首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have previously shown experimental transplantation of living allogeneic bone to be feasible without long‐term immunosuppression by development of a recipient‐derived neoangiogenic circulation within bone. In this study, we examine the role of angiogenic cytokine delivery with biodegradable microspheres to enhance this process. Microsurgical femoral allotransplantation was performed from Dark Agouti to Piebald Virol Glaxo rats. Poly(D,L‐lactide‐co‐glycolide) microspheres loaded with buffer, basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), or both, were inserted intramedullarly along with a recipient‐derived arteriovenous (a/v) bundle. FK‐506 was administered daily for 14 days, then discontinued. At 28 days, bone blood flow was measured using hydrogen washout. Microangiography, histologic, and histomorphometric analyses were performed. Capillary density was greater in the FGF+VEGF group (35.1%) than control (13.9%) (p < 0.05), and a linear trend was found from control, FGF, VEGF, to FGF+VEGF (p < 0.005). Bone formation rates were greater with VEGF (p < 0.01) and FGF+VEGF (p < 0.05). VEGF or FGF alone increased blood flow more than when combined. Histology rejection grading was low in all grafts. Local administration of vascular and fibroblast growth factors augments angiogenesis, bone formation, and bone blood flow from implanted blood vessels of donor origin in vascularized bone allografts after removal of immunosuppression. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1015–1021, 2010  相似文献   

2.
Frozen bone allografts are susceptible to nonunion and fracture due to limited revascularization and incomplete bone remodeling. We aim to revascularize bone allografts by combining angiogenesis from implanted arteriovenous (AV) bundles with delivery of fibroblast growth factor (FGF‐2) and/or vascular endothelial growth factor (VEGF) via biodegradable microspheres. Rat femoral diaphyseal allografts were frozen at ?80°C, and heterotopically transplanted over a major histocompatibility mismatch. A saphenous AV bundle was inserted into the intramedullary canal. Growth factor was encapsulated into microspheres and inserted into the graft, providing localized and sustained drug release. Forty rats were included in four groups: (I) phosphate‐buffered saline, (II) FGF‐2, (III) VEGF, and (IV) FGF‐2 + VEGF. At 4 weeks, angiogenesis was measured by the hydrogen washout method and microangiography. Bone remodeling was evaluated by quantitative histomorphometry and histology. Bone blood flow was significantly higher in groups III and IV compared to control (p < 0.05). Similarly, bone remodeling was higher in VEGF groups. FGF‐2 had little effect on allograft revascularization. No synergistic effect was observed with use of both cytokines. Delivered in microspheres, VEGF proved to be a potent angiogenic cytokine, increasing cortical bone blood flow and new bone formation in frozen allografts revascularized with an implanted AV bundle. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1431–1436, 2011  相似文献   

3.
Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular endothelial growth factor (VEGF). Frozen femoral allografts were heterotopically transplanted in a rat model. The saphenous arteriovenous bundle was implanted within the graft medullary canal. Simultaneously, biodegradable microspheres containing phosphate buffered saline (control), FGF‐2, VEGF, or FGF‐2 + VEGF were placed within the graft. Rats were sacrificed at 4 and 18 weeks. Angiogenesis was determined by quantifying bone capillary density and measuring cortical bone blood flow. Bone remodeling was assessed by histology, histomorphometry, and alkaline phosphatase activity. VEGF significantly increased angiogenesis and bone remodeling at 4 and 18 weeks. FGF‐2 did not elicit a strong angiogenic or osteogenic response. No synergistic effect of FGF‐2 + VEGF was observed. VEGF delivered in microspheres had superior long‐term effect on angiogenesis and osteogenesis in surgically revascularized frozen bone structural allografts as compared to FGF‐2 or FGF‐2 + VEGF. Continuous and localized delivery of VEGF by microencapsulation has promising clinical potential by inducing a durable angiogenic and osteogenic response in frozen allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1556–1562, 2012  相似文献   

