似文献   

6.
7.
Liu P  Zheng Y  King J  Darlington CL  Smith PF 《Neuroscience》2003,117(4):965-970
Previous studies have indicated that damage to the peripheral vestibular system results in dysfunction of hippocampal place cells and an impairment of spatial learning and memory. The aim of this study was to determine whether lesions of one vestibular labyrinth (unilateral vestibular deafferentation, UVD) result in changes in the expression of the NR1 and NR2A subunits of the N-methyl-D-aspartate (NMDA) receptor, and the GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor, in subregions of the rat hippocampus (CA1, CA2/3 and the dentate gyrus) at 10 h or 2 weeks following UVD. Compared with sham surgery controls and anaesthetic controls, the expression of the NR1 subunit was significantly reduced in the ipsilateral CA2/3 region at 2 weeks post-UVD. The expression of the NR2A subunit was also significantly reduced in the ipsilateral CA2/3 and, to a smaller extent, in the contralateral CA2/3 region, at 2 weeks post-UVD. The only other change in NR2A expression was an increase in the ipsilateral CA1 at 10 h post-UVD. No other changes in NR1, NR2A or GluR2 expression were observed in any hippocampal subregion, at any time point, or in cortical tissue at any time point. These results suggest that UVD may result in long-term changes in NMDA receptor subunit expression in the rat hippocampus.  相似文献   

8.
It has been suggested that vestibular compensation, the process of behavioural recovery that occurs following peripheral vestibular damage, might be partially dependent on the release of glucocorticoids (GC) during the early stages of recovery from the lesion. One possibility is that glucocorticoid receptors (GRs) in the vestibular nucleus complex (VNC) might change following the lesion, altering their response to GCs. We sought to test this hypothesis by quantifying the expression of cytosolic GRs in the bilateral VNCs at 10 h, 58 h and 2 weeks following unilateral vestibular deafferentation (UVD) in rat, using western blotting. We also examined GR expression in the CA1, CA2/3 and dentate gyrus (DG) subregions of the hippocampus and measured serum corticosterone levels. Compared with sham surgery and anaesthetic controls, we found no significant changes in GR expression in the ipsilateral or contralateral VNCs at any time post-UVD. However, we did find a significant decrease in GR expression in the ipsilateral CA1 at 2 weeks post-UVD. Serum corticosterone levels were significantly lower in all groups at 58 h post-op. compared to 10 h and 2 weeks; however, there were no significant differences between the UVD and control groups at any time point. These results suggest that changes in GR expression in the VNC are unlikely to contribute to the development of vestibular compensation. However, long-term changes in GR expression in CA1 might be related to chronic deficits in hippocampal function and spatial cognition following vestibular damage.  相似文献   

9.
Neuropeptide hormones such as adrenocorticotropic hormone, fragment 4-10 (ACTH(4-10], have been shown to facilitate various kinds of CNS plasticity, including recovery from deafferentation of the inner ear (vestibular compensation). The purpose of the present experiment was to determine whether the rapid compensation of spontaneous nystagmus (SN), which occurs over 2-3 days post-unilateral labyrinthectomy (UL) in the guinea pig, could be accelerated by administration of ACTH(4-10). Because of the short half-life of ACTH(4-10), injections of 200 micrograms/kg i.m. were given every 4 h for 48 h post-UL, and SN was measured every 2 h for 52 h post-UL. The results were compared with SN measurements from guinea pigs which received saline injections of the same volume, at the same times. ACTH(4-10) injections were found to significantly accelerate the rate of compensation of SN following UL. This result suggests that ACTH(4-10) may be useful in facilitating compensation when the symptoms of UL are most severe, during the first 2-3 days post-UL.  相似文献   

