首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Detailed antagonist competition curves for [3H]prazosin-labelled binding sites in rat cerebral cortex membranes reveal anomalous binding characteristics. Dihydroergocryptine and indoramine compete in a steep, monophasic manner while WB4101 and phentolamine exhibit shallow competition curves. Computer-assisted analysis of binding data indicate that both WB4101 and phentolamine discriminate identical subpopulations of [3H]prazosin binding sites, which each comprise approximately 50% of specific [3H]prazosin binding. These data suggest the presence of subtypes of [3H]prazosin-labelled alpha 1 adrenergic receptors in rat cerebral cortex.  相似文献   

2.
[3H]Prazosin and [3H]WB4101 [2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4 benzodioxane] have both been proposed to label alpha 1-adrenergic receptors in the rat central nervous system. As many discrepancies between the binding of these two ligands have arisen, we conducted these studies in order to reevaluate their binding characteristics and resolve the similarities and differences in the pharmacological characteristics of their respective binding sites. [3H]Prazosin binding is characterized by a monophasic saturation isotherm. Prazosin, indoramine, and dihydroergocryptine competitions with [3H]prazosin are steep and monophasic, and model best to a single binding site. In contrast, phentolamine and WB4101 competition curves are shallow in rat cortex, exhibiting Hill coefficients significantly less than 1.0, and model to two binding sites of approximately equal proportions. The higher and lower affinity components are defined as alpha 1A and alpha 1B, respectively. [3H]WB4101 also labels two binding sites in rat cortex and hippocampus with picomolar and nanomolar affinity, respectively. However, the nanomolar binding site is serotonergic and not adrenergic. The picomolar site (KD = 150 pm) has characteristics of an alpha 1-receptor binding site: prazosin, WB4101, and phentolamine affinities for this [3H]WB4101 binding site correlate with their affinities for the highest affinity component (alpha 1A) of [3H]prazosin binding. In addition, the Bmax of this [3H] WB4101-labeled site is equal to one-half of the total [3H]prazosin Bmax. Agonist competitions with [3H]prazosin binding are multiphasic with pseudo-Hill slopes less than 1.0 and with a rank order of affinity of epinephrine greater than norepinephrine greater than phenylephrine. When binding to the alpha 1A component is blocked by a 30 nM phentolamine mask, the same rank order of agonist affinities is preserved. Although the affinities of epinephrine and norepinephrine at the two subtypes are identical, phenylephrine is weaker at the alpha 1B site. The ratio of the potency of phentolamine versus prazosin is about 4 at the alpha 1A component but about 80 at the alpha 1B binding site. We discuss these data in relation to the reported potencies of these antagonists in blocking alpha 1-receptor-mediated responses which may correlate with our designation of alpha 1A or alpha 1B binding sites.  相似文献   

3.
1. Saturation experiments indicated that [3H]-yohimbine binding was specific, saturable and labelled a single population of sites in rat cerebral cortex (Kd 5.3 +/- 0.9 nM, Bmax 121 +/- 10 fmol mg-1 protein) and human platelets (Kd 0.7 +/- 0.1 nM, Bmax 152 +/- 10 fmol mg-1 protein). 2. The alpha 2-adrenoceptor antagonists, yohimbine, rauwolscine, WY 26703, idazoxan and BDF 6143 displaced [3H]-yohimbine binding to each tissue in a simple manner, with high affinity and Hill slopes close to unity. 3. The alpha 1-adrenoceptor agonist, oxymetazoline and the antagonist prazosin inhibited the binding of [3H]-yohimbine to rat in a complex manner consistent with an interaction at more than one site. However, indoramin and WB 4101 only appeared to interact with one site. In contrast, in human platelets, all antagonists gave rise to monophasic displacement curves with Hill slopes close to unity suggesting a single site of interaction. 4. The 5-hydroxytryptamine (5-HT) receptor ligands, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), RU 24969, and methysergide inhibited the binding of [3H]-yohimbine to rat cortex with high and low affinity, consistent with an interaction with two populations of binding sites. However, inhibition of [3H]-yohimbine binding to human platelets suggested a single site of interaction. The low affinity of 5-HT, 5-carboxyamidotryptamine (5-CT) and dipropyl-5-CT indicated that [3H]-yohimbine was not labelling a 5-HT1-like site in rat cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The binding characteristics of [3H]ketanserin (a reported selective radioligand for serotonin 5-HT2 receptors) and [125I]BE 2254 (which labels selectively alpha 1-adrenoceptors) were characterized in brain frontal cortex membranes of pig and man. Saturation experiments indicated that both radioligands label apparently a homogeneous class of binding sites in human and pig fontal cortex membranes. Competition experiments with [125I]BE 2254 using 17 agonists and antagonists showed monophasic and steep curves in human and pig frontal cortex membranes. The pharmacological profile of these sites is typical of alpha 1-adrenoceptors. In competition experiments with [3H]ketanserin, most of the tested compounds displayed shallow or biphasic curves. In particular, alpha 1-adrenoceptor-selective antagonists (prazosin, WB 4101, BE 2254...) displaced with nanomolar affinity about 15 and 40% of the specific [3H]ketanserin binding in human and pig frontal cortex membranes, respectively. The minor component of [3H]ketanserin binding correlated highly significantly with [125I]BE 2254 binding in both membrane preparations. The major component of [3H]ketanserin binding to pig and human frontal cortex membranes correlated significantly with [3H]ketanserin binding in rat brain cortex membranes (which is essentially to 5-HT2 receptors). The present data demonstrate that [3H]ketanserin in nanomolar concentrations binds significantly to alpha 1-adrenoceptors in human and pig frontal cortex membranes; this suggests a rather limited degree of selectivity of ketanserin for 5-HT2 receptors in pig and human tissues.  相似文献   