4.
Fibroblast growth factor 2 (FGF‐2) plays an important role in the early phases of bone healing. In this study, we measured FGF‐2 serum levels in 88 children undergoing surgical treatment for congenital (n = 49) or acquired (n = 39) orthopedic conditions, which were associated (n = 35) or not (n = 53) with bone lesions, to assess whether serum levels of FGF‐2 varied according to the underlying disease and may predict clinical outcomes. FGF‐2 serum levels were significantly lower in patients who did not heal after surgery (p = 0.008). Diagnostic accuracy was validated statistically, and the ROC curve provided a threshold value useful in discriminating good versus poor outcomes. The relationship between FGF‐2 and bone healing was supported by in vitro experiments. A mineralization assay was performed on bone marrow stromal cells from three patients with congenital pseudarthrosis, who had low serum levels of FGF‐2 and a poor clinical outcome after surgical treatment. Autologous serum alone was not sufficient to induce in vitro mineralization, but it did occur when cells were cultured with different sources of exogenous growth factors (GFs), including recombinant FGF‐2 and homologous serum collected from children with fractures, high FGF‐2 levels, and a good clinical outcome. In conclusion, our findings suggest that osteoinductive GFs are essential for bone repair, and that the amount of circulating FGF‐2 may predict bone healing. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 249–256, 2013  相似文献   

5.
Sef (similar expression to fgf genes) is a feedback inhibitor of fibroblast growth factor (FGF) signaling and functions in part by binding to FGF receptors and inhibiting their activation. Genetic studies in mice and humans indicate an important role for fibroblast growth factor signaling in bone growth and homeostasis. We, therefore, investigated whether Sef had a function role in skeletal acquisition and remodeling. Sef expression is increased during osteoblast differentiation in vitro, and LacZ staining of Sef+/? mice showed high expression of Sef in the periosteum and chondro‐osseous junction of neonatal and adult mice. Mice with a global deletion of Sef showed increased cortical bone thickness, bone volume, and increased periosteal perimeter by micro‐computed tomography (micro‐CT). Histomorphometric analysis of cortical bone revealed a significant increase in osteoblast number. Interestingly, Sef?/? mice showed very little difference in trabecular bone by micro‐CT and histomorphometry compared with wild‐type mice. Bone marrow cells from Sef?/? mice grown in osteogenic medium showed increased proliferation and increased osteoblast differentiation compared with wild‐type bone marrow cells. Bone marrow cells from Sef?/? mice showed enhanced FGF2‐induced activation of the ERK pathway, whereas bone marrow cells from Sef transgenic mice showed decreased FGF2‐induced signaling. FGF2‐induced acetylation and stability of Runx2 was enhanced in Sef?/? bone marrow cells, whereas overexpression of Sef inhibited Runx2‐responsive luciferase reporter activity. Bone marrow from Sef?/? mice showed enhanced hematopoietic lineage‐dependent and osteoblast‐dependent osteoclastogenesis and increased bone resorptive activity relative to wild‐type controls in in vitro assays, whereas overexpression of Sef inhibited osteoclast differentiation. Taken together, these studies indicate that Sef has specific roles in osteoblast and osteoclast lineages and that its absence results in increased osteoblast and osteoclast activity with a net increase in cortical bone mass. © 2014 American Society for Bone and Mineral Research.  相似文献   

6.
Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non‐unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer‐coated allograft that delivers bone morphogenetic protein‐2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein‐2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short‐term (95% release within 2 weeks) and long‐term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co‐cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate‐resistant acid phosphatase‐positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo‐assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer‐coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long‐term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086–1095, 2017.
  相似文献   

7.
Summary Bone Gla protein (BGP) was measured in the plasma by radioimmunoassay (RIA) during treatment of 59 patients with bone diseases including Paget's disease (N=9), primary hyperparathyroidism (N=25), chronic renal failure (N=20), and cancer involving bone (N=5). Plasma BGP was increased above normal in all patients. BGP decreased in the patients with Paget's disease following the acute and chronic administration of salmon calcitonin. Plasma BGP was higher in women then in men with primary hyperparathyroidism. Following parathyroidectomy, BGP decreased in both sexes but the decrease was significant in women only. Plasma BGP was increased in patients with renal osteodystrophy and did not change after hemodialysis. In the patients with bone cancer, plasma BGP decreased during treatment of the attendant hypercalcemia with salmon calcitonin. Although plasma BGP and serum alkaline phosphatase (AP) levels were generally correlated in these studies, there were examples of dissociation between the two. The measurement of plasma BGP appears to provide a specific index of bone metabolism that may in some circumstances be more sensitive than serum alkaline phosphatase measurement. However, further studies are necessary to establish the clinical value of plasma BGP measurement by RIA in the management of patients with bone diseases.  相似文献   