10.
Middle cerebral artery occlusion may result in increased activation of N-methyl-D-aspartate- or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type receptors by glutamate and lead to neuronal cell death. To characterize molecular events that precede cell death following transient focal ischemia, in situ hybridization histochemistry was used to measure levels of glutamate receptor subunit 1 (GluR1), GluR2, GluR3, N-methyl-D-aspartate receptor subunit 1 (NR1) and preproenkephalin messenger RNAs in adult rats at various recirculation times (1.5, 3 and 24 h) following a 90-min period of middle cerebral artery occlusion. At 1.5 and 3 h recirculation, autoradiography showed pronounced but differential decreases in AMPA, NR1 and preproenkephalin messenger RNA expression throughout the infarcted ipsilateral striatum. Non-uniform patterns of in situ hybridization grains emerged such that many striatal neurons were depleted of AMPA and preproenkephalin messenger RNAs, while others retained control levels. In cortical regions destined to undergo infarction, GluR2 and NR1 messenger RNAs were preferentially reduced relative to the contralateral side (to 75+/-8.5% and 66+/-4.5%, respectively); GluR1, GluR3 and preproenkephalin messenger RNAs were unaltered. At 24 h recirculation, depletion of striatal and cortical messenger RNAs became less selective. GluR3 and preproenkephalin messenger RNAs were up-regulated in ipsilateral spared regions of the striatum, and GluR1 and GluR2 messenger RNAs increased bilaterally in the cingulate cortex and in selective nuclei of the amygdala. Histological cell death or neurodegeneration was not detected in areas of reduced glutamate and preproenkephalin messenger RNA expression in either the ipsilateral striatum or cortex before 24 h. These findings suggest that complex and long-lasting decreases in messenger RNA expression occur prior to significant cell loss in regions destined to undergo infarction. Increased formation of Ca2+-permeable AMPA receptor assemblies may occur in "unspared" and "spared" regions via different mechanisms and contribute to alterations in post-ischemic synaptic activity. The possibility arises that there may be altered relationships between glutamatergic and enkephalin synapses, since the dorsolateral striatum, where preproenkephalin messenger RNA expression is acutely reduced, receives innervation by the affected ipsilateral cortical region.  相似文献   

11.
This study was designed to investigate the neuroprotective effect of treadmill pre-training against the over-release of glutamate resulting from cerebral ischemia. Sprague–Dawley rats underwent 2 weeks of treadmill run-training before cerebral ischemia was performed by middle cerebral artery occlusion. The level of glutamate in brain extracellular fluid was detected before, during and after ischemia/reperfusion. The expression of metabotropic glutamate receptor-1 (mGluR1) mRNA in striatum was examined after ischemia for 80 min and reperfusion for 240 min. Neurological defect score and brain infarction volumes were measured. The treadmill pre-training significantly suppressed the release of glutamate, and reduced the expression of mGluR1 mRNA at 59% (P < 0.01) and 62% (P < 0.05), respectively, as compared with the ischemia group. The neurological defect score and infarction volume were significantly improved by 75% (P < 0.01) and 74% (P < 0.01), respectively, in the pre-training group, as compared to the ischemia group. Treadmill pre-training has a significant neuroprotective function against ischemia/reperfusion injury, by suppressing glutamate release resulting from cerebral ischemia, and this effect may be mediated by downregulation of mGluR1.  相似文献   

12.
In the present study, to elucidate the role of mitochondrial uncoupling proteins (UCPs) in inner ear, we examined quantitative changes in the mRNA expression in vestibular ganglion (VG) after unilateral labyrinthectomy (UL) in rats. Using real-time PCR methods, UCP2, 3 and 4 mRNA expressions in the ipsilateral VG were significantly up-regulated with the maximum increase at the post-operative 1 day and all but UCP2 returned to the control level 1 week after UL. UCP2 mRNA expression was significantly up-regulated even 4 weeks after UL. Only UCP2 mRNA expression in the contralateral VG was gradually up-regulated between 1 and 4 weeks after UL. According to previous reports, UCP2 and 3 as well as UCP1 were thermogenic in yeast and brain UCP2 was suggested to modulate pre- and post-synaptic events by axonal thermogenesis. It was also reported that UCP1, 2 and 3 responses to superoxide application were an antioxidant protective mechanism. These findings suggest that mitochondrial UCPs could play both a neuro-protective role against oxidative damage and a thermal signaling role for neuro-modulation in vestibular nerve.  相似文献   

