首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagocytosis of shed photoreceptor rod outer segments (ROS) by the retinal pigment epithelium (RPE) is essential for retinal function. Here, we demonstrate that this process requires αvβ5 integrin, rather than αvβ3 integrin utilized by systemic macrophages. Although adult rat RPE expressed both αvβ3 and αvβ5 integrins, only αvβ3 was expressed at birth, when the retina is immature and phagocytosis is absent. Expression of αvβ5 was first detected in RPE at PN7 and reached adult levels at PN11, just before onset of phagocytic activity. Interestingly, αvβ5 localized in vivo to the apical plasma membrane, facing the photoreceptors, and to intracellular vesicles, whereas αvβ3 was expressed basolaterally. Using quantitative fluorimaging to assess in vitro uptake of fluorescent particles by human (ARPE-19) and rat (RPE-J) cell lines, αvβ5 function-blocking antibodies were shown to reduce phagocytosis by drastically decreasing (85%) binding of ROS but not of latex beads. In agreement with a role for αvβ5 in phagocytosis, immunofluorescence experiments demonstrated codistribution of αvβ5 integrin with internalized ROS. Control experiments showed that blocking αvβ3 function with antibodies did not inhibit ROS phagocytosis and that αvβ3 did not colocalize with phagocytosed ROS. Taken together, our results indicate that the RPE requires the integrin receptor αvβ5 specifically for the binding of ROS and that phagocytosis involves internalization of a ROS-αvβ5 complex. αvβ5 integrin does not participate in phagocytosis by other phagocytic cells and is the first of the RPE receptors involved in ROS phagocytosis that may be specific for this process.  相似文献   

2.
The vitronectin receptor is a member of the integrin family of adhesion protein receptors and binds a broad spectrum of ligands, including fibronectin and fibrinogen in addition to vitronectin. We have generated four mAbs that recognize the murine αvβ3 vitronectin receptor. Biochemical and expression analyses showed that two of the mAbs are specific for the αv chain, and two are specific for the β3 chain. The mAbs are effective blocking reagents and inhibited cell adhesion to vitronectin, fibrinogen, and fibronectin. Staining analysis revealed expression of αv and β3 on certain populations of murine thymocytes, splenocytes, and bone marrow cells. The expression of αv and β3 appeared to be modulated at specific stages of thymocyte development, suggesting a possible function for the αvβ3 vitronectin receptor in T cell development.  相似文献   

3.
Integrins represent a gateway of entry for many viruses and the Arg-Gly-Asp (RGD) motif is the smallest sequence necessary for proteins to bind integrins. All Severe Acute Respiratory Syndrome Virus type 2 (SARS-CoV-2) lineages own an RGD motif (aa 403–405) in their receptor binding domain (RBD). We recently showed that SARS-CoV-2 gains access into primary human lung microvascular endothelial cells (HL-mECs) lacking Angiotensin-converting enzyme 2 (ACE2) expression through this conserved RGD motif. Following its entry, SARS-CoV-2 remodels cell phenotype and promotes angiogenesis in the absence of productive viral replication. Here, we highlight the αvβ3 integrin as the main molecule responsible for SARS-CoV-2 infection of HL-mECs via a clathrin-dependent endocytosis. Indeed, pretreatment of virus with αvβ3 integrin or pretreatment of cells with a monoclonal antibody against αvβ3 integrin was found to inhibit SARS-CoV-2 entry into HL-mECs. Surprisingly, the anti-Spike antibodies evoked by vaccination were neither able to impair Spike/integrin interaction nor to prevent SARS-CoV-2 entry into HL-mECs. Our data highlight the RGD motif in the Spike protein as a functional constraint aimed to maintain the interaction of the viral envelope with integrins. At the same time, our evidences call for the need of intervention strategies aimed to neutralize the SARS-CoV-2 integrin-mediated infection of ACE2-negative cells in the vaccine era.  相似文献   

4.
The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin αvβ3 (also known as the vitronectin receptor) or αIIbβ3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin αIIbβ3. Defined β3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing αvβ3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.  相似文献   