8.
McCune‐Albright syndrome (MAS) is a rare bone disorder characterized by fibrous dysplasia (FD), endocrinopathies, and café‐au‐lait patches. FD patients have been shown to respond favorably to treatment with bisphosphonates, but data are scarce in the more severe polyostotic form (PFD), including MAS, and factors determining treatment outcome are not known, particularly in the long‐term. We evaluated the biochemical (bone turnover markers [BTMs]) and clinical (pain reduction) outcome of bisphosphonate therapy in 11 patients with MAS and 30 patients with PFD: median duration of treatment 6 years (range, 2 to 25 years). Prognostic factors for treatment outcome were identified in both groups. Patients with MAS were younger at diagnosis (p = 0.001), all had precocious puberty, and four (36%) had additional growth hormone (GH) excess associated with severe craniofacial FD. Extent of skeletal disease was more severe in MAS compared to PFD. MAS patients had higher serum alkaline phosphatase (ALP) concentrations (p = 0.005), higher skeletal burden scores (p < 0.001), and more fractures (p = 0.021). MAS patients had also higher levels of FGF‐23 (p = 0.008) and higher prevalence of hypophosphatemia (p = 0.013). Twenty‐four of 30 PFD patients (80%) demonstrated a complete clinical and biochemical response within a year of starting treatment (p = 0.015), compared to only four of 11 MAS patients (36%). There were no nonresponders. In the whole group, FGF‐23, total ALP, P1NP, and CTX positively correlated with skeletal burden scores (all p ≤ 0.001), which was the only significant risk factor for an incomplete response to bisphosphonate therapy (p < 0.01). Our data suggest a beneficial and safe outcome of long‐term bisphosphonate therapy in the majority of patients with PFD, although response to therapy was limited by the higher skeletal disease burden in MAS patients. In the PFD/MAS population studied, the only identified prognostic factor that influenced the outcome of bisphosphonate therapy was a high skeletal burden score. © 2016 American Society for Bone and Mineral Research.  相似文献   

9.
10.
The selective cathepsin K inhibitor odanacatib (ODN) progressively increased bone mineral density (BMD) and decreased bone‐resorption markers during 2 years of treatment in postmenopausal women with low BMD. A 1‐year extension study further assessed ODN efficacy and safety and the effects of discontinuing therapy. In the base study, postmenopausal women with BMD T‐scores between ?2.0 and ?3.5 at the lumbar spine or femur received placebo or ODN 3, 10, 25, or 50 mg weekly. After 2 years, patients (n = 189) were rerandomized to ODN 50 mg weekly or placebo for an additional year. Endpoints included BMD at the lumbar spine (primary), total hip, and hip subregions; levels of bone turnover markers; and safety assessments. Continued treatment with 50 mg of ODN for 3 years produced significant increases from baseline and from year 2 in BMD at the spine (7.9% and 2.3%) and total hip (5.8% and 2.4%). Urine cross‐linked N‐telopeptide of type I collagen (NTx) remained suppressed at year 3 (?50.5%), but bone‐specific alkaline phosphatase (BSAP) was relatively unchanged from baseline. Treatment discontinuation resulted in bone loss at all sites, but BMD remained at or above baseline. After ODN discontinuation at month 24, bone turnover markers increased transiently above baseline, but this increase largely resolved by month 36. There were similar overall adverse‐event rates in both treatment groups. It is concluded that 3 years of ODN treatment resulted in progressive increases in BMD and was generally well tolerated. Bone‐resorption markers remained suppressed, whereas bone‐formation markers returned to near baseline. ODN effects were reversible: bone resorption increased transiently and BMD decreased following treatment discontinuation. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
Bone deposition and bone resorption are ongoing dynamic processes, constituting bone remodeling. Some bone tumors, such as osteosarcoma (OS), stimulate focal bone deposition. OS is the most common primary bone tumor in children and young adults. A complex network of genes regulates bone remodeling and alterations in its expression levels can influence the genesis and progression of bone diseases, including OS. We hypothesized that the expression profiles of bone remodeling regulator genes would be correlated with OS biology and clinical features. We used real‐time PCR to evaluate the mRNA levels of the tartrate‐resistant acid phosphatase (ACP5), colony stimulating factor‐1 (CSF1R), bone morphogenetic protein 7 (BMP7), collagen, type XI, alpha 2 (COL11A2), and protein tyrosine phosphatases zeta 1 (PTPRZ1) genes, in 30 OS tumor samples and correlated with clinical and histological data. All genes analyzed, except CSF1R, were differentially expressed when compared with normal bone expression profiles. In our results, OS patients with high levels of COL11A2 mRNA showed worse overall (p = 0.041) and event free survival (p = 0.037). Also, a trend for better overall survival was observed in patients with samples showing higher expression of BMP7 (p = 0.067). COL11A2 overexpression and BMP7 underexpression could collaborate to OS tumor growth, through its central role in bone remodeling process. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1142–1148, 2010  相似文献   