5.
Using radioligand binding techniques and human frontal cortex, we determined the equilibrium dissociation constants (KDs) of 17 neuroleptics at the serotonin 5-HT1A and serotonin 5-HT2 receptors with [3H]WB4101 and [3H]ketanserin, respectively. At the serotonin 5-HT1A receptor, the most and least potent neuroleptics were chlorprothixene (KD = 230 nM) and fluphenazine (KD = 40 microM), respectively. At the serotonin 5-HT2 receptor, the most and least potent neuroleptics were spiperone (KD = 0.38 nM) and molindone, (KD = 5 microM), respectively.  相似文献   

6.
1. The binding of [3H]-yohimbine and [3H]-idazoxan to rat cortex and hippocampus is rapid, reversible and of high affinity. Saturation data indicate that a single population of binding sites exist for [3H]-yohimbine in the cortex (Bmax 121 +/- 10 fmol mg-1, protein; Kd 5.2 +/- 0.9 nM) and hippocampus (Bmax 72 +/- 6 fmol mg-1 protein; Kd 5.8 +/- 0.7 nM). [3H]-idazoxan labels one site in the cortex (Bmax 87 +/- 8 fmol mg-1 protein; Kd 4.1 +/- 0.9 nM) and hippocampus (Bmax 30 +/- 6 fmol mg-1 protein; Kd 3.5 +/- 0.5 nM), when 3 microM phentolamine is used to define non-specific binding. A second distinct [3H]-idazoxan binding site (Bmax 110 +/- 21 fmol mg-1 protein; Kd 3.6 +/- 0.07 nM) is identified in rat cortex if 0.3 microM cirazoline is used to define non-specific binding and 3 microM yohimbine is included to prevent binding to alpha 2-adrenoceptors. 2. Displacement studies indicate that the alpha 1-adrenoceptor antagonist prazosin and the 5-HT1 ligands 8-OH-DPAT, RU 24969 and methysergide differentiate [3H]-yohimbine binding into two components; a high and low affinity site. In contrast the displacement of [3H]-idazoxan by each ligand was monophasic. 3. The affinities of 8-OH-DPAT, RU 24969 and methysergide determined against [3H]-idazoxan binding to the cortex and hippocampus correlate significantly with the binding site displaying low affinity for prazosin and previously designated alpha 2A. In contrast, a poor correlation exists for the high affinity site for prazosin designated alpha 2B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of repeated treatment (14 days) with electroconvulsive shock (ECS) or imipramine on binding sites on alpha 1-adrenoceptors in the rat were studied. The binding of [3H]prazosin studied with WB4101 and phentolamine, as binding inhibitors, showed the existence of two subtypes of alpha 1-adrenoceptor (alpha 1A and alpha 1B). Proportions of the alpha 1A and alpha 1B binding sites were about 3:7 in the frontal cortex and 9:1 in the hippocampus. Pretreatment of the membranes with chlorethylclonidine (CEC) almost abolished the alpha 1B binding sites. Inhibition of the binding of [3H]prazosin studied with antidepressants (imipramine, desipramine, maprotiline and mianserin) showed that these drugs bound to alpha 1-adrenoceptors with low affinity, in an apparent monophasic manner. The characteristics of the alpha 1A and alpha 1B binding sites were studied by the binding assay with [3H]prazosin, in the presence of a small concentration (2 nM) of WB4101 to mask the alpha 1A binding sites, as well as the assay without WB4101, for the total alpha 1-adrenoceptor (alpha 1A and alpha 1B) binding. Repeated treatment with electroconvulsive shock increased but that with imipramine decreased, the density of the alpha 1B binding sites in the frontal cortex, without change of the affinity. Neither treatment affected the alpha 1A binding sites in the frontal cortex. The alpha 1-adrenoceptors (alpha 1A and alpha 1B) in the hippocampus were not affected at all by these repeated treatments. The electroconvulsive shock-induced increase in the alpha 1B binding sites in the frontal cortex of the rat could contribute to differences in clinical effects between electroconvulsive shock and antidepressant drugs.  相似文献   