5.
Foot-and-mouth disease (FMD) is endemic in large parts of sub-Saharan Africa, Asia and South America, where outbreaks in cloven-hooved livestock threaten food security and have severe economic impacts. Vaccination in endemic regions remains the most effective control strategy. Current FMD vaccines are produced from chemically inactivated foot-and-mouth disease virus (FMDV) grown in suspension cultures of baby hamster kidney 21 cells (BHK-21). Strain diversity means vaccines produced from one subtype may not fully protect against circulating disparate subtypes, necessitating the development of new vaccine strains that “antigenically match”. However, some viruses have proven difficult to adapt to cell culture, slowing the manufacturing process, reducing vaccine yield and limiting the availability of effective vaccines, as well as potentiating the selection of undesired antigenic changes. To circumvent the need to cell culture adapt FMDV, we have used a systematic approach to develop recombinant suspension BHK-21 that stably express the key FMDV receptor integrin αvβ6. We show that αvβ6 expression is retained at consistently high levels as a mixed cell population and as a clonal cell line. Following exposure to field strains of FMDV, these recombinant BHK-21 facilitated higher virus yields compared to both parental and control BHK-21, whilst demonstrating comparable growth kinetics. The presented data supports the application of these recombinant αvβ6-expressing BHK-21 in future FMD vaccine production.  相似文献   

6.
The Flavivirus genus includes a number of important viruses that are pathogenic to humans and animals and are responsible for outbreaks across the globe. Integrins, a family of heterodimeric transmembrane molecules expressed in all nucleated cells mediate critical functions of cell physiology and cell cycle. Integrins were previously postulated to be involved in flavivirus entry and to modulate flavivirus replication efficiency. In the present study, mouse embryonic fibroblasts (MEF), lacking the expression of αVβ3 integrin (MEF-αVβ3−/−), were infected with four different flaviviruses, namely yellow fever virus (YFV), West Nile virus (WNV), Usutu virus (USUV) and Langat virus (LGTV). The effects of the αVβ3 integrin absence in double-knockout MEF-αVβ3−/− on flavivirus binding, internalization and replication were compared to the respective wild-type cells. Binding to the cell surface for all four flaviviruses was not affected by the ablation of αVβ3 integrin, whereas internalization of USUV and WNV was slightly affected by the loss of αVβ3 integrin expression. Most interestingly, the deletion of αVβ3 integrin strongly impaired replication of all flaviviruses with a reduction of up to 99% on virus yields and a strong reduction on flavivirus anti-genome RNA synthesis. In conclusion, our results demonstrate that αVβ3 integrin expression in flavivirus-susceptible cell lines enhances the flavivirus replication.  相似文献   

7.
Inhibiting the α4 subunit of the integrin heterodimers α4β1 and α4β7 with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and α4 heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the β1-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on β1 integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of β1-deficient myeloid cells remains unaffected, suggesting that T cells are the main target of anti-α4-antibody blockade. We demonstrate that β1-integrin expression on encephalitogenic T cells is critical for EAE development, and we therefore exclude α4β7 as a target integrin of the antibody treatment. T cells lacking β1 integrin are unable to firmly adhere to CNS endothelium in vivo, whereas their priming and expansion remain unaffected. Collectively, these results suggest that the primary action of natalizumab is interference with T cell extravasation via inhibition of α4β1 integrins.  相似文献   

8.
β2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of β2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4+ T cell lines obtained from healthy donors and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in β2 integrin (CD18)-positive but not in β2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation of the 125-kDa protein but not other proteins in β2-integrin-positive T cells. Likewise, a β2 integrin (CD18) antibody selectively inhibits induction of the 125-kDa phosphotyrosine protein, whereas cytokine-mediated tyrosine phosphorylation of other proteins is largely unaffected. Immunoprecipitation experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in β2-integrin-positive but not in β2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fakB-tyrosine phosphorylation in β2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125FAK. In conclusion, our data indicate that IL-2 induces β2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB.  相似文献   