12.
Recent studies in mice have demonstrated that osteocalcin (OCN) regulates testosterone (T) production in males but not in females. We hypothesized that this novel bone‐testis axis may be most relevant during rapid skeletal growth to help maximize bone size. Thus we measured serum T, total and undercarboxylated (UC) OCN, and periosteal circumference at the radius in 56 boys (bone age 4 to 20 years). T was correlated with OCN (bone‐age‐adjusted r = 0.30, p = .024), with a similar trend for UC OCN. T began to increase in the boys at bone age 11 years, and OCN peaked at bone age 14 years. Thus we divided the boys into three groups: 4 to 10 years (n = 16), 11 to 14 years (n = 18), and 15 to 20 years (n = 22). In boys of bone age 11 to 14 years (but not the other two groups), OCN was correlated with T (r = 0.57, p = .013), with a similar trend for UC OCN; T, in turn, was correlated with periosteal circumference (r = 0.75, p < .001). Collectively, these findings support the recent observations in mice of a novel bone‐testis axis. Moreover, our data suggest that in human males, this axis may be most relevant during rapid skeletal growth, when T levels are rising under the influence of the hypothalamic‐pituitary axis and OCN is increasing due to skeletal growth. During this phase, OCN may further stimulate testicular T production, which, in turn, contributes to an increase in bone size. © 2011 American Society for Bone and Mineral Research  相似文献   

13.
Leptin is the LEP (ob) gene product secreted by adipocytes. We previously reported that leptin decreases renal expression of the 25‐hydroxyvitamin D3 1α‐hydroxylase (CYP27B1) gene through the leptin receptor (ObRb) by indirectly acting on the proximal tubules. This study focused on bone‐derived fibroblast growth factor 23 (FGF‐23) as a mediator of the influence of leptin on renal 1α‐hydroxylase mRNA expression in leptin‐deficient ob/ob mice. Exposure to leptin (200 ng/mL) for 24 hours stimulated FGF‐23 expression by primary cultured rat osteoblasts. Administration of leptin (4 mg/kg i.p. at 12‐hour intervals for 2 days) to ob/ob mice markedly increased the serum FGF‐23 concentration while significantly reducing the serum levels of calcium, phosphate, and 1α,25‐dihydroxyvitamin D3 [1,25(OH)2D3]. Administration of FGF‐23 (5 µg i.p. at 12‐hour intervals for 2 days) to ob/ob mice suppressed renal 1α‐hydroxylase mRNA expression. The main site of FGF‐23 mRNA expression was the bone, and leptin markedly increased the FGF‐23 mRNA level in ob/ob mice. In addition, leptin significantly reduced 1α‐hydroxylase and sodium‐phosphate cotransporters (NaPi‐IIa and NaPi‐IIc) mRNA levels but did not affect Klotho mRNA expression in the kidneys of ob/ob mice. Furthermore, the serum FGF‐23 level and renal expression of 1α‐hydroxylase mRNA were not influenced by administration of leptin to leptin receptor–deficient (db/db) mice. These results indicate that leptin directly stimulates FGF‐23 synthesis by bone cells in ob/ob mice, suggesting that inhibition of renal 1,25(OH)2D3 synthesis in these mice is at least partly due to elevated bone production of FGF‐23. © 2010 American Society for Bone and Mineral Research  相似文献   