8.
Quantification of alpha-adrenergic subtypes, using radioligand binding studies, depends on the availability of subtype selective drugs. [3H]WB4101 has been proposed as an alpha1 selective radioligand [D. C. U'Prichard and S.H. Snyder, Life Sci. 24,79 (1979)]. While confirming that WB4101 is alpha1 selective in calf cerebral cortex, we have found, however, that both unlabeled and tritiated WB4101 bind with indistinguishable affinity to the alpha1 and alpha2 receptors in rabbit uterus. This conclusion is based on three sets of observations: (1) [3H]WB4101 and [3H]dihydroergocryptine bind with high uniform affinity to the same number of sites in rabbit uterus in which only ~30 per cent of the alpha receptors are alpha1; (2) computer modeling of WB4101 competition curves with [3H]dihydroergocryptine indicates that WB4101 had indistinguishable affinity for the alpha1 and alpha2 receptors in rabbit uterus; and (3) competition curves of the alpha1 selective antagonist prazosin with [3H]WB4101 are biphasic, indicating that [3H]WB4101 was bound to both alpha1 and alpha2 receptors. Cautious testing of the alpha-adrenergic subtype selectivity of 3H-labeled ligands, such as [3H]WB4101, needs to be undertaken before any can be utilized to selectively label alpha-adrenergic subtypes.  相似文献   

9.
1. The selectivity of action of boldine and the related aporphine alkaloids, predicentrine (9-O-methylboldine) and glaucine (2,9-O-dimethylboldine) and alpha 1-adrenoceptor subtypes was studied by examining [3H]-prazosin competition binding in rat cerebral cortex. WB 4101 and benoxathian were used as selective alpha 1A-adrenoceptor antagonists. 2. In the competition experiments [3H]-prazosin (0.2 nM) binding was inhibited by WB 4101 and benoxathian. The inhibition curves displayed shallow slopes which could be subdivided into high and low affinity components (pKi = 9.92 and 8.29 for WB 4101, 9.35 and 7.94 for benoxathian). The two antagonists recognized approximately 37% of the sites with high affinity from among the total [3H]-prazosin specific binding sites. 3. Boldine, predicentrine and glaucine also competed for [3H]-prazosin (0.2 nM) binding with shallow and biphasic curves recognizing 30-40% of the sites with high affinity. Drug affinities (pKi) at the high and low affinity sites were, 8.31 and 6.50, respectively, for boldine, 8.13 and 6.39 for predicentrine, and 7.12 and 5.92 for glaucine. The relative order of selectivity for alpha 1A-adrenoceptors was boldine (70 fold alpha 1A-selective) = predicentrine (60 fold, alpha 1A-selective) > glaucine (15 fold, alpha 1A-selective). 4. Pretreatment of rat cerebral cortex membranes with chloroethylclonidine (CEC, 10 microM) for 30 min at 37 degrees C followed by thorough washing out reduced specific [3H]-prazosin binding by approximately 70%. The CEC-insensitive [3H]-prazosin binding was inhibited by boldine monophasically (Hill slope = 0.93) with a single pKi value (7.76). 5. These results suggest that whereas the aporphine structure shared by these alkaloids is responsible for their selectively of action for the alpha 1A-adrenoceptor subtype in rat cerebral cortex, defined functional groups, namely the 2-hydroxy function, induces a significant increase in alpha 1A-subtype selectivity and affinity.  相似文献   