9.
Alzheimer’s disease (AD) is a multifactorial disease in which β-amyloid peptide (βAP) plays a critical role. We report here that the soluble fraction 1–40 of βAP differentially degrades protein kinase C-α and -γ (PKCα and PKCγ) isoenzymes in normal (age-matched controls, AC) and AD fibroblasts most likely through proteolytic cascades. Treatment with nanomolar concentrations of βAP(1–40) induced a 75% decrease in PKCα, but not PKCγ, immunoreactivity in AC fibroblasts. In the AD fibroblasts, a 70% reduction of the PKCγ, but not PKCα, immunoreactivity was observed after βAP treatment. Preincubation of AC or AD fibroblasts with 50 μM lactacystine, a selective proteasome inhibitor, prevented β-AP(1–40)-mediated degradation of PKCα in the AC cells, and PKCγ in the AD fibroblasts. The effects of βAP(1–40) on PKCα in AC fibroblasts were prevented by inhibition of protein synthesis and reversed by PKC activation. A 3-hr treatment with 100 nM phorbol 12-myristate 13-acetate restored the PKCα signal in treated AC cells but it did not reverse the effects of βAP(1–40) on PKCγ in the AD fibroblasts. Pretreatment with the protein synthesis inhibitor, cycloheximide (CHX, 100 μM), inhibited the effects of βAP(1–40) on PKCα and blocked the rescue effect of phorbol 12-myristate 13-acetate in AC fibroblasts but did not modify PKCγ immunoreactivity in AD cells. These results suggest that βAP(1–40) differentially affects PKC regulation in AC and AD cells via proteolytic degradation and that PKC activation exerts a protective role via de novo protein synthesis in normal but not AD cells.  相似文献   

10.
Angioplasty procedures are increasingly used to reestablish blood flow in blocked atherosclerotic coronary arteries. A serious complication of these procedures is reocclusion (restenosis), which occurs in 30–50% of patients. Migration of coronary artery smooth muscle cells (CASMCs) to the site of injury caused by angioplasty and subsequent proliferation are suggested mechanisms of reocclusion. Using both cultured human CASMCs and coronary atherectomy tissues, we studied the roles of osteopontin (OPN) and one of its receptors, αvβ3 integrin, in the pathogenesis of coronary restenosis. We also measured the plasma levels of OPN before and after angioplasty and determined the effect of exogenous OPN on CASMC migration, extracellular matrix invasion, and proliferation. We found that cultured CASMCs during log phase of growth and smooth muscle cell layer of the coronary atherosclerotic tissues of patients express both OPN mRNA and protein at a significantly elevated level compared with controls. Interestingly, whereas the baseline plasma OPN levels in control samples were virtually undetectable, those in patient plasma were remarkably high. We also found that interaction of OPN with αvβ3 integrin, expressed on CASMCs, causes migration, extracellular matrix invasion, and proliferation. These effects were abolished when OPN or αvβ3 integrin gene expression in CASMCs was inhibited by specific antisense S-oligonucleotide treatment or OPN-αvβ3 interaction was blocked by treatment of CASMCs with antibodies against OPN or αvβ3 integrin. Our results demonstrate that OPN and αvβ3 integrin play critical roles in regulating cellular functions deemed essential for restenosis. In addition, these results raise the possibility that transient inhibition of OPN gene expression or blocking of OPN-αvβ3 interaction may provide a therapeutic approach to preventing restenosis.  相似文献   