14.
A normal mineral metabolism is integral for skeletal development and preservation of bone integrity. Fibroblast growth factor 23 (FGF‐23) is a bone‐derived circulating factor that decreases serum concentrations of inorganic phosphorous (Pi) and 1,25‐dihydroxyvitamin D3 [1,25(OH)2D3]. Increased FGF‐23 expression is a direct or indirect culprit in several skeletal disorders; however, the relation between FGF‐23 and fracture risk remains undetermined. We evaluated the prospective relation between serum intact FGF‐23 (measured by a two‐site monoclonal antibody ELISA) and fracture risk employing the Swedish part of the population‐based Osteoporotic Fractures in Men Study (MrOS; n = 2868; mean age 75.4 ± 3.2 years; median follow‐up period 3.35 years). The incidence of at least one validated fracture after baseline was 20.4 per 1000 person‐years. FGF‐23 was directly related to the overall fracture risk [age‐adjusted hazard ratio (HR) per SD increase = 1.20, 95% confidence interval (CI) 1.03–1.40] and vertebral fracture risk (HR = 1.33, 95% CI 1.02–1.75). Spline models revealed a nonlinear relation between FGF‐23 and fracture risk, with the strongest relation at FGF‐23 levels above 55.7 pg/mL. FGF‐23 levels above 55.7 pg/mL also were associated with an increased risk for hip and nonvertebral fractures (HR = 2.30, 95% CI 1.16–4.58, and HR = 1.63, 95% CI 1.01–2.63, respectively). These relations remained essentially unaltered after adjustment for bodymass index (BMI), bone mineral density (BMD), glomerular filtration rate, 25(OH)2D3, parathyroid hormone (PTH), and other fracture risk factors. In conclusion, FGF‐23 is a novel predictor of fracture risk in elderly men. © 2011 American Society for Bone and Mineral Research.  相似文献   

15.
The role of type 2 deiodinase (D2) in the human skeleton remains unclear. The D2 polymorphism Thr92Ala has been associated with lower enzymatic activity, which could result in lower local triiodothyronine (T3) availability in bone. We therefore hypothesized that the D2 Thr92Ala polymorphism may influence bone mineral density (BMD) and bone turnover. We studied 154 patients (29 men, 125 women: 79 estrogen‐replete, 46 estrogen‐deficient) with cured differentiated thyroid carcinoma. BMD and bone turnover markers [bone‐specific alkaline phosphatase (BAP), cross‐linking terminal C‐telopeptide of type I collagen (CTX), procollagen type 1 amino‐terminal propeptide (P1NP), and cross‐linked N‐telopeptide of type I collagen (NTX)] were measured. Effects of the D2 Thr92Ala polymorphism on BMD and bone turnover markers were assessed by a linear regression model, with age, gender, estrogen state, body mass index (BMI), serum calcium, 25‐hydroxyvitamin D, parathyroid hormone (PTH), thyroid‐stimulating hormone (TSH), and free triiodothyroxine (T4) as covariables. Sixty patients were wild type (Thr/Thr), 66 were heterozygous (Thr/Ala), and 28 were homozygous (Ala/Ala) for the D2 polymorphism. There were no significant differences in any covariables between the three genotypes. Subjects carrying the D2 Thr92Ala polymorphism had consistently lower femoral neck and total hip densities than wild‐type subjects (p = .028), and this was accompanied by significantly higher serum P1NP and CTX and urinary NTX/creatinine levels. We conclude that in patients with cured differentiated thyroid carcinoma, the D2 Thr92Ala polymorphism is associated with a decreased femoral neck BMD and higher bone turnover independent of serum thyroid hormone levels, which points to a potential functional role for D2 in bone. © 2010 American Society for Bone and Mineral Research  相似文献   

16.
Osteocytes are the most abundant cells in bone yet are the most challenging to study because they are embedded in a mineralized matrix. We generated a clonal cell line called IDG‐SW3 (for Immortomouse/Dmp1‐GFP‐SW3) from long‐bone chips from mice carrying a Dmp1 promoter driving GFP crossed with the Immortomouse, which expresses a thermolabile SV40 large T antigen regulated by interferon γ (IFN‐γ). Cells from these mice can be expanded at 33 °C in the presence of IFN‐γ and then allowed to resume their original phenotype at 37 °C in the absence of IFN‐γ. IDG‐SW3 cells are Dmp1‐GFP? and T antigen+ under immortalizing conditions but Dmp1‐GFP+ and T antigen? under osteogenic conditions. Like osteoblasts, they express alkaline phosphatase and produce and mineralize a type 1 collagen matrix containing calcospherulites. Like early osteocytes, they express E11/gp38, Dmp1, MEPE, and Phex. Like late osteocytes, they develop a dendritic morphology and express SOST/sclerostin and fibroblast growth factor 23 (FGF‐23), regulated by parathyroid hormone (PTH) and 1,25‐dihydroxyvitamin D3. When cultured on 3D matrices, they express Dmp1‐GFP and sclerostin. When the 3D cultures are implanted in calvarial defects in vivo, they accelerate bone healing. This cell line should prove useful for studying osteoblast‐to‐osteocyte transition, mechanisms for biomineralization, osteocyte function, and regulation of SOST/sclerostin and FGF‐23. © 2011 American Society for Bone and Mineral Research  相似文献   