10.
The influence of thyroid hormones on the concentration and properties of alpha 1-adrenoceptors in a crude membrane fraction obtained from the rat cerebral cortex was investigated using the [3H]-WB 4101 binding assay. Animals were made hypothyroid by feeding 6-propyl-2-thiouracil for 8 weeks. Hyperthyroidism was induced by triiodothyronine injections (50 microgram/100 g body weight) for 9 days. 1. The binding of [3H]-WB 4101 was saturable and of high affinity in controls as well as in hyper- and hypothyroid animals. The maximal number of binding sites (Bmax), which amounted to 95 fmol/mg protein in control animals, was increased by 27% in cortical membranes from hyperthyroid rats and reduced by 23% in the hypothyroid group. 2. The reduction in [3H]-WB 4101 binding due to 6-propyl-2-thiouracil feeding was reversible by triiodothyronine treatment. 3. Dissociation constants (KD) calculated from saturation experiments (0.25 nM) or kinetic data (0.21 nM) remained unchanged in altered thyroid states. 4. Inhibition of [3H]-WB 4101 binding by adrenergic agonists and antagonists revealed no differences between euthyroid and hypothyroid animals. The higher affinity of prazosin to the binding sites compared with yohimbine indicated that [3H]-WB 4101 predominantly labeled alpha 1-adrenoceptors. It is concluded that thyroid hormones regulate the number of alpha 1-adrenoceptors in membranes of the rat cerebral cortex, leaving their affinities unchanged.  相似文献   

11.
The effect of ten daily injections of saline or d-lysergic acid diethylamide (LSD) (260 micrograms/kg i.p.) on serotonin1 (5-hydroxytryptamine1, 5-HT1) and 5-HT2 receptor binding was determined in brain membranes from rats killed 24 h after the last injection. [3H]LSD (3.0 nM) was used with either 30.0 nM 5-HT or 70.0 nM cinanserin to estimate 5-HT1 and 5-HT2 receptors, respectively. LSD administration decreased 5-HT2 binding in cortex, striatum, hippocampus, and diencephalon/midbrain without altering 5-HT1 or total specific binding.  相似文献   

12.
1. The biochemical and pharmacological properties of 5-HT3 receptors in homogenates of NG108-15 and NCB-20 neuroblastoma cells and rat cerebral cortex have been ascertained by the use of [3H]-quipazine and [3H]-GR65630 binding. 2. In NG108-15 and NCB-20 cell homogenates, [3H]-quipazine bound to a single class of high affinity (NG108-15: Kd = 6.2 +/- 1.1 nM, n = 4; NCB-20: Kd = 3.0 +/- 0.9 nM, n = 4; means +/- s.e.means) saturable (NG108-15: Bmax = 1340 +/- 220 fmol mg-1 protein; NCB-20: Bmax = 2300 +/- 200 fmol mg-1 protein) binding sites. In rat cortical homogenates, [3H]-quipazine bound to two populations of binding sites in the absence of the 5-hydroxytryptamine (5-HT) uptake inhibitor, paroxetine (Kd1 = 1.6 +/- 0.5 nM, Bmax1 = 75 +/- 14 fmol mg-1 protein; Kd2 = 500 +/- 300 nM, Bmax2 = 1840 +/- 1040 fmol mg-1 protein, n = 3), and to a single class of high affinity binding sites (Kd = 2.0 +/- 0.5 nM, n = 3; Bmax = 73 +/- 6 fmol mg-1 protein) in the presence of paroxetine. The high affinity (nanomolar) component probably represented 5-HT3 binding sites and the low affinity component represented 5-HT uptake sites. 3. [3H]-paroxetine bound with high affinity (Kd = 0.02 +/- 0.003 nM, n = 3) to a site in rat cortical homogenates in a saturable (Bmax = 323 +/- 45 fmol mg-1 protein, n = 3) and reversible manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Using radioligand binding techniques and human frontal cortex, we determined the equilibrium dissociation constants (KDs) of 25 antidepressants at the serotonin S1 (probably the S1A subtype) and serotonin S2 receptors using [3H]WB4101 and [3H]ketanserin, respectively. At the serotonin S1 receptor, the most and least potent antidepressants were trazodone (KD = 60 nM) and bupropion (KD = 170 microM), respectively. At the serotonin S2 receptor, the most and least potent antidepressants were amoxapine (KD = 0.6 nM) and bupropion (KD = 90 microM), respectively. Analysis of the data revealed a relationship between structure and serotonin S1 affinity for some tricyclic antidepressants. Buspirone, a new anxiolytic agent, possessed high affinity for the serotonin S1 receptor (KD = 3.8 nM).  相似文献   