11.
OBJECTIVE—To investigate in situ the expression of the integrin receptor subunits α6 and β1 and the distribution of the ligand laminin in the synovia from osteoarthritis (OA) and rheumatoid arthritis (RA) patients and to study the effect of cytokines and antirheumatic drugs on the expression of the α6 and β1 integrin subunits on long term cultures of fibroblast-like synoviocytes (FBS) derived from OA and RA.
METHODS—The expression of the α6 and β1 integrin subunits and the distribution of laminin were examined immunohistochemically in normal synovia and in synovia from patients with OA and RA. The effect of proinflammatory cytokines (IL1β and TNFα), and of antirheumatic drugs (salicylic acid, dexamethasone, and methotrexate) on the α6 and β1 expression of cultured normal FBS and FBS from patients with OA and RA was determined by flow cytometry.
RESULTS—In normal synovia and in OA synovia samples with a low grade of inflammation, synovial lining cells (SLC) showed a parallel expression and distribution of α6 and laminin. In synovia samples of OA with a higher grade of inflammation and in the majority of RA synovia samples laminin was pericellularly distributed in a low number of SLC, whereas α6 was expressed on the surface of a high number of SLC. In RA synovia samples with severe inflammatory changes the gradual loss of laminin generally corresponded to a decrease of the α6 integrin subunit. β1 was always strongly expressed in all synovia samples detected. Proinflammatory cytokines up regulated the expression of α6 and β1 on OA-FBS, whereas these effectors decreased α6 and β1 on RA-FBS. In contrast, antirheumatic drugs, in particular methotrexate and dexamethasone, reduced the expression of α6 and β1 on OA-FBS, whereas the same treatment on RA-FBS stimulated the expression of these integrin subunits.
CONCLUSION—The gradual loss of laminin in chronic synovitis may contribute to the altered expression of α6 in SLC. IL1β and TNFα down regulated the expression of the α6 and β1 integrin subunits on long term cultures of FBS derived from RA. Therefore, these cytokines may be among the effectors regulating the expression of the α6 integrin subunit in SLC in vivo. As antirheumatic drugs increase the expression of α6 on RA-FBS, the presence of the laminin receptor may confer a protective effect on the synovia in vivo.

Keywords: laminin; alpha 6; integrins; rheumatoid arthritis; osteoarthritis  相似文献   

12.
The spike glycoprotein attached to the envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl–glycyl–aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental evidence that the β1 integrins predominantly expressed on human pulmonary epithelial cell lines and primary mouse alveolar epithelial cells bind to this spike protein. The cellular β1 integrins support adhesive interactions with the spike protein independently of ACE2, suggesting the possibility that the β1 integrins may function as an alternative receptor for SARS-CoV-2, which could be targeted for the prevention of viral infections.  相似文献   

13.
There is a grave need for safer antiplatelet therapeutics to prevent heart attack and stroke. Agents targeting the interaction of platelets with the diseased vessel wall could impact vascular disease with minimal effects on normal hemostasis. We targeted integrin α2β1, a collagen receptor, because its overexpression is associated with pathological clot formation whereas its absence does not cause severe bleeding. Structure–activity studies led to highly potent and selective small-molecule inhibitors. Responses of integrin α2β1 mutants to these compounds are consistent with a computational model of their mode of inhibition and shed light on the activation mechanism of I-domain-containing integrins. A potent compound was proven efficacious in an animal model of arterial thrombosis, which demonstrates in vivo efficacy for inhibition of this platelet receptor. These results suggest that targeting integrin α2β1 could be a potentially safe, effective approach to long-term therapy for cardiovascular disease.  相似文献   

14.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, is a cytokine of central importance for the angiogenesis associated with cancers and other pathologies. Because angiogenesis often involves endothelial cell (EC) migration and proliferation within a collagen-rich extracellular matrix, we investigated the possibility that VEGF promotes neovascularization through regulation of collagen receptor expression. VEGF induced a 5- to 7-fold increase in dermal microvascular EC surface protein expression of two collagen receptors—the α1β1 and α2β1 integrins—through induction of mRNAs encoding the α1 and α2 subunits. In contrast, VEGF did not induce increased expression of the α3β1 integrin, which also has been implicated in collagen binding. Integrin α1-blocking and α2-blocking antibodies (Ab) each partially inhibited attachment of microvascular EC to collagen I, and α1-blocking Ab also inhibited attachment to collagen IV and laminin-1. Induction of α1β1 and α2β1 expression by VEGF promoted cell spreading on collagen I gels which was abolished by a combination of α1-blocking and α2-blocking Abs. In vivo, a combination of α1-blocking and α2-blocking Abs markedly inhibited VEGF-driven angiogenesis; average cross-sectional area of individual new blood vessels was reduced 90% and average total new vascular area was reduced 82% without detectable effects on the pre-existing vasculature. These data indicate that induction of α1β1 and α2β1 expression by EC is an important mechanism by which VEGF promotes angiogenesis and that α1β1 and α2β1 antagonists may prove effective in inhibiting VEGF-driven angiogenesis in cancers and other important pathologies.  相似文献   