17.
18.
We have demonstrated survival of living allogeneic bone without long‐term immunosuppression using short‐term immunosuppression and simultaneous creation of an autogenous neoagiogenic circulation. In this study, bone morphogenic protein‐2 (rhBMP‐2), and/or vascular endothelial growth factor (VEGF), were used to augment this process. Femoral diaphyseal bone was transplanted heterotopically from 46 Dark Agouti to 46 Lewis rats. Microvascular repair of the allotransplant nutrient pedicle was combined with intra‐medullary implantation of an autogenous saphenous arteriovenous (AV) bundle and biodegradable microspheres containing buffer (control), rhBMP‐2 or rhBMP‐2 + VEGF. FK‐506 given daily for 14 days maintained nutrient pedicle flow during angiogenesis. After an 18 weeks survival period, we measured angiogenesis (capillary density) from the AV bundle and cortical bone blood flow. Both measures were greater in the combined (rhBMP‐2 + VEGF) group than rhBMP‐2 and control groups (p < 0.05). Osteoblast counts were also higher in the rhBMP‐2 + VEGF group (p < 0.05). A trend towards greater bone formation was seen in both rhBMP2 + VGF and rhBMP2 groups as compared to controls (p = 0.059). Local administration of VEGF and rhBMP‐2 augments angiogenesis, osteoblastic activity and bone blood flow from implanted blood vessels of donor origin in vascularized bone allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 561–566, 2013  相似文献   

19.
Disuse of the musculoskeletal system causes bone loss. Whether patients in vegetative state, a dramatic example of immobilization after severe brain injury, suffer from bone loss and fractures is currently unknown. Serum markers of bone turnover, bone mineral density (BMD) measurements, and clinical data were cross‐sectionally analyzed in 30 consecutive vegetative state patients of a dedicated apallic care unit between 2003 and 2007 and compared with age‐ and sex‐matched healthy individuals. Vegetative state patients showed low calcium levels and vitamin D deficiency compared with healthy controls. Serum bone turnover markers revealed high turnover as evidenced by markedly elevated carboxy‐terminal telopeptide of type I collagen (β‐crosslaps) and increased levels of alkaline phosphatase. BMD measured by dual‐energy X‐ray absorptiometry (DXA) scanning showed strongly decreased T‐ and Z‐scores for hip and spine. Over a period of 5 years, 8 fragility fractures occurred at peripheral sites in 6 of 30 patients (n = 3 femur, n = 2 tibia, n = 2 fibula, n = 1 humerus). In conclusion, high bone turnover and low BMD is highly prevalent in vegetative state patients, translating into a clinically relevant problem as shown by fragility fractures in 20% of patients over a time period of 5 years. © 2014 American Society for Bone and Mineral Research.  相似文献   

20.
The aim of this study was to compare angiogenesis and osteogenesis occurring within 8.0 mm diaphyseal defects created in canine tibiae treated using autograft or a biodegradable bone scaffold. All tibiae were reamed to 7.0 mm and fixed with a 6.5‐mm statically locked intramedullary nail. Each of the 18 canines as allotted to one of three treatment groups: (1) left empty (N = 5), (2) treated with iliac crest autograft (N = 6), or (3) treated with a PLGA/calcium phosphate biodegradable scaffold (N = 7). Fluorescent markers were given at successive time periods: calcein green at 6 weeks, xylenol orange at 9 weeks, and tetracycline at 11 and 14 weeks. Animals were sacrificed at 15 weeks and their legs were perfused with a radio opaque compound. Samples were analyzed using Micro CT, bright‐field microscopy and fluorescent microscopy. Scaffold samples were found to have significantly greater bone formation (p = 0.015) and blood vessel formation (p < 0.001) at their osteotomy sites than autograft samples. Bone formation rate in the periosteum was significantly greater in the autograft samples than the scaffold samples for all time periods. Bone formation at the osteotomy site was found to be significantly greater when associated with greater blood vessel formation (p = 0.026). The PLGA/calcium phosphate biodegradable scaffold we have employed supports angiogenesis within a segmental tibial defect that has adequate soft tissue coverage. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:474–480, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号