14.
The partial agonist [3H]para-aminoclonidine was used to label alpha 2-adrenergic binding sites in intact sections of the rat central nervous system using in vitro labeling receptor autoradiographic techniques. The distribution of alpha 2-agonist binding sites closely parallels the reported distribution of noradrenergic and adrenergic cell groups and their terminal fields, particularly the projections of the medullary catecholamine neurons. This distribution of alpha 2 binding sites confirms physiological studies which indicate that the anti-hypertensive actions of alpha 2-agonist compounds are mediated centrally in medullary and spinal centers involved in the control of parasympathetic and sympathetic outflow. Further, the high concentrations of alpha 2 binding sites in pontine and limbic areas such as the locus coeruleus, parabrachial nucleus, dorsal raphe, hypothalamus, amygdala, bed nucleus of the stria terminalis, septum and entorhinal cortex offer an anatomical basis for understanding the anxiolytic and antidepressant actions of drugs like clonidine. The antagonists [3H]prazosin and [3H]WB4101 were used to study the distribution of alpha 1-adrenergic binding sites in the rat forebrain and biochemical studies were performed to analyze the marked differences that were initially seen in the distribution of [3H]prazosin and [3H]WB4101 binding sites. Several pieces of evidence derived from both biochemical and autoradiographic studies suggest that [3H]prazosin and [3H]WB4101 act at distinctly different binding sites. However, both sites may represent components of an alpha 1-adrenergic receptor-effector complex since a high degree of overlap was seen in the binding site distribution of these two ligands and since kinetic interactions could be demonstrated in at least one region of the brain, the hippocampus. Differences noted in the relative displacements of [3H]prazosin and [3H]WB4101 binding in various forebrain regions could reflect differences in the coupling efficiency of the [3H]prazosin and [3H]WB4101 component of the hypothesized complex. Further, in some regions, [3H]WB4101 labeled a binding site that is different from the alpha 1-receptor. Thus, [3H]prazosin and [3H]WB4101 binding sites seen in forebrain regions such as lamina V of the cortex, thalamic nuclei and dorsal raphe probably represent alpha 1-adrenergic receptors and confirm electrophysiological and biochemical studies which demonstrate that adrenergic transmission in these regions can be mediated through an alpha 1-receptor.  相似文献   