15.
Human interferon α2 (IFNα2) and thymosin α1 (Tα1) are therapeutic proteins used for the treatment of viral infections and different types of cancer. Both IFNα2 and Tα1 show a synergic effect in their activities when used in combination. Furthermore, the therapeutic fusion proteins produced through the genetic fusion of two genes can exhibit several therapeutic functions in one molecule. In this study, we determined the anticancer and antiviral effect of human interferon α2–thymosin α1 fusion protein (IFNα2–Tα1) produced in our laboratory for the first time. The cytotoxic and genotoxic effect of IFNα2–Tα1 was evaluated in HepG2 and MDA-MB-231 cells. The in vitro assays confirmed that IFNα2–Tα1 inhibited the growth of cells more effectively than IFNα2 alone and showed an elevated genotoxic effect. The expression of proapoptotic genes was also significantly enhanced in IFNα2–Tα1-treated cells compared to IFNα2-treated cells. Furthermore, the HCV RNA level was significantly reduced in IFNα2–Tα1-treated HCV-infected Huh7 cells compared to IFNα2-treated cells. The quantitative PCR analysis showed that the expression of various genes, the products of which inhibit HCV replication, was significantly enhanced in IFNα2–Tα1-treated cells compared to IFNα2-treated cells. Our findings demonstrate that IFNα2–Tα1 is more effective than single IFNα2 as an anticancer and antiviral agent.  相似文献   

16.
The N-terminal ≈440 aa of integrin α subunits contain seven sequence repeats. These are predicted here to fold into a β-propeller domain. A homologous domain from the enzyme phosphatidylinositol phospholipase D is predicted to have the same fold. The domains contain seven four-stranded β-sheets arranged in a torus around a pseudosymmetry axis. The trimeric G-protein β subunit (G beta) appears to be the most closely related β-propeller. Integrin ligands and a putative Mg2+ ion are predicted to bind to the upper face of the β-propeller. This face binds substrates in β-propeller enzymes and is used by the G protein β subunit to bind the G protein α subunit. The integrin α subunit I domain, which is structurally homologous to the G protein α subunit, is tethered to the top of the β-propeller domain by a hinge that may allow movement of the domains relative to one another. The Ca2+-binding motifs in integrin α subunits are on the lower face of the β-propeller.  相似文献   

17.
Hormonal activation of Gs, the stimulatory regulator of adenylyl cyclase, promotes dissociation of αs from Gβγ, accelerates removal of covalently attached palmitate from the Gα subunit, and triggers release of a fraction of αs from the plasma membrane into the cytosol. To elucidate relations among these three events, we assessed biochemical effects in vitro of attached palmitate on recombinant αs prepared from Sf9 cells. In comparison to the unpalmitoylated protein (obtained from cytosol of Sf9 cells, treated with a palmitoyl esterase, or expressed as a mutant protein lacking the site for palmitoylation), palmitoylated αs (from Sf9 membranes, 50% palmitoylated) was more hydrophobic, as indicated by partitioning into TX-114, and bound βγ with 5-fold higher affinity. βγ protected GDP-bound αs, but not αs· GTP[γS], from depalmitoylation by a recombinant esterase. We conclude that βγ binding and palmitoylation reciprocally potentiate each other in promoting membrane attachment of αs and that dissociation of αs·GTP from βγ is likely to mediate receptor-induced αs depalmitoylation and translocation of the protein to cytosol in intact cells.  相似文献   

18.
IFN treatment may be a viable option for treating COPD exacerbations based on evidence of IFN deficiency in COPD. However, in vitro studies have used primarily influenza and rhinoviruses to investigate IFN responses. This study aims to investigate the susceptibility to infection and IFN response of primary bronchial epithelial cells (BECs) from COPD donors to infection with RSV and hMPV. BECs from five COPD and five healthy donors were used to establish both submerged monolayer and well-differentiated (WD) cultures. Two isolates of both RSV and hMPV were used to infect cells. COPD was not associated with elevated susceptibility to infection and there was no evidence of an intrinsic defect in IFN production in either cell model to either virus. Conversely, COPD was associated with significantly elevated IFN-β production in response to both viruses in both cell models. Only in WD-BECs infected with RSV was elevated IFN-β associated with reduced viral shedding. The role of elevated epithelial cell IFN-β production in the pathogenesis of COPD is not clear and warrants further investigation. Viruses vary in the responses that they induce in BECs, and so conclusions regarding antiviral responses associated with disease cannot be made based on single viral infections.  相似文献   