13.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

14.
Aging can lead to cognitive, affective, learning, memory and motor deficits. Since the cerebellum and glutamatergic neurotransmission are involved in several of those functions, the present work aimed at studying the expression of AMPA and NMDA glutamate receptor subunits in the chick cerebellum during aging. Young (30 days old) and aged (ca. 4 years old) chickens (Gallus gallus) were used in order to evaluate the expression of GluR1, GluR2/3 and NR1 subunits. The cerebella of young and aged chickens were subjected to immunohistochemical and immunoblotting techniques. Numbers of GluR1, GluR2/3 and NR1-positive cells and optical density of the immunoblotting data were analyzed and submitted to statistical analysis using ANOVA and the Bonferroni post hoc test. Mean density of Purkinje cells stained for Giemsa, GluR1, GluR2/3 and NR1 in the cerebellum all showed a statistically significant decrease in aged animals when compared to the young animals (Giemsa, P < 0.01; GluRs and NR1, P < 0.03). However, the ratio of GluR1 and GluR2/3-positive Purkinje cells in relation the total number of Purkinje cells found in each time point decreased with aging (ca. 10%), whereas the ratio of NR1-positive cells increased (ca. 9%). The immunoblotting data showed a significant decrease of GluR1 (ca. 66%) and GluR2/3 (ca. 55%) protein expression with aging, but did not reveal changes for NR1. Our data suggest that aging can lead to differential changes in the pattern of expression of glutamate receptor subunits, which can underlie at least part of the cognitive and motor disorders found in aged animals.  相似文献   

15.
Specimens of human cerebral cortex were obtained during neurosurgical operations and studied by immunocytochemistry and electron microscopy, using antibodies to the metabotropic glutamate receptor subunit mGluR1a and the ionotropic glutamate receptor GluR2/3. A small number of non-pyramidal neuronal cell bodies were labelled for mGluR1a. Double immunolabelling with mGluR1a and GluR2/3 showed that most pyramidal cell bodies were labelled for GluR2/3 but not for mGluR1a. Despite the non-colocalisation of these two receptor subtypes in cell bodies, however, many dendrites and dendritic spines were double-labelled for mGluR1a and GluR2/3 at electron microscopy. As there is evidence that most neurons positive for GluR2/3 are pyramidal cells, this suggests that mGluR1a is present in dendrites of pyramidal neurons, despite absent or low levels of immunoreactivity in their cell bodies. Received: 5 May 1997 / Accepted: 24 July 1997  相似文献   