15.
1. The alpha 1-adrenoceptor subtypes of rat heart were characterized in binding experiments performed with [3H]-prazosin as the radiolabel. The specific binding to the alpha 1-adrenoceptors was determined with 0.3 microM prazosin, because phentolamine (10 microM) was insufficient to inhibit completely the specific binding of high concentrations of [3H]-prazosin. 2. In saturation experiments, [3H]-prazosin bound to two distinct affinity sites (pKD = 10.39 and 8.19). The proportion of the low affinity sites was approximately 84% of total specific binding. Membranes pretreated with chloroethylclonidine (CEC, 10 microM) also showed two distinct affinity sites for [3H]-prazosin, although the maximum numbers of high and low affinity sites were reduced by 86 and 64%, respectively. 3. In competition experiments, [3H]-prazosin (100 pM) binding was inhibited by WB4101 (2-(2,6-dimethoxy-phenoxyethyl)aminomethyl-1,4-benzodioxane) and 5-methylurapidil. The inhibition curves displayed shallow slopes which could be subdivided into high and low affinity components (pKi = 10.43 and 8.36 for WB4101, 8.62 and 6.61 for 5-methylurapidil). However, unlabelled prazosin or HV723 (alpha-ethyl-3,4,5-trimethoxy-alpha-(3-((2-(2-methoxyphenoxy)-ethyl)amin o) propyl)benzeneacetonitrile fumarate) competed for [3H]-prazosin binding monophasically (pKi = 10.34 and 8.28, respectively). In CEC-pretreated membranes, prazosin, WB4101, 5-methylurapidil and HV723 antagonized the [3H]-prazosin (100 pM) binding monophasically (pKi = 9.70, 9.56, 8.60 and 8.82, for each antagonist). 4. On the other hand, 1000 pM [3H]-prazosin binding was inhibited by unlabelled prazosin biphasically (pKi = 10.49 and 8.49). HV723 did not discriminate both prazosin-high and low affinity sites (pKi = 8.18).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Recently, a high affinity [3H]imipramine-binding site of protein nature that appeared to be related to the 5-hydroxytryptamine (5-HT, serotonin) uptake mechanism was demonstrated. This binding site was only part of desipramine-displaceable [3H]imipramine binding, which contained a significant amount of additional binding not related to 5-HT uptake. The present study further investigates the [3H]imipramine-binding site of protein nature in the rat brain. Displacement by 5-HT and 6-methoxytetrahydro-beta-carboline (6-MeO-TH beta C) revealed monophasic displacement patterns with 60% displaceable binding. This binding fraction was abolished by protease treatment of the brain tissue prior to binding assay. Saturation studies of [3H]imipramine binding (1-30 nM) in rat cortex showed that the binding displaced by 30 microM 5-HT [Bmax 322 +/- 16 fmol/mg of protein, Kd 4.17 +/- 1.07 nM (means +/- SE)] was not different from the binding displaced by 1.0 microM norzimeldine (Bmax 349 +/- 15 fmol/mg of protein, Kd 4.47 +/- 1.07 nM) or 30 microM 6-MeO-TH beta C (Bmax 439 +/- 28 fmol/mg of protein, Kd 5.49 +/- 1.09 nM). When 100 microM desipramine was used in saturation studies, the binding was different from that displaced by 5-HT with Bmax 608 +/- 42 fmol/mg of protein and Kd 6.68 +/- 1.09 nM. Both displacement and saturation studies in which two displacing agents were combined indicated that most of the binding competed by 5-HT (30 microM) and norzimeldine (1.0 microM) is identical. Similarly, the binding displaced by 5-HT or norzimeldine is subsumed within 6-MeO-TH beta C (30 microM)-displaceable binding. Lesion studies with parachloroamphetamine, a selective toxin for 5-HT terminals, which resulted in a 83% reduction of [3H] 5-HT uptake ( [3H]noradrenaline uptake unaffected), abolished cortical [3H]imipramine binding displaced by 30 microM 5-HT or 1.0 microM norzimeldine. (greater than 80% reduction). However, with 100 microM desipramine as displacer, 40% of the binding remained in lesioned animals. The [3H]imipramine binding displaced by 30 microM 5-HT or 1.0 microM norzimeldine was sodium dependent, and an increase in NaCl concentration from 0 to 120 mM resulted in a 10-fold increase in affinity without effect on Bmax, whereas no change in binding was observed with increasing concentrations of LiCl.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In the rabbit isolated thoracic aorta, WB 4101 and 5-methylurapidil dose-dependently shifted the concentration-response curves for norepinephrine to the right. Schild plots showed that the inhibition of responses for WB 4101 and 5-methylurapidil was biphasic, implying that norepinephrine acted through two receptor populations. Clonidine produced a concentration-dependent contraction in the isolated rabbit thoracic aorta. WB 4101 and 5-methylurapidil antagonized the contractions for clonidine, and the Schild plot to both antagonists against clonidine yielded a monophasic slope. Schild plots of the results obtained from the inhibition by WB 4101 and 5-methylurapidil for norepinephrine in strips pretreated with chloroethylclonidine yielded a straight line with a slope of unity. Specific binding of [3H]prazosin in the aortic membrane preparations was saturable. The Hill coefficient obtained from the inhibition curves for clonidine was significantly different from unity. Clonidine interacted with two binding sites labelled by [3H]prazosin, but the low affinity site was completely eliminated by pretreatment with 10 microM chloroethylclonidine. These results suggest that the subtype activated by norepinephrine is different from that activated by clonidine, and that norepinephrine-induced contraction through both alpha 1A- and alpha 1B-subtypes and clonidine through only the alpha 1A-subtype in the rabbit thoracic aorta.  相似文献   