19.
OBJECTIVE—The objective of this study was to detail the topographical and zonal distribution of α and β subunits of the integrin superfamily in normal and osteoarthritic cartilage.
METHODS—Immunohistochemistry utilising antibodies towards α and β subunits was performed on cryostat sections of human articular cartilage from macroscopically normal (n = 6) and osteoarthritic (n = 6) femoral heads. Samples of articular cartilage were obtained from 12 topographically distinct sites from each femoral head. Each section was divided into zones (superficial, middle, deep) and staining scores were recorded.
RESULTS—Normal cartilage stained for integrin subunits α1, α5, αV, β1, β4, and β5, but not for α2, α3, α4, α6, β2, β3, and β6. Intact and non-intact residual cartilage from osteoarthritic femoral heads stained for α1, α2, α5, αV, β1, β4, and β5. Staining was occasionally seen for α4 and β2, but not for α3, α6, β3, and β6. There was no topographical variation in the staining for any of the subunits in either normal or osteoarthritic cartilage. The only subunit that displayed a zonal variation was αV; staining for this subunit was most pronounced in the superficial zone compared with the middle and deep zones.
CONCLUSION—Chondrocytes in normal and osteoarthritic cartilage express the integrin subunits α1, α5, αV, β1, β4, and β5. Chondrocytes in osteoarthritic cartilage, in addition, express the α2, α4, and β2 subunits. The αv subunit is expressed by more chondrocytes in the superficial zone in comparison with cells in the deeper zones. None of the subunits display topographical variation in expression.

Keywords: cartilage; integrins; immunohistochemistry; osteoarthritis  相似文献   

20.
Blocking αVβ3 integrin occupancy results in attenuation of the cellular migration response to insulin-like growth factor I (IGF-I). To determine whether integrin antagonists alter other IGF-I-stimulated biologic actions, quiescent smooth muscle cells (SMCs) were exposed to echistatin and their ability to respond to IGF-I was determined. Echistatin (10−7 M) inhibited IGF-I-stimulated DNA synthesis by 80%, and the protein synthesis response also was inhibited. Therefore blocking occupancy of αVβ3 inhibited multiple target cell actions of IGF-I. To determine whether blocking αVβ3 occupancy could alter IGF-I receptor-mediated signal transduction, the ability of IGF-I to stimulate phosphorylation of insulin receptor substrate-1 (IRS-1) was analyzed. A 10-min exposure to 100 ng/ml of IGF-I resulted in a substantial increase in phosphorylated IRS-1, and echistatin (10−7 M) blocked the IGF-I-induced IRS-1 phosphorylation response. Echistatin also attenuated downstream signaling because the capacity of the p85 subunit of phosphatidylinositol-3 kinase (PI-3 kinase) to bind to IRS-1 was blocked. In contrast, exposure of SMCs to vitronectin (1.0 μg/cm2) or thrombospondin (0.25 μg/cm2), two known ligands for αVβ3, resulted in enhancement of the IGF-I-stimulated IRS-1 response. To determine whether these effects were caused by alterations in receptor kinase activity, the IGF-I receptor was immunoprecipitated and then analyzed for phosphotyrosine. Echistatin (10−7 M) significantly reduced IGF-I-stimulated tyrosine phosphorylation of the IGF-I receptor β subunit. We conclude that occupancy of the αVβ3 integrin is necessary for IGF-I to fully activate the kinase activity of the IGF-I receptor and phosphorylate IRS-1. Activation of the αVβ3 receptor results in an interaction with the IGF-I signal transduction pathway, which modulates SMCs responsiveness to IGF-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号