16.
《Neuroscience》1999,95(3):841-857
Middle cerebral artery occlusion may result in increased activation of N-methyl-d-aspartate- or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type receptors by glutamate and lead to neuronal cell death. To characterize molecular events that precede cell death following transient focal ischemia, in situ hybridization histochemistry was used to measure levels of glutamate receptor subunit 1 (GluR1), GluR2, GluR3, N-methyl-d-aspartate receptor subunit 1 (NR1) and preproenkephalin messenger RNAs in adult rats at various recirculation times (1.5, 3 and 24 h) following a 90-min period of middle cerebral artery occlusion. At 1.5 and 3 h recirculation, autoradiography showed pronounced but differential decreases in AMPA, NR1 and preproenkephalin messenger RNA expression throughout the infarcted ipsilateral striatum. Non-uniform patterns of in situ hybridization grains emerged such that many striatal neurons were depleted of AMPA and preproenkephalin messenger RNAs, while others retained control levels. In cortical regions destined to undergo infarction, GluR2 and NR1 messenger RNAs were preferentially reduced relative to the contralateral side (to 75±8.5% and 66±4.5%, respectively); GluR1, GluR3 and preproenkephalin messenger RNAs were unaltered. At 24 h recirculation, depletion of striatal and cortical messenger RNAs became less selective. GluR3 and preproenkephalin messenger RNAs were up-regulated in ipsilateral spared regions of the striatum, and GluR1 and GluR2 messenger RNAs increased bilaterally in the cingulate cortex and in selective nuclei of the amygdala. Histological cell death or neurodegeneration was not detected in areas of reduced glutamate and preproenkephalin messenger RNA expression in either the ipsilateral striatum or cortex before 24 h.These findings suggest that complex and long-lasting decreases in messenger RNA expression occur prior to significant cell loss in regions destined to undergo infarction. Increased formation of Ca2+-permeable AMPA receptor assemblies may occur in “unspared” and “spared” regions via different mechanisms and contribute to alterations in post-ischemic synaptic activity. The possibility arises that there may be altered relationships between glutamatergic and enkephalin synapses, since the dorsolateral striatum, where preproenkephalin messenger RNA expression is acutely reduced, receives innervation by the affected ipsilateral cortical region.  相似文献   

17.
l-Glutamate, the photoreceptor neurotransmitter, depolarizes horizontal cells and OFF-bipolar cells by ionotropic receptors and hyperpolarizes ON-bipolar cells by metabotropic receptors. Despite extensive light microscopy on the distribution of glutamate receptors in zebrafish retina, there are little ultrastructural data. Given the importance of zebrafish in studies on the genetic manipulation of retinal development and function, precise data on the synaptic neurochemical organization of the zebrafish retina is needed. Immunohistochemical techniques were used to determine the ultrastructural localization of glutamate receptor subunits GluR2, GluR4, NMDA2B (NR2B) and mGluR1α in zebrafish outer plexiform layer (OPL). These antibodies were chosen because of an apparent conservation of localization of GluR2, GluR4 and mGluR1α in the vertebrate OPL, while there is some support for NMDA receptors in the OPL. GluR2-immunoreactivity (IR) was in all horizontal cell dendrites that invaginated cone pedicles and rod spherules. Three arrangements of dendrites contained GluR-IR in rod spherules: classical-type with GluR2-IR on lateral horizontal cell dendrites, a butterfly-shaped horizontal cell dendrite, and a goblet-shaped dendrite, likely of bipolar cell origin. GluR4-IR was restricted to dendrites of OFF-bipolar cells that innervated rod and cone terminals. NR2B-IR was restricted to a subtype of cone ON-bipolar cell. mGluR1α-IR was restricted to ON mixed rod/cone (Mb) bipolar cells whose dendrites innervated rod and cone synaptic terminals. The presence of mGluR1α on Mb bipolar cell dendrites is consistent with a role in retrograde endocannabinoid suppression. The subunit composition of glutamate receptors should affect the kinetics and pharmacology of these cells to glutamate receptor activation.  相似文献   

18.
In the present study, to elucidate the role of vestibular ganglion (VG) after the unilateral labyrinthine damage, we examined quantitative changes in mRNA expression of beta-adrenergic receptors (bARs) and AMP-activated protein kinase alpha catalytic subunits (aAMPKs) in VG after unilateral labyrinthectomy (UL) in rats. Using the real-time PCR method, beta2 AR mRNA expression in bilateral VG and AMPK alpha2 mRNA expression in the ipsilateral VG were significantly up-regulated with the maximum increase at the postoperative 7 day and 1 day, respectively. The up-regulation of beta2 AR in bilateral VG was long-lasting until 28 days after UL and that of AMPK alpha2 in the ipsilateral VG was just transient within 7 days after UL. These mRNA changes were supported by immunohistochemical data. According to previous reports, both of bARs and aAMPKs could regulate mitochondrial uncoupling protein (UCP) mRNA expression in several kinds of tissues and therefore might have thermogenic neurotransmission and antioxidant neuroprotective roles in neuronal tissues. UL requires not only long-lasting response of VG for central vestibular neuro-plasticity around 2-4 weeks but rapid response of VG against apoptosis of peripheral vestibular epithelia-neuronal synapses. The present findings suggest that beta2 AR in bilateral VG and AMPK alpha2 in the ipsilateral VG might play important signaling roles after the unilateral labyrinthine damage.  相似文献   

19.
The molecular mechanisms of neural and synaptic plasticity in the vestibular nuclei during 'vestibular compensation', the behavioural recovery that follows deafferentation of one inner ear, are largely unknown. In this study we have used differential proteomics techniques to determine changes in protein expression in ipsi-lesional and contra-lesional medial vestibular nuclei (MVN) of rats, 1 week after either sham surgery or unilateral labyrinthectomy (UL). A systematic comparison of 634 protein spots in two-dimensional electrophoresis gels across five experimental conditions revealed 54 spots, containing 26 proteins whose level was significantly altered 1 week post-UL. The axon-guidance-associated proteins neuropilin-2 and dehydropyriminidase-related protein-2 were upregulated in the MVN after UL. Changes in levels of further specific proteins indicate a coordinated upregulation of mitochondrial function, ATP biosynthesis and phosphate metabolism in the vestibular nuclei 1 week post-UL. These may reflect the metabolic energy demands of processes such as gliosis, neuronal outgrowth and synaptic remodelling that occur after UL. Our findings suggest novel roles for axon elaboration and guidance molecules, as well as mitochondrial and metabolic regulatory proteins, in the post-lesional physiology of the MVN during vestibular system plasticity.  相似文献   

20.
Summary The distribution of vestibular neurons projecting to the flocculus and the nodulus and uvula of the caudal vermis (Larsell's lobules X and IX) was investigated with retrograde axonal transport of horseradish peroxidase and the fluorescent tracers Fast Blue, Nuclear Yellow and Diamidino Yellow. The presence of collateral axons innervating the flocculus on one hand and the nodulus and uvula on the other was studied with simultaneous injection of the different fluorescent tracers. The distribution of vestibular neurons projecting to either flocculus or caudal vermis is rather similar and has a bilateral symmetry. The projection from the magnocellular medial vestibular nucleus is very sparse, while that from the lateral vestibular nucleus is absent. The majority of labeled neurons was found in the medial, superior, and descending vestibular nuclei, in that order. Double labeled neurons were distributed in a similar way as the single labeled ones. Labeled neurons project to the nodulus and uvula, the flocculus, and to both parts of the cerebellum simultaneously in a ratio of 12:4:1. Five different populations of vestibulocerebellar neurons can be distinguished on the basis of their projection to the: (1) ipsilateral flocculus, (2) contralateral flocculus, (3) ipsilateral flocculus and nodulus/uvula, (4) contralateral flocculus and nodulus/uvula, and (5) nodulus/uvula.Abbreviations bc brachium conjunctivum - CE external cuneate nucleus - cr restiform body - CO cochlear nuclei - DV descending vestibular nucleus - F fastigial nucleus - FL flocculus - flm medial longitudinal fascicle - gV vestibular ganglion - gVII facial genu - IN interstitial nucleus of the eight nerve - LV lateral vestibular nucleus - MVc caudal medial vestibular nucleus - MVmc magnocellular medial vestibular nucleus - MVpc parvocellular medial vestibular nucleus - NVpar parabrachial vestibular nucleus - nVII facial nerve - PH prepositus hypoglossal nucleus - rV descending root of the trigeminal nerve - S solitary tract and nucleus - sad dorsal acustic striae - SV superior vestibular nucleus - X group X - Y group Y - VI abducens nucleus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号