18.
The kinetic and pharmacological characteristics of the binding of [3H]5-HT (serotonin), [3H]8-OH-DPAT (8-OH-2-di-n-propylaminotetraline), [3H]LSD, [3H]ketanserin and [3H]mesulergine to membranes from frontal cortex, hippocampus and choroid plexus of pig brain were studied. The binding of these ligands to frontal cortex and hippocampus demonstrated the presence of 5-HT1 and 5-HT2 sites in both tissues, although hippocampus was richer in 5-HT1 (subtype 5-HT1A) sites. [3H]5-HT, [3H]mesulergine and [3H]LSD labeled the pig choroid plexus with high affinity. The pharmacological profiles of [3H]5-HT and [3H]mesulergine binding to this tissue were closely comparable. Ligands reported as selective for 5-HT1A, 5-HT1B or 5-HT2 subtypes did not show high affinity for these binding sites. Therefore, these 5-HT binding sites in pig choroid plexus could be named 5-HT1C. Other drugs with a high affinity for these sites were methysergide and mianserine. In pig frontal cortex, [3H]5-HT labeled the different subtypes of 5-HT1 sites. In contrast, [3H]mesulergine bound in pig frontal cortex to a small population of sites with pharmacological properties similar to those of the choroid plexus 5-HT1C sites. Possible physiological functions in which these sites might be involved are discussed.  相似文献   

19.
1. The acetylcholine (ACh), histamine and serotonin (5-HT) receptors in porcine dental pulp were characterized by the radioligand binding assay. 2. For [3H]nicotine binding site, Kd was 8.06 +/- 1.65 nM and Bmax was 270.83 +/- 32.68 fmol/mg protein. 3. For [3H]QNB binding site, Kd was 1.04 +/- 0.14 nM and Bmax was 24.83 +/- 3.09 fmol/mg protein. 4. For [3H]histamine binding site, Kd was 1.22 +/- 0.1 nM and Bmax was 283.15 +/- 33.1 fmol/mg protein. 5. For [3H]5-HT binding site, Kd was 1.41 +/- 0.1 nM and Bmax was 53.1 +/- 3.4 fmol/mg protein. 6. These findings indicate that the specific receptors for ACh, histamine and 5-HT are present in the porcine dental pulp, and that the ACh receptor is predominantly nicotinic.  相似文献   

20.
1. The putative alpha 1-adrenoceptor subtypes of rat cerebral cortex membranes were characterized in binding. 2. Specific binding of [3H]-prazosin was saturable between 20-5000 pm. Scatchard plots of the binding data were non-linear, indicating the presence of two distinct affinity sites for prazosin (pKD, high = 10.18, Rhigh = 308 fmol mg-1 protein; pKD, low = 8.96, Rlow = 221 fmol mg-1 protein). 3. In the membranes pretreated with chlorethylclonidine (CEC) two affinity sites for prazosin were also observed: the affinities were similar to those without CEC pretreatment, but the maximum numbers of binding sites were reduced by CEC pretreatment to 23 and 62% for prazosin-high (Rhigh) and low affinity sites (Rlow), respectively. 4. The prazosin-high affinity sites were further subdivided into two subclasses by WB4101(2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane) and phentolamine; the low affinity sites for WB4101 and phentolamine were more potently inactivated by CEC as compared with the high affinity sites. On the other hand, prazosin, HV723 (alpha-ethyl-3,4,5-trimethoxy-alpha-(3-((2-(2-methoxyphenoxy)ethyl)- amino )-propyl)benzeneacetonitrile fumarate) and yohimbine inhibited [3H]-prazosin binding to prazosin-high affinity sites monophasically. 5. In addition to the high affinity sites, the prazosin-low affinity sites were labelled at high concentrations of [3H]-prazosin. Thus, prazosin and WB4101 showed shallow displacement curves. On the other hand, HV723 and yohimbine did not discriminate between prazosin-high and low affinity sites. 6. Two distinct alpha 1-adrenoceptor subclassifications have been recently proposed (alpha 1A, alpha 1B subtypes and alpha 1H, alpha 1L, alpha 1N subtypes